Характеристическое уравнение системы дифференциальных уравнений. Корни характеристического уравнения

Атомные спектры, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноатомные газы и пары. Атомные спектры возникают при переходах между уровнями энергии внешних электронов атома и наблюдаются в видимой, ультрафиолетовой и близкой инфракрасной областях. Атомные спектры наблюдаются в виде ярких цветных линий при свечении газов или паров в электрической дуге или разряде (спектры испускания) и в виде тёмных линий (спектров поглощения).

Постоянная Ридберга - величина, введённая Ридбергом, входящая в уравнение для уровней энергии и спектральных линий. Постоянная Ридберга обозначается как R. R = 13,606 эВ. В системе СИ , то есть R = 2,067×1016 с−1.

Конец работы -

Эта тема принадлежит разделу:

Основы атомной, квантовой и ядерной физики

Гипотеза де бройля и ее связь с постулатами бора уравнение шредингера физический смысл.. термоядерные реакции.. термоядерные реакции ядерные реакции между л гкими атомными ядрами протекающие при очень высоких температурах..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Модели строения атома. Модель Резерфорда
Атом - наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положи

Постулаты Бора. Элементарная теория строения атома водорода и водородоподобных ионов (по Бору)
Постулаты Бора - основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов и квантового характера испу

Уравнение Шредингера. Физический смысл уравнения Шредингера
Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. В квантовой физике

Соотношение неопределенностей Гейзенберга. Описание движения в квантовой механике
Принцип неопределённости Гейзенберга - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему

Свойства волновой функции. Квантование
Волновая функция (функция состояния, пси-функция) - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния квантовомеханической системы. Является коэффициентом

Квантовые числа. Спин
Квантовое число - численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых ч

Характеристики атомного ядра
Атомное ядро - центральная часть атома, в которой сосредоточена основная его масса, и структура которого определяет химический элемент, к которому относится атом. Ядерно-физические характе

Радиоактивность
Радиоактивность - свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов. Соответствующее явл

Цепные ядерные реакции
Цепная ядерная реакция - последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной

Элементарные частицы и их свойства. Систематика элементарных частиц
Элементарная частица - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Свойства: 1.Все Э. ч--объекты иск

Фундаментальные взаимодействия и их характеристики
Фундаментальные взаимодействия - качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел. На сегодня достоверно известно существование четырех фундамент

При проведении экспериментальных исследований спектров излучения водорода Бальмер установил, что атомы водорода (как и атомы других элементов) излучают электромагнитные волны строго определённых частот. Причем оказалось, что величину, обратную длине волны спектральной линии, можно рассчитать, как разность, некоторых двух величин, которые называются спектральными термами, т.е. справедливо соотношение:

Количественная обработка экспериментально полученных спектров водорода показала, что термы можно записать следующим образом:

где R – постоянная Ридберга, а n – целое число, которое может принимать ряд целых значений 1,2,3... Значение постоянной Ридберга, полученное экспериментально составило:

С учетом вышесказанного длину волны любой спектральной линии водорода можно рассчитать по обобщенной формуле Бальмера :

где числа n 1 иn 2 могут принимать значения:n 1 = 1,2,3...;n 2 =n 1 ,n 1 +1,n 1 +2 …

Длины волн, рассчитанные по формуле (15), очень точно совпали с экспериментально измеренными значениями длин волн в спектре излучения водорода.

Сопоставив формулы (11) и (15) можно заключить, что формула (11) это та же обобщенная формула Бальмера, но полученная теоретически. Следовательно, значение постоянной Ридберга можно рассчитать по формуле:

Числа n 1 ,n 2 –это квантовые числа, являющиеся это номерами стационарных орбит между которыми происходит квантовый скачок электрона. Если измерить значение постоянной Ридберга экспериментально, то, воспользовавшись соотношением (16) можно рассчитать постоянную Планкаh .

3. Методика выполнения работы

3.1. Рабочие формулы

Спектр излучения представляет собой важную характеристику вещества, которая позволяет установить его состав, некоторые характеристики его строения, свойства атомов и молекул.

