Элементы симметрии правильных. Правильные многогранники: элементы, симметрия и площадь

В п. 12.1 мы определили правильный многогранник как многогранник, у которого равны друг другу все элементы одного вида: грани, ребра и т.д. Но правильные многогранники можно определить как самые симметричные изо всех многогранников. Это означает следующее. Если мы возьмем на правильном многограннике некоторую вершину А, подходящее к ней ребро а и грань а, подходящую к этому ребру, и еще любой такой же набор то существует такое самосовмещение многогранника,

которое вершину А переводит в вершину А, ребро а - в ребро а, грань а - в грань а.

Докажем это. Так как любые две грани правильного многогранника равны, то существует движение, которое одну из них переведет в другую. Поскольку все двугранные углы этого многогранника равны, то в результате совмещения граней весь многогранник самосовместится или перейдет в многогранник, симметричный исходному относительно плоскости второй грани. Во втором случае симметрия относительно плоскости этой грани завершит процесс самосовмещения правильного многогранника.

Верно и обратное: многогранники, обладающие этим свойством, будут правильными, так как у них окажутся равны все ребра, все плоские углы и все двугранные углы.

Рассмотрим теперь элементы симметрии правильных многогранников.

Начнем с элементов симметрии куба.

1. Центр симметрии - центр куба.

2. Плоскости симметрии (рис. 12.17): 1) три плоскости симметрии, перпендикулярные ребрам в их серединах; 2) шесть плоскостей симметрии, проходящих через противоположные ребра.

3. Оси симметрии: 1) три оси симметрии 4-го порядка, проходящие через центры противоположных граней (рис. 12.18а); 2) шесть осей поворотной симметрии 2-го порядка, проходящие через середины противоположных ребер (рис. 12.186); 4) четыре диагонали куба являются осями зеркального поворота шестого порядка, самосовмещающего куб (рис. 12.18в).

Это самый интересный и не сразу видный элемент симметрии куба. Сечение куба плоскостью, проходящей через его центр перпендикулярно диагонали, представляет правильный шестиугольник; при повороте куба вокруг диагонали на угол 60° шестиугольник отображается на себя, а куб в целом еще нужно отразить в плоскости шестиугольника.

Октаэдр двойственен кубу, и потому у него те же элементы симметрии с той разницей, что плоскости симметрии и оси, проходящие у куба через вершины и центры граней, у октаэдра проходят наоборот: через центры граней и вершины (рис. 12.19). Так, зеркальная ось 6-го

порядка проходит у октаэдра через центры противоположных граней.

Обратимся к элементам симметрии правильного тетраэдра.

1. Шесть плоскостей симметрии, каждая из которых проходит через ребро и середину противоположного ребра (рис. 12.20а).

2. Четыре оси 3-го порядка, проходящие через вершины и центры противоположных им граней, т.е. через высоты тетраэдра (рис. 12.20б).

3. Три оси зеркального поворота 4-го порядка, проходящие через середины противоположных ребер (рис. 12.20в).

Центра симметрии у тетраэдра нет.

В куб можно вписать два правильных тетраэдра (рис. 12.16). При самосовмещениях куба эти тетраэдры либо самосовмещаются, либо отображаются друг на друга. Выясните, при каких самосовмещениях куба происходит самосовмещение тетраэдров, а при каких они отображаются друг на друга.

Убедитесь, что в первом случае получатся все самосовмещения тетраэдра, так что группа симметрии куба включает в себя группу симметрии куба как подгруппу. (См. п. 28.4).

Группы симметрии у додекаэдра и икосаэдра одинаковы, поскольку эти правильные многогранники двойственны

друг другу. У них есть центр симметрии, плоскости симметрии, оси поворотной симметрии и оси зеркальной поворотной симметрии. Труднее всего найти последние из этих элементов симметрии. Укажем, как их построить.

Оси зеркальной поворотной симметрии в икосаэдре (так же, как и в кубе) соединяют противоположные вершины этого многогранника (рис. 12.21), а в додекаэдре (как и в октаэдре) эти оси идут через центры их параллельных граней (рис. 12.22). Плоскости, проходящие через центры симметрии правильных многогранников и перпендикулярные указанным осям, пересекают правильные многогранники по правильным многоугольникам (рис. 12.23).

В частности, додекаэдр и икосаэдр они пересекают по правильным десятиугольникам (рис. 12.23 г,д). Из сказанного следует, что икосаэдр и додекаэдр самосовмещаются зеркальными поворотами относительно осей шестого и десятого порядков.

Найдите самостоятельно более простые элементы симметрии икосаэдра и додекаэдра - плоскости симметрии и оси поворотной симметрии.

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:
Описанная сфера, проходящая через вершины многогранника;
Срединная сфера, касающаяся каждого его ребра в середине;
Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Лощадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объем правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:



История.

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников. В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.
Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент - эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу. Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13-17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета. В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики - законов Кеплера, - изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).




