Элементы теории нечетких множеств. Нечеткие множества

По традиции четкие множества принято иллюстрировать кругами с резко оконтуренными границами. Нечеткие же множества – это круги, образованные отдельными точками: в центре круга точек много, а ближе к периферии их густота уменьшается до нуля; круг как бы растушевывается на краях. Такие «нечеткие множества» можно увидеть... в тире – на стене, куда вывешиваются мишени. Следы от пуль образуют случайные множества, математика которых известна. Оказалось, что для оперирования нечеткими множествами годится уже давно разработанный аппарат случайных множеств...

Понятие нечеткого множества – попытка математической формализации нечеткой информации с целью ее использования при построении математических моделей сложных систем. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно, принадлежать данному множеству с различной степенью.

Один из простейших способов математического описания нечеткого множества – характеризация степени принадлежности элемента множеству числом, например, из интервала . Пусть Х – некоторое множество элементов. В дальнейшем мы будем рассматривать подмножества этого множества.

Нечетким множеством А в Х называется совокупность пар вида (x, m A (x) ), где xÎX, а m А – функция x ® , называемая функцией принадлежности (membership function) нечеткого множества А . Значение m A (x) этой функции для конкретного x называется степенью принадлежности этого элемента нечеткому множеству А .

Как видно из этого определения, нечеткое множество вполне описывается своей функцией принадлежности, поэтому мы часто будем использовать эту функцию как обозначение нечеткого множества.

Обычные множества составляют подкласс класса нечетких множеств. Действительно, функцией принадлежности обычного множества B ÌX является его характеристическая функция: m В (x) =1, если x ÎB и m В (x) =0, если x ÏB. Тогда в соответствии с определением нечеткого множества обычное множество В можно также определить как совокупность пар вида (x, m В (x) ). Таким образом, нечеткое множество представляет собой более широкое понятие, чем обычное множество, в том смысле, что функция принадлежности нечеткого множества может быть, вообще говоря, произвольной функцией или даже произвольным отображением.

Мы говорим нечеткое множество . А множество чего? Если быть последовательным, то приходится констатировать, что элементом нечеткого множества оказывается... новое нечеткое множество новых нечетких множеств и т.д. Обратимся к классическому примеру – к куче зерна . Элементом этого нечеткого множества будет миллион зерен , например. Но миллион зерен это никакой не четкий элемент , а новое нечеткое множество . Ведь считая зерна (вручную или автоматически), немудрено и ошибиться – принять за миллион 999 997 зерен, например. Тут можно сказать, что элемент 999 997 имеет значение функции принадлежности к множеству “миллион”, равное 0.999997. Кроме того, само зерно – это опять же не элемент, а новое нечеткое множество: есть полноценное зерно, а есть два сросшихся зерна, недоразвитое зерно или просто шелуха. Считая зерна, человек должен какие-то отбраковывать, принимать два зерна за одно, а в другом случае одно зерно за два. Нечеткое множество не так-то просто запихнуть в цифровой компьютер с классическими языками: элементами массива (вектора) должны быть новые массивы массивов (вложенные вектора и матрицы, если говорить о Mathcad ). Классическая математика четких множеств (теория чисел, арифметика и т.д.) – это крюк, с помощью которого человек разумный фиксирует (детерминирует) себя в скользком и нечетком окружающем мире. А крюк, как известно, – инструмент довольно грубый, нередко портящий то, за что им цепляются. Термины, отображающие нечеткие множества – «много», «слегка», «чуть-чуть» и т.д. и т.п., – трудно «запихнуть» в компьютер еще и потому, что они контекстно зависимы . Одно дело сказать «Дай мне немного семечек» человеку, у которого стакан семечек, а другое дело – человеку, сидящему за рулем грузовика с семечками.



Нечеткое подмножество А множества Х характеризуется функцией принадлежности m A : Х→ , которая ставит в соответствие каждому элементу x ÎX число m A (x) из интервала , характеризующее степень принадлежности элемента х подмножеству А . Причем 0 и 1 представляют соответственно низшую и высшую степень принадлежности элемента к определенному подмножеству.

Дадим основные определения.

· Величина sup m A (x ) называется высотой нечеткого множества A . Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности равна 1. При sup m A (x )<1 нечеткое множество называется субнормальным.