Газы в атомарном состоянии испускают линейчатые спектры, которые можно разделить на спектральные серии .Спектральная серия представляет собой набор спектральных линий, для которых квантовое число n 1 (номер уровня на который осуществляются переходы со всех вышележащих уровней) имеет одинаковое значение. Наиболее простой спектр имеет атом водорода. Длины волн его спектральных линий определяются по формулеБальмера (15) или (11).

Каждой серии спектра атома водорода соответствует своё определённое значение n 1 . Значения n 2 представляют собой последовательный ряд целых чисел от n 1 +1 до ∞. Число n 1 представляет собой номер энергетического уровня атома, на который совершается переход электрона после излучения; n 2 - номер уровня, с которого переходит электрон при излучении атомом электромагнитной энергии.

Согласно формуле (15), спектр испускания водорода можно представить в виде следующих серий (см. рис.2):

Серия Лаймана (n 1 =1) – ультрафиолетовая часть спектра:

Серия Бальмера (n 1 = 2) - видимая часть спектра:


Рис.2.Серии спектра атома водорода

а) энергетическая диаграмма, б) схема переходов, в) шкала длин волн.

Серия Пашена (n 1 = 3) - инфракрасная часть спектра:

Серия Брекета (n 1 = 4) - инфракрасная часть спектра:

Серия Пфунда (n 1 = 5) - инфракрасная часть спектра:

В данной работе изучаются четыре первые линии серии Бальмера, соответствующие переходам на уровеньn 1 = 2. Величинаn 2 для первых четырёх линий этой серии, лежащих в видимой области, принимает значения 3, 4, 5, 6. Эти линии имеют следующие обозначения:

H α - красная линия (n 2 = 3),

H β - зелено-голубая (n 2 = 4),

H ν - синяя(n 2 = 5),

H δ - фиолетовая (n 2 = 6).

Экспериментальное определение постоянной Ридберга с использованием линий серии Бальмера можно провести используя формулу, полученную на основе (15):

Выражение для расчёта постоянной Планка можно получить, преобразовав формулу (16):

где m = 9.1 · 10 -31 кг, e - 1.6 · 10 -19 Кл, C - 3 · 10 8 м /с, ε 0 =8.8 · 10 -12 ф / м.

Закономерности в атомных спектрах

Материальные тела являются источниками электромагнитного излучения, имеющего разную природу. Во второй половине XIX в. были проведены многочисленные исследования спектров излучения молекул и атомов. Оказалось, что спектры излучения молекул состоят из широко размытых полос без резких границ. Такие спектры назвали полосатыми. Спектр излучения атомов состоит из отдельных спектральных линий или групп близко расположенных линий. Поэтому спектры атомов назвали линейчатыми. Для каждого элемента существует вполне определенный излучаемый им линейчатый спектр, вид которого не зависит от способа возбуждения атома.

Самым простым и наиболее изученным является спектр атома водорода. Анализ эмпирического материала показал, что отдельные линии в спектре могут быть объединены в группы линий, которые называются сериями. В 1885 г. И.Бальмер установил, что частоты линий в видимой части спектра водорода можно представить в виде простой формулы:

( 3, 4, 5, …), (7.42.1)

где 3,29∙10 15 с -1 – постоянная Ридберга. Спектральные линии, отличающиеся различными значениями , образуют серию Бальмера. В дальнейшем в спектре атома водорода было открыто еще несколько серий:

Серия Лаймана (лежит в ультрафиолетовой части спектра):

( 2, 3, 4, …); (7.42.2)

Серия Пашена (лежит в инфракрсной части спектра):

( 4, 5, 6, …); (7.42.3)

Серия Брекета (лежит в инфракрсной части спектра):

( 5, 6, 7, …); (7.42.4)

Серия Пфунда (лежит в инфракрсной части спектра):

( 6, 7, 8, …); (7.42.5)

Серия Хэмфри (лежит в инфракрсной части спектра):

( 7, 8, 9, …). (7.42.6)

Частоты всех линий в спектре атома водорода можно описать одной формулой – обобщенной формулой Бальмера:

, (7.42.7)

где 1, 2, 3, 4 и т.д. – определяет серию (например, для серии Бальмера 2), а определяет линию в серии, принимая целочисленные значения, начиная с 1.