Цель изучения 1. Познакомить учащихся с симметрией в пространстве. 2. Познакомить учащихся с новым типом выпуклых многогранников – правильными многогранниками. 3. Показать влияние правильных многогранников на возникновение философских теорий и фантастических гипотез. 4. Показать связь геометрии и природы. 5. Познакомить учащихся с симметрией правильных многогранников.


Прогнозируемый результат 1. Знать понятия симметричных точек относительно точки, прямой, плоскости; понятия центра, оси и плоскости симметрии фигуры. 2. Знать определение правильных выпуклых многогранников. 3. Уметь доказать, что существует всего пять видов таких тел. 4. Уметь охарактеризовать каждый вид правильных многогранников. 5. Уметь охарактеризовать элементы симметрии правильных многогранников. 6. Уметь решать задачи на нахождение элементов правильных многогранников.














Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.


На рисунках 4,5,6 показаны центр О, ось а и плоскость α симметрии прямоугольного параллелепипеда. Параллелепипед, не являющийся прямоугольным, но являющийся прямой призмой, имеет плоскость (или плоскости, если его основание – ромб), ось и центр симметрии.








Фигура может иметь один или несколько центров симметрии (осей, плоскостей симметрии). Например, куб имеет только один центр симметрии и несколько осей и плоскостей симметрии. Существуют фигуры, имеющие бесконечно много центров, осей или плоскостей симметрии. Простейшими из таких фигур являются прямая и плоскость. Любая точка плоскости является ее центром симметрии. Любая прямая (плоскость), перпендикулярная к данной плоскости, является ее осью (плоскостью) симметрии. С другой стороны, существуют фигуры, не имеющие центров, осей или плоскостей симметрии. Например, параллелепипед, не являющийся прямой призмой, не имеет оси симметрии, но имеет центр симметрии.


С симметрией мы часто встречаемся в природе, архитектуре, технике, быту. Так, многие здания симметричны относительно плоскости, например главное здание Московского государственного университета. Симметричны многие детали механизмов, например зубчатые колёса. Почти все кристаллы, встречающиеся в природе, имеют центр, ось или плоскость симметрии.(Рис.7)




Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырехугольники (квадраты) и правильные пятиугольники. Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырехугольники (квадраты) и правильные пятиугольники.


Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n – угольники при n 6. Угол правильного многоугольника вычисляется по формуле α n = (180°(n-2)) : n. При каждой вершине многогранника не меньше трех плоских углов, и их сумма должна быть меньше 360°. При n=3 гранями многогранника служат правильные треугольники с углом, равным 60°. 60°·3 = 180°


Если n = 4, то α = 90°, грани многогранника – квадраты. 90°·3 = 270° 360°. В этом случае также имеем только один правильный многогранник – додекаэдр. Если n 6, то α n 120°, α n ·3 360°, и, следовательно, не существует правильного многогранника, гранями которого служат правильные n – угольники при n 6. Если n = 4, то α = 90°, грани многогранника – квадраты. 90°·3 = 270° 360°. В этом случае также имеем только один правильный многогранник – додекаэдр. Если n 6, то α n 120°, α n ·3 360°, и, следовательно, не существует правильного многогранника, гранями которого служат правильные n – угольники при n 6.












«Правильные многогранники в философской картине мира Платона» Правильные многогранники иногда называют платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок.428 – ок.348 до н.э.). Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества – твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.


А теперь от Древней Греции перейдём к Европе Х\/I – Х\/ІІ вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 – 1630). «Кубок Кеплера» Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. А теперь от Древней Греции перейдём к Европе Х\/I – Х\/ІІ вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 – 1630). «Кубок Кеплера» Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.


В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом он уточнял свои наблюдения, перепроверял данные коллег, но наконец нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера где говорится о кубах средних расстояний от Солнца. Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы бредовых, не может существовать наука.


Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80 – х гг. высказали московские инженеры В.Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро – додекаэдровую структуру Земли. (рис.8)Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Многие залежи полезных ископаемых тянутся вдоль икосаэдро – додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.


А сейчас от научных гипотез перейдем к научным фактам. Правильный многогранник Число Граней ВершинРёбер Тетраэдр 446 Куб 6812 Октаэдр 8612 Додекаэдр Икосаэдр


Число Граней и вершин (г+в) Рёбер Тетраэдр = 8 6 Куб = Октаэдр = Додекаэдр = Икосаэдр = 32 30


Г + В = Р + 2 Эта формула была подмечена уже Декартом в 1640 г., а позднее вновь открыта Эйлером (1752), имя которого с тех пор она носит. Формула Эйлера верна для любых выпуклых многогранников. Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи () увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадоре Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.
42

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Чем же вызвана такая природная геометризация феодарий? По – видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов. Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево- калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Икосаэдр передаёт форму кристаллов бора. В своё время бор использовался для создания полупроводников первого поколения.