· Нечеткое множество называется пустым , если его функция принадлежности равна нулю на всем множестве Х , т.е. m 0 (x)= 0 " x ÎX .

Нечеткое множество пусто , если " x ÎE m A (x )=0 . Непустое субнормальное множество можно нормализовать по формуле

(рис. 1).

Рис.1. Нормализация нечеткого множества с функцией принадлежности. .

Носителем нечеткого множества А (обозначение supp A ) с функцией принадлежности m A (x) называется множество вида suppA ={x|x ÎX, m A (x)> 0}. Для практических приложений носители нечетких множеств всегда ограничены. Так, носителем нечеткого множества допустимых режимов для системы может служить четкое подмножество (интервал), для которого степень допустимости не равна нулю (рис.2).

Рис. 3. Ядро, носитель и α- сечение нечеткого множества

Значение α называют α -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) α -уровне.

Рис. 3 иллюстрирует определения носителя, ядра, α- сечения и α- уровня нечеткого множества.

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ И ЛИНГВИСТИЧЕСКИХ ПЕРЕМЕННЫХ

1. Понятие и основные характеристики нечеткого множества

Определение 1.1. ПустьX – универсальное множество.Нечетким множеством A на множествеX (нечетким подмножествомA множестваX ) называется совокупность пар

A = {<μ A (x ),x >}, (1.1)

где x X ,μ A (x ) .X называетсяобластью определения нечеткого множестваA , аμ A –функцией принадлежности этого множества. Значение функции принадлежностиμ A (x ) для конкретного элементаx X называетсястепенью принадлежности этого элемента нечеткому множествуA .

Интерпретацией функции принадлежности является субъективная мера того, насколько элемент x X соответствует понятию, смысл которого формализуется нечетким множествомA . При этом значение, равное 1, означает полное (абсолютное) соответствие, значение, равное 0 – полное (абсолютное) несоответствие.

Определение 1.2. Нечеткие множества с дискретной областью определения называютдискретными нечеткими множествами , не-

четкие множества с непрерывной областью определения – непрерыв-

ными нечеткими множествами.

Обычные (четкие) множества можно также рассматривать в нечетком контексте. Функция принадлежности обычного множества может принимать только два значения: 0, если элемент не принадлежит множеству, и 1, если элемент ему принадлежит.

В литературе можно встретить различные формы записи нечетких множеств. Для дискретной области определения X ={x 1 ,x 2 , …,x n } (возможен также случайn = ∞) существуют следующие формы:

A = {, , …, };

A = {μ A (x 1 )/x 1 ,μ A (x 2 )/x 2 , …,μ A (x n )/x n };

A =μ A (x 1 )/x 1 +μ A (x 2 )/x 2 +…+μ A (x n )/x n =∑ μ A (x j ) /x j .

j = 1

где знак интеграла имеет смысл поточечного объединения наX . Кроме того, как для дискретного, так и для непрерывного случаев применяется обобщенная форма записи:

B = {x x ≈ 2} – множество вещественных чисел,приблизительно равных 2, иC = {x x >> 1} – множество вещественных чисел,на-

много бóльших 1. Возможные формы функций принадлежности этих множеств схематически представлены на рис.1.1 и рис.1.2 соответственно.

Рис. 1.1. Функция принадлежности

Рис. 1.2. Функция принадлежности

нечеткого множества чисел,

нечеткого множества чисел,

приблизительно равных 2

намного бóльших 1

В качестве примера дискретного нечеткого множества можно рассмотреть D = {n n ≈ 1} – множество целых чисел,близких к 1,

возможная форма задания которого следующая:

N = {0.2/-3; 0.4/-2; 0.6/-1; 0.8/0; 1/1; 0.8/2; 0.6/3; 0.4/4; 0.2/5} (остальные точки имеют нулевую степень принадлежности).

Конкретный вид функции принадлежности зависит от смысла, вкладываемого в формализуемое понятие в условиях конкретной задачи, и часто имеет субъективную природу. Большинство методов построения функций принадлежности в той или иной мере основано на обработке информации, получаемой экспертным путем.