Из формул (7.42.1) – (7.42.7) видно, что каждая из частот в спектре атома водорода является разностью двух величин вида зависящих от целого числа. Выражения вида где 1, 2, 3, 4 и т.д. называются спектральными термами. Согласно комбинационному принципу Ритца все излучаемые частоты могут быть представлены как комбинации двух спектральных термов:

(7.42.8)

причем всегда >

Исследование спектров более сложных атомов показало, что частоты линий их излучения можно также представить в виде разности двух спектральных термов, но их формулы сложнее, чем для атома водорода.

Установленные экспериментально закономерности излучения атомов находятся в противоречии с классической электродинамикой, согласно которой электромагнитные волны излучает ускоренно движущийся заряд. Следовательно, в атомы входят электрические заряды, движущиеся с ускорением в ограниченном объеме атома. Излучая, заряд теряет энергию в виде электромагнитного излучения. Это означает, что стационарное существование атомов невозможно. Тем не менее, установленные закономерности свидетельствовали, что спектральное излучение атомов является результатом пока неизвестных процессов внутри атома.

Дифференциальное уравнение в символической форме

Дифференциальное уравнение в классической форме

Однородное дифференциальное уравнение

Характеристическое уравнение

Характеристический полином

Передаточная функция

Корни характеристического уравнения:

Общее решение дифференциального уравнения


Так как корни являются комплексными попарно сопряженными, то характер переходного процесса является немонотонным (колебательным).

Корни характеристического уравнения находятся в левой полуплоскости. Система устойчива.

Частотную передаточную функцию, или комплексный коэффициент усиления W(j), можно ввести двумя способами:

1. Путем нахождения реакции на синусоидальный (гармонический сигнал).

2. С помощью преобразования Фурье.

Начнем с первого способа и найдем реакцию системы (2.2.1) на гармонический сигнал, который представим в показательной форме

где Хm и - амплитуда и круговая частота.

Так как в линейной системе отсутствуют нелинейные искажения, то в установившемся режиме на выходе также будет гармонический сигнал той же частоты, в общем случае с другими амплитудой и фазой, т.е.

Для определения амплитуды и фазы подставим выражения сигналов (2.4.11), (2.4.12) и их производных в дифференциальное уравнение и после сокращения на еjt 0 и элементарных преобразований получим тождество

Эти соотношения можно рассматривать как определение частотной передаточной функции. В них заключается физический смысл частотной передаточной функции и из них вытекает способ её экспериментального нахождения путем измерения амплитуд гармонических сигналов на входе и выходе и сдвига по фазе между ними для одной и той же частоты.

В случае второго способа определения частотной передаточной функции сравним (2.4.13) и (2.2.15). Из сравнения следует, что частотная передаточная функция является частным случаем передаточной функции по Лапласу при р = j, т.е.

Так как передаточная функция по Лапласу применима к сигналам произвольной (любой) формы, то и частотная передаточная функция применима для нахождения реакции на сигнал произвольной формы, а не обязательно гармонический. Из (2.4.5) для Фурье-изображения реакции имеем

Сама реакция, то есть оригинал, находится по формуле обращения

Таким образом, из второго определения частотной передаточной функции вытекает частотный метод (метод преобразования Фурье) нахождения реакции:

1. Для заданного входного сигнала находим изображение по Фурье

2. Находим Фурье-изображение реакции, используя (2.4.16)

Y(j) = X(j)W(j). (2.4.20)

3. По формуле обращения (обратного преобразования Фурье) находим реакцию

Характер преобразования входного сигнала звеном или системой определяется частотной передаточной функцией или соответствующими ей частотными характеристиками. Виды частотных характеристик тесно связаны с формами записи комплексных чисел, поскольку для частотная передаточная функция является комплексным числом.

Основные частотные характеристики (рис.2.4.3-2.4.6).