Элементы симметрии правильных многогранников Правильный тетраэдр не имеет центра симметрии, имеет три оси симметрии и шесть плоскостей симметрии. Куб имеет один центр симметрии – точку пересечения его диагоналей, девять осей симметрии, девять плоскостей симметрии. Правильный октаэдр, правильный икосаэдр и правильный додекаэдр имеют центр симметрии и несколько осей и плоскостей симметрии.


Тест 1. Какое из перечисленных геометрических тел не является правильным многогранником? а) правильный тетраэдр; б) правильный кексаэдр; в) правильная призма; г) правильный додекаэдр; д) правильный октаэдр. 2. Выберите верное утверждение: а) правильный многогранник, у которого грани являются правильными шестиугольниками, называется правильным кексаэдром;


Б) сумма плоских углов при вершине правильного додекаэдра равна 324°; в) куб имеет два центра симметрии – по одному в каждом основании; г) правильный тетраэдр состоит из 8 правильных треугольников; д) всего существует 6 видов правильных многогранников. 3. Какое из следующих утверждений неверно? а) сумма двугранных углов правильного тетраэдра и правильного октаэдра равна 180°; б) центры граней куба являются вершинами правильного октаэдра;


В) правильный додекаэдр состоит из 12 правильных пятиугольников; г) сумма плоских углов при каждой вершине правильного икосаэдра равна 270°; д) куб и правильный кексаэдр – это одно и то же. Подведём итоги. - С какими новыми геометрическими телами мы сегодня познакомились? -- Почему Л.Кэрролл так высоко оценил значение этих многогранников? -Домашнее задание: п.35, п.36,п (устно)

1 Минерало́гия -наукаоминералах- природныххимических соединениях.

Минералогия изучает состав, свойства, структуры и условия образования минералов

Минералы- кристаллические элементы или химические соединения,возникающие в ходе геологических процессов.

2 Минеральный вид - это совокупность минералов данного химического состава с данной кристаллической структурой.

К 1-му мин.виду относятся все минеральные индивиды,характеризующиеся:

Одинаковой структурной группой

Химическим составом,непрерывно изменяющимся в определенных пределах

Равновесным существованием в определенных термодинамических условиях земной коры

3 Симметрические преобразование и элементы симметрии кристаллических многогранников.

Симметрия– правильная повторяемость элементов ограничения кристаллов при

выполнении симметрических операций.

Элементами ограничения кристаллов считаются их грани, ребра и вершины.

Симметрические операции– это повороты и отражения кристалла

относительно элементов симметрии.

Элементы симметрии 1 рода.

Ось симметрии Ln - это воображаемая прямая линия, проходящая при вращении кристалла вокруг которой через один и тот же угол наблюдается повторения элементов ограничения. L6-L4L3L2

Элементы симметрии 2 рода:

-плоскость симметрии(Р)- такая плоскость,которая делит фигуры на две равные части,каждая из которой является зеркальным отображением другой

-центр симметрии(инверсии)(С)- представляет собой точку внутри кристалла от которой по обе стороны на равных расстояниях нах-ся тождественные точкиграней и вершин.центр инверсии бывает только один либо его нет.

Инверсионная ось симметрии Ln– это воображаемая линия, при повороте вокруг которой на угол, задаваемый порядком оси, с последующимотражением в точке, лежащей на этой оси, как в центре инверсии, кристаллсовмещается сам с собой.

Таким образом, действие инверсионной оси вклю-чает в себя два момента: во-первых, поворот на угол, задаваемый порядком

оси, во-вторых, отражение в точке, как в центре инверсии.

4. Полярные и неполярные оси симметрии

а) полярные –на концах оси разные эл-ты фигуры;

б)неполярные(биполярные)на концах оси одинаковые эл-ты фигуры.

5.Единичные направления в криталлах.

Единственное, не повторяющееся в кристалле направление называет-ся единичным.

В кубе нет единичных направлений, здесь для любогонаправления можно найти симметрично-равное.

По симметрии и по числу единичных направлений кристаллы делятся на три категории: низшую, среднюю, высшую.

6В учебной символике символике Браве - оси симметрии обозначаются как Ln

Где подстрочный цифровой индекс п указывает на порядок

оси1 Графически оси симметрии обозначаются многоугольниками:

    в плоскости –

    плоскость симметрии Р

    Отражение в точке (инверсия) –

    центр симметрии, инверсии С

    Поворот с отражением в точке - инверсионная ось L n i - с черточкой наверху. Порядок оси - 1, 2, 3, 4, 6.

Инверсионные оси Зеркальные оси

L 6 = L 3 + перп.P. Л 6 = L 3

L 4 Л 3 = L 6

L 3 = L 3 + C. Л 4 = L 4

L 2 = P. Л 2

L 1 = C .


Формула симметрии состоит из записанных элементов симметрии данного кристалла в определенной последовательности: оси высшего порядка®осиL2 ®плоскости симметрии®центр симметрии. В кубической сингонии на втором месте всегда стоит4L3 . Если какой-либо элемент отсутствует, он опускается.



Понравилась статья? Поделитесь с друзьями!