Примечание 1. Здесь sup (супремум) – точная верхняя грань функции принадлежности. Если множествоX (область определения) является замкнутым, то супремум функции совпадает с ее максимумом.

Определение 1.5. Еслиh A = 1, то нечеткое множествоA называ-

ется нормальным, иначе (hA < 1) – субнормальным.

Определение 1.6. Носителем нечеткого множестваA называется множество

элементы области определения, хоть в какой-то степени соответствующие формализуемому понятию.

Примечание 2. Не следует путать обозначения sup и Supp. Первое является сокращением отsupremum , второе – отsupport .

Определение 1.7. Множеством уровняα (α -срезом) нечеткого

Ядро нечеткого множества, тем самым, содержит все элементы области определения, полностью соответствующие формализуемому понятию.

откуда следует, что элемент, принадлежащий множеству уровня α , принадлежит также всем множествам меньших уровнейβ ≤α .

Определение 1.9. ПустьA иB – нечеткие множества на множествеX с функциями принадлежностиμ A иμ B соответственно. Гово-

рят, что Aявляется нечетким подмножеством B(B включает в себя

A ), если выполнено следующее условие:

Среди нечетких множеств с числовой областью определения выделяют также класс нечетких чисел инечетких интервалов . Для определения этого класса вводится понятие выпуклости нечетких множеств.

Определение 1.11. Нечеткое подмножествоA вещественной оси называетсявыпуклым , если выполняется следующее условие:

На рис. 1.3 показаны примеры выпуклого (слева) и невыпуклого (справа) нечетких множеств.

Рис. 1.3. К определению выпуклости нечеткого множества

Основные понятия теории нечетких множеств

Определение 1.12. Нечетким интерваломназывается выпуклое нормальное нечеткое множество на числовой области определения, имеющее непрерывную функцию принадлежности и непустое ядро. Нечетким числомназывается нечеткий интервал, ядро которого содержит в точности один элемент.

Для нечетких интервалов и чисел существует теорема представления, согласно которой нечеткое подмножество A вещественной оси является нечетким интервалом тогда и только тогда, когда его функция принадлежности представима в виде:

LA (x), a0 ≤ x< a1 ,

1, a1 ≤ x≤ b1

(x )=

(x), b< u≤ b

Функции L A иR A называются соответственно левой и правой ветвью функции принадлежности нечеткого числа. Эти функции непрерывны, при этомL A на отрезке возрастает отL A (a 0 ) = 0 до

L A (a 1 ) = 1, аR A на отрезке убывает отR A (b 1 ) = 1 доR A (b 0 ) = 0 (рис. 1.4).

Рис. 1.4. К определению нечеткого интервала

Определение 1.13. ПустьA = {A 1 ,A 2 ,… ,A n } – семейство нечетких множеств, заданных на области определенияX .Ã называетсянечетким разбиением X с параметромα (0 <α ≤ 1), если все множестваA j являются выпуклыми и нормальными, и выполняется условие:

x X j {1,… ,n }μ A j (x )≥ α

(т.е. любой элемент области определения принадлежит хотя бы одному из множеств семейства Ã со степенью, не меньшейα – рис. 1.5).

Обобщение понятия принадлежности. В рассмотренных примерах характеристическая функция принимала значения 0 или 1. Предположим, что характеристическая функция принимает любое значение из . Тогда элемент может не принадлежать множеству , принадлежать в какой-либо степени или быть элементом множества .

Нечёткое множество . Нечётким подмножеством (нечётким множеством) множества называется множество упорядоченных пар , где – функция принадлежности элемента множеству , характеризующая степень принадлежности элемента этому множеству, или, другими словами, меру соответствия элемента универсального множества свойствам нечёткого множества . В случае непрерывного множества для задания нечёткого множества используют такое обозначение: .

Множество принадлежностей. Множество значений функции принадлежности называется Множеством принадлежностей . Если , то – обычное множество, т. е. чёткое множество можно рассматривать как предельный случай нечёткого множества. Далее в этом учебном пособии множество принадлежностей .

Мощность нечёткого множества. Пусть на универсальном множестве задано нечёткое множество . Мощность нечёткого множества или его Кардинальное число определяется следующим образом: .