1. Амплитудно-фазовая характеристика (АФХ) - зависимость W(j) на комплексной плоскости при изменении от от - до + (Рис. 2.4.3). Так как Wх() = Wх(-) - четная функция, а Wу() = Wу(-) - нечетная функция, то АФХ для < 0 симметрична относительно вещественной оси характеристике для >0 и ее обычно не изображают.


2. Вещественная Wх() и мнимая Wу() частотные характеристики (рис. 2.4.4) - зависимости вещественной и мнимой части от частоты. Имея в виду четность вещественной характеристики и нечетность мнимой, их для < 0 обычно не изображают. Четность Wх() и нечетность Wу() вытекают из правила (2.4.22) их выделения из W(j), так как в знаменателе четная функция, а в числителе j в четной степени - действительное число (отходит к Wх()), а в нечетной -мнимое (отходит к Wy()).

3. Амплитудная (АЧХ) и фазовая (ФЧХ) частотные характеристики - зависимости А() и () от частоты (рис.2.4.5). В силу четности А() и нечетности (), их для < 0 обычно не изображают. Амплитудная частотная характеристика определяет инерционность (пропускную способность) звена или системы. Фазовая частотная характеристика определяет величину фазового сдвига на соответствующей круговой частоте.

4. Обратная частотная характеристика W-1(j) = 1/ W(j). Определяя амплитуду и аргумент (фазу) для дроби по правилу (2.4.6), найдем

Из связи между формами записи комплексных чисел вытекает, что по АФХ можно построить Wх(), Wу() или А(), (), а также W-1(j) и наоборот. На рис.2.4.6 изображена обратная для характеристики на рис.2.4.3 характеристика. На рисунке построена окружность единичного радиуса. В соответствии с правилом (2.4.22) точки, соответствующие А() > 1, лежат внутри круга единичного радиуса. Точка А() = 1 остается на окружности, но фаза меняется на противоположную (на 180).


Тем не менее, рассматриваются звенья, для которых условие физической осуществимости не выполняется. Это правомерно в определенном диапазоне частот. Если спектр сигнала на входе звена выходит за пределы этого диапазона, то возникнут искажения в реакции, не предусмотренные передаточной функцией звена.

5. Логарифмические частотные характеристики.

Наиболее широкое применение нашли логарифмические характеристики. Для их объяснения представим частотную передаточную функцию в показательной форме и возьмем натуральный логарифм от:

Он равен комплексному выражению; вещественная его часть является логарифмом от модуля, а мнимая - фазой.

На практике берется десятичный логарифм, так что логарифмические амплитудная (ЛАХ) и фазовая (ЛФХ) характеристики определяются выражениями:

По оси абсцисс на графиках откладывается частота в логарифмическом масштабе, т.е. lg. Однако желательно делать оцифровку непосредственно в значениях круговой частоты, а для разметки можно воспользоваться табл.2.4.1. Значения

Таблица 2.4.1

Амплитуда измеряется в децибелах, фаза - в градусах. Для разметки оси абсцисс непосредственно в значениях (рад/с) можно воспользоваться любой из трех шкал (основной, квадратичной и кубической) логарифмической линейки (рис.2.4.7).

Если взять за декаду D мм, то, например, 0.301 дек (соответствует = 2 рад/с) составит 0.301D мм, 1.301 дек (соответствует 20 рад/с) составит D+0.301D мм и т.д. Таким образом, точки с оцифровкой в пределах от 1 до 10 смещаем вправо на декаду и оцифровываем от 10 до 100 и т.д. (рис.2.4.7), смещаем влево от исходного положения на одну декаду и оцифровываем от 0.1 до 1 и т.д.

Если 2 /1 = 10, то расстояние между частотами равно одной декаде (lg10=1), если 2 /1 = 2, то расстояние равно одной октаве.

Так как lg(= 0) = -, то точка = 0 находится на бесконечности слева. Поэтому ось ординат проводят в любом месте с таким расчетом, чтобы на график попал интересующий диапазон частот. Так как 20lg1 = 0, то L() > 0, если А()>1 и L() < 0, если А() < 1. Если А() 0, то L() -.

Рассмотрим ЛАХ инерционного звена. Имеем

A() = ; . (2.4.24)

Левее частоты сопряжения 0, т.е. в случае 0, пренебрежем под знаком радикала величиной 2 по сравнению с 02. Тогда

L() 20lg(k). (2.4.25)

Следовательно, левее 0 асимптотическая ЛАХ представляет собой горизонтальную прямую на высоте 20lg(k). Если k = 1, то эта прямая совпадает с осью частот.

Правее частоты сопряжения 0, где 0, аналогично получим прямую с наклоном -20 дБ/дек, так как по оси абсцисс откладывается lg.

L() 20lg(k) - 20lg, (2.4.26)

В точке 0 имеем погрешность замены точной (реальной) характеристики на асимптотическую, равную

Lточ(0)=Lприб(0)+L(0),

то реальная характеристика в точке 0 расположена ниже асимптотической на 3дБ. На практике погрешность в 3дБ считается небольшой и не учитывается.

Логарифмические характеристики звеньев

Таблица 2.4.6

Из табл.2.4.6 следует:

1. Наклон и соответственно сдвиг по фазе на низких частотах могут дать только интегрирующие или дифференцирующие звенья. Если, например, в передаточной функции имеется r интегрирующих звеньев, то наклон ЛАХ на низких частотах равен, а сдвиг по фазе соответственно.

2. n корням знаменателя (полюсам передаточной функции), т.е. степени знаменателя n, соответствует наклон ЛАХ на верхних частотах, равный, и в случае минимально фазовой системы - соответственно сдвиг по фазе на высоких частотах, равных.

3. корням числителя (нулям передаточной функции) на высоких частотах аналогично соответствуют наклон ЛАХ, равный, и сдвиг по фазе.

4. В случае передаточной функции

минимально-фазовой системы с n полюсами и n1 нулями наклон ЛАХ на высоких частотах равен, а сдвиг по фазе равен градусов.

Построение логарифмических характеристик систем

и восстановление передаточной функции по ЛАХ

Если звенья системы соединены последовательно, то

и для модуля и аргумента комплексного коэффициента усиления разомкнутой системы соответственно имеем:

Очевидно,

Следовательно, для построения ЛАХ и ЛФХ нужно просуммировать соответствующие характеристики отдельных звеньев.

Пример 2.4.3. Построить ЛАХ и ЛФХ по передаточной функции

где; с; с. Соответственно сопрягающие частоты равны; ;.

Передаточную функцию представим в виде произведения передаточных функций интегрирующего звена

инерционных звеньев

и форсирующего

Логарифмические амплитудные и фазовые характеристики отдельных звеньев, а также результирующие ЛАХ и ЛФХ системы построены на рис.2.4.13 и 2.4.14.

На рис.2.4.13 жирными линиями показаны асимптотические ЛАХ звеньев. Характеристики двух инерционных звеньев с передаточными функциями и на графиках сливаются, но их необходимо учитывать дважды. Это касается также и ЛФХ этих звеньев. Для построения результирующей ЛАХ к ЛАХ интегрирующего звена последовательно добавлялись характеристики остальных звеньев при перемещении вдоль оси частот слева направо по мере встречи сопрягающих частот. После очередной частоты сопряжения наклон ЛАХ изменялся на. Приращение наклона соответствовало звену, которому принадлежала сопрягающая частота.

Анализируя результаты примера и характеристики типовых звеньев (табл.2.4.6), можно сделать вывод, что ЛАХ разомкнутой системы можно построить сразу, минуя промежуточные построения ЛАХ звеньев и суммирование их, по правилу:

1. Найти сопрягающие частоты и отложить их на оси частот. Ось ординат провести для удобства левее самой низкой сопрягающей частоты.

2. При щ = 1 отложить 20 lgk и через эту точку провести прямую с наклоном -20 дБ/дек, если в системе имеется интегрирующих звеньев, или с наклоном +20 дБ/дек, если в системе имеется дифференцирующих звеньев (при = 0 низкочастотная асимптота ЛАХ параллельна оси абсцисс).