Пример 28. На универсальном множестве определим следующее нечёткое множество:

Определим кардинальное число нечёткого множества :

Принадлежность элемента нечёткому множеству можно обозначать и так: .

Для определения степени принадлежности элемента нечёткому множеству существует специальная терминология. Так, нечёткое множество , заданное в Примере 28, содержит в незначительной степени элемент , не содержит , в небольшой степени содержит , в значительной степени – и , и содержит элемент .

Пример 29. Нечёткое множество небольших натуральных чисел может быть задано, например, так:

Замечание. Значения заданы субъективно.

Носитель нечёткого множества. Носителем (суппортом) нечёткого множества (supp) называется множество элементов , для которых . пустым, если его носитель является пустым множеством.

Ядро нечёткого множества. Ядром Нечёткого множества () называется множество элементов , для которых .

Высота нечёткого множества . Величина ( для дискретных универсальных множеств) называется Высотой нечёткого множества ().

Нормальные и субнормальные нечёткие множества . Нечёткое множество Нормально , если его высота равна 1. Если высота меньше 1, то нечёткое множество называется Субнормальным . Всякое непустое субнормальное нечёткое множество можно преобразовать к нормальному , нормируя его функцию принадлежности:

Унимодальные нечёткие множества. Нечёткое множество называется Унимодальным , если только для одного .

Точки перехода нечётких множеств. Элементы , для которых , называются Точками перехода нечёткого множества .

Выпуклые нечёткие множества . Нечёткое множество называется Выпуклым , если:

Пример 30. Пусть универсальное множество есть множество действительных чисел, т. е. . Определим нечёткое множество как множество чисел, близких к числу (Рис. 4).

Рисунок 4

Функцию принадлежности можно задать следующим образом: , где . Показатель степени выбирается в зависимости от степени близости к . Например, для описания множества чисел, очень близких к , можно взять ; для множества чисел, не очень далеких от , .

Пример 31. На универсальном множестве из Примера 28 Задано нечёткое множество . Для нечёткого множества : 1) определить его мощность; 2) определить носитель, ядро и высоту; 3) выяснить, является ли оно нормальным или субнормальным. Если является субнормальным, преобразовать его к нормальному; 4) проверить, будет ли полученное множество унимодальным; 5) определить точки перехода .

1. По определению, мощность (кардинальное число) нечёткого множества , заданного на конечном универсальном множестве , определяется по формуле: .

2. Воспользуемся определениями носителя, ядра и высоты нечёткого множества. Очевидно, , , .

3. Заданное нечёткое множество является субнормальным. Построим соответствующее ему нечёткое нормальное множество . Для этого вычислим значения функции принадлежностей элементов по формуле:

Имеем: , аналогично: , , , , . Таким образом, нечёткое нормализованное множество .

4. Множество является унимодальным, так как содержит только один элемент , для которого .

5. Множество имеет единственную точку перехода – , так как только .

Умножение нечётких множеств на число. Если – такое положительное число, что , то для нечёткого множества функция принадлежности определяется следующим образом: .

Сравнение нечётких множеств. Рассмотрим два нечётких множества и , заданных на универсальном множестве .

Говорят, что Содержится в , т. е. , если для любого . Графически это означает, что кривая, задающая нечёткое множество располагается выше аналогичной кривой нечёткого множества . Если условие включения выполняется не для всех , то говорят о Степени включения в , которая определяется как , где – множество , на котором выполняется условие включения.

Два нечётких множества и Равны , если они содержатся друг в друге, т. е. , если для любого .

Подмножество -уровня. Подмножеством -уровня нечёткого множества , , называется чёткое подмножество элементов , для которых . Множество называют также -сечением нечёткого множества . При этом, если , то говорят о сильном сечении, а если , то о слабом сечении. Имеет место Важное свойство : если , то .

Для анализа и синтеза нечётких множеств применяют Теорему о декомпозиции: нечёткое множество можно разложить по его множествам -уровня следующим образом: , где – произведение числа на множество .

Пример 32. На универсальном множестве определим нечёткое множество . Найдём все подмножества нечёткого множества :

По теореме о декомпозиции нечётких множеств заданное нечёткое множество представим следующим образом.

В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков

Нечеткие множества в системах управления

Под редакцией
доктора технических наук, профессора Ю.Н. Золотухина


Предисловие. 3

ВВЕДЕНИЕ.. 4

1. НЕЧЕТКИЕ МНОЖЕСТВА.. 5

Примеры записи нечеткого множества. 5

Основные характеристики нечетких множеств. 5

Примеры нечетких множеств. 6

О методах построения функций принадлежности нечетких множеств. 7

Операции над нечеткими множествами. 8

Наглядное представление операций над нечеткими множествами. 9

Свойства операций È и Ç. 9

Алгебраические операции над нечеткими множествами. 10

Расстояние между нечеткими множествами, индексы нечеткости. 13

Принцип обобщения. 16

2. НЕЧЕТКИЕ ОТНОШЕНИЯ.. 17

Операции над нечеткими отношениями. 18

Композиция двух нечетких отношений. 21

Условные нечеткие подмножества. 23

3. НЕЧЕТКАЯ И ЛИНГВИСТИЧЕСКАЯ ПЕРЕМЕННЫЕ.. 27

Нечеткие числа. 28

Операции над нечеткими числами. 28

Нечеткие числа (L-R)-типа. 29

4. НЕЧЕТКИЕ ВЫСКАЗЫВАНИЯ И НЕЧЕТКИЕ МОДЕЛИ СИСТЕМ... 32

Правила преобразований нечетких высказываний. 33

Способы определения нечеткой импликации. 33

Логико-лингвистическое описание систем, нечеткие модели. 35

Модель управления паровым котлом.. 36

Полнота и непротиворечивость правил управления. 39

Литература. 40

Предисловие

Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, ╬ 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества , допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy ). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

В последние 5-7 лет началось использование новых методов и моделей в промышленности. И хотя первые применения нечетких систем управления состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.

Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".

Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.

Основная цель предлагаемого вниманию читателей учебного пособия - привлечь внимание студентов, аспирантов и молодых научных сотрудников к нечеткой проблематике и дать доступное введение в одну из интереснейших областей современной науки.

профессор Ю.Н.Золотухин

ВВЕДЕНИЕ

Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

1. НЕЧЕТКИЕ МНОЖЕСТВА

Пусть E - универсальное множество, x - элемент E , а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция , принимающая значение 1 , если x удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей . Если M = {0,1} , то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Нечёткое (или размытое, расплывчатое) множество - понятие, введённое Л. Заде, который расширил классическое (канторовское) понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале , а не только значения 0 или 1.

Определение : нечеткое множество (a fuzzy set)

Пусть C есть некоторое универсальное множество (универсум). Тогда нечеткое множество A в C определяется как упорядоченное множество пар

где называется функцией принадлежности (ФП) элемента х к нечеткому множеству A .

ФП приписывает каждому элементу из C значение из интервала , которое называется степенью принадлежности х к A или нечеткой мерой.

Нечеткая мера может быть рассмотрена как степень истинности того, что элемент х принадлежит A .

Определение : основа нечеткого множества (a support of a fuzzyset)

Основой нечеткого множества A является множество всех точек таких, что .

Таким образом, определение нечеткого множества является расширением определения классического множества, в котором характеристическая функция может принимать непрерывные значения между 0 и 1. Универсум C может быть дискретным или непрерывным множеством.

Для представления ФП обычно используется несколько типов параметрических функций.

Типовые представления ФП

Треугольные ФП (рис. 2.2, а) описываются тремя параметрами {a, b, c }, которые определяют x координаты трех углов треугольника следующим образом:

Трапециидальные ФП (рис. 2.2, в) описываются четырьмя параметрами {a,b,c,d }, которые определяют x координаты четырех углов трапеции следующим образом:

Рис. 2.2. Треугольная и трапецеидальная ФП

Гауссовские ФП (рис. 2.3) специфицируются двумя параметрами и представляют собой следующую функцию: .

Рис. 2.3. Гауссовская ФП

Лингвистические переменные

Одним из фундаментальных понятий, введенных также Л.Заде, является понятие лингвистической переменной.

Определение : лингвистическая переменная (ЛП) представляет собой следующую пятерку , где – имя переменной, – терм-множество, задающее множество значений ЛП, являющихся языковыми выражениями (синтагмами), X – универсум, G – синтаксическое правило, используя которое мы можем формировать синтагмы , M – семантическое правило, используя которое каждой синтагме приписывается ее значение, являющееся нечетким множеством в универсуме X .