3. При прохождении слева направо каждой из частот сопряжения характеристика испытывает приращение наклона -20 дБ/дек (для инерционного звена), -40 дБ/дек (для колебательного звена), +20 дБ/дек (для форсирующего звена), +40 дБ/дек (для звена, обратного колебательному). Если сопрягающие частоты нескольких звеньев одинаковы, то приращение наклона ЛАХ равно суммарному приращению от всех звеньев. Если имеется хотя бы одна частота сопряжения, меньшая единицы, то точка 20lgk при щ = 1 не будет лежать на результирующей ЛАХ.

4. Ввести поправку к асимптотической ЛАХ при наличии колебательных или обратных им звеньев.

Для контроля правильности построения ЛАХ и ЛФХ полезно помнить, что наклон ЛАХ в области высоких частот (щ > ?) равен 20 (m-n) дБ/дек, где m - порядок числителя, n - порядок знаменателя передаточной функции системы. Кроме того

где знак минус берётся при наличии интегрирующих, а плюс - дифференцирующих звеньев. Из анализа методики построения ЛАХ по передаточной функции вытекает возможность обратного перехода, т. е. восстановления передаточной функции минимально-фазовой системы по ЛАХ.

При восстановлении передаточной функции минимально-фазовой системы по ЛАХ записываем дробь, в числителе которой ставим общий коэффициент усиления и далее делаем начинку дроби. По величине наклона низкочастотного участка определяем количество интегрирующих или дифференцирующих звеньев (формально отрицательному наклону соответствуют интегрирующие звенья и, соответственно, множитель в знаменателе, положительному наклону - множитель в числителе, - кратность наклона 20-ти децибелам). В случае нулевого наклона интегрирующие или дифференцирующие звенья отсутствуют. Далее при движении слева направо по мере встречи частот сопряжения анализируем приращение (изменение) наклона. Если приращение составляет +20 Дб/дек, то в числитель записываем для форсирующего звена вида, если приращение составляет -20 Дб/дек, то в знаменатель записываем для инерционного звена вида. В случае приращения наклона +40 Дб/дек в числитель записываем два форсирующих звена, в случае приращения наклона -20 Дб/дек в знаменатель записываем для двух инерционных звена вида. Если на ЛАХ показана поправка на коэффициент затухания, то вместо двух форсирующих или инерционных звеньев записываем обратное колебательному или колебательное звено (множитель в числителе или в знаменателе). Если кратность наклона 3 и более, то записываем соответствующее количество звеньев с одинаковыми частотами сопряжения. Для определения коэффициента усиления находим точку пересечения продолжения низкочастотного участок ЛАХ с вертикальной прямой с абсциссой и по ординате этой точки определяем.

В случае минимально-фазовой системы в двучленах и трехчленах, упомянутых выше, берем знаки “+”. Если бы имелись не минимально-фазовые звенья, то нужно было бы взять знак “-“. При этом ЛАХ осталась бы прежней, а ЛФХ была бы другой. Поэтому в случае минимально-фазовой системы восстановление однозначно и нет необходимости контролировать АФХ.

Пример 2.4.4. Восстановить передаточную функцию минимально-фазовой системы по ЛАХ рис.2.4.15.

Рис.2.4.15.

В соответствие с приведенными соображениями передаточная функция минимально-фазовой системы будет равна

По RLC-цепи задания 1 записать частотную передаточную функцию и аналитические выражения частотных характеристик.

5. Построить амплитудно-фазовую характеристику (АФХ).

6. Построить амплитудную и фазовую частотные характеристики.

7. Построить вещественную и мнимую частотные характеристики.

8. Построить логарифмические характеристики (ЛАХ и ЛФХ). Определить к какому типу корректирующих звеньев относится данное звено (интегрирующее, дифференцирующее, интегро-дифференцирующее). Каких частот этот фильтр.

9. По АФХ построить обратную частотную характеристику.

Частотная передаточная функция в параметрической форме

Амплитудная частотная характеристика

Фазовая частотная характеристика

Вещественная частотная характеристика



Понравилась статья? Поделитесь с друзьями!