Примером ЛП может служить, например, переменная = «возраст». Ее терм-множество может быть, например, следующим:

(возраст) = {очень молодой , молодой , более или менее молодой , средних лет , старый , очень старый }.

Универсумом для данной ЛП может служить некоторое множество действительных чисел, например, интервал . Семантическое правило М приписывает термам из T (возраст) значения, являющиеся различными модификациями нечетких множеств.

Вернемся к нашему примеру управления движением автомобиля и опишем лингвистические значения в выше приведенных правилах с помощью нечетких множеств. Рассмотрим следующие лингвистические переменные:

x расстояние между машинами;

y скорость впереди едущей машины;

z – ускорение управляемого автомобиля.

ФП должны быть определены в соответствии с рассматриваемой ситуацией управления. Так, например, скорость равная 70 км/час является «большой» в ситуации движения по городской дороге и может рассматриваться как «небольшая» в ситуации движения по скоростному шоссе.

Определим для нашего примера следующие универсумы:

[м], [км/час],

[км/час 2 ].

На рис. 2.4 показаны ФП для описания лингвистических значений «небольшая» (slow) и «большая» (fast) для скорости и «близкое» (short) и «большое» (long) для расстояния.

Рис. 2.4. Нечеткие множества для задачи управления простейшим движением автомобиля

Различия между классическим и нечетким представлением множества

Обсудим эти различия с использованием следующего примера. Рассмотрим классическое и нечеткое представления множества для описания лингвистического значения «короткий» (для расстояния).

На рис. 2.5 показаны различия между классическим и нечетким представлением множества A для данного примера.

Рис. 2.5. Классическое и нечеткое представления множества A

Определим классическое представление множества A так, как показано на рис. 2.5 слева. В этом случае характеристическая функция будет:

Нечеткое представление множества A показано на рис. 2.5 справа. В этом случае функция принадлежности ФП выглядит следующим образом:

Зададим теперь следующий вопрос : принадлежит ли точка м или точка м множествуA ?

С точки зрения классического представления ответ «нет». С точки зрения человеческого восприятия ответ скорее «да», чем «нет». С точки зрения нечеткого представления ответ «да».

Таким образом, данный простой пример наглядно показывает, что нечеткий подход более близок к естественному, человеческому, и обладает большей гибкостью, нежели классический подход.

С помощью нечетких множеств мы можем описывать нечеткие границы.

Основные операции в теории нечетких множеств

Определим основные нечеткие операции следующим образом.

Определение : нечеткое подмножество (Fuzzy Containment или Fuzzy Subset). Нечеткое множество A содержится в нечетком множестве B (или, эквивалентно, A является подмножеством B ) тогда и только тогда, когда для всех . В символьной форме:

Определение :эквивалентность нечетких множеств (Equality of Fuzzy Sets). Эквивалентность (равенство) нечетких множеств A и B определяется следующим образом:

Для каждого .

Определение :нечеткое объединение или нечеткая дизъюнкция (Fuzzy Union).Объединение двух нечетких множеств A и B (в символьной форме пишется как или A OR B или A B) есть нечеткое множество , ФП которого определяется следующим образом:

Определение :нечеткое пересечение (Fuzzy Intersection).Пересечение двух нечетких множеств A и B (в символьной форме записывается как , или C = A AND B , или C = A B) есть нечеткое множество , ФП которого определяется следующим образом:

Определение :нечеткое дополнение. Дополнение A (в символьной форме пишется как или ) есть нечеткое, ФП которого определяется следующим образом:

На рис 2.6 показаны примеры нечетких операций над нечеткими множествами.

Рис. 2.6. Примеры нечетких операций над нечеткими множествами

Особенности нечетких множеств

Отметим важные особенности теории нечетких множеств.

1) Закон исключенного третьего и закон контрадикции , где - пустое множество верны в классической теории множеств, однако в теории нечетких множеств в общем случае они не выполняются .

Закон исключенного третьего и закон контрадикции в нечеткой теории выглядят следующим образом: и .

2) В классической теории множеств точка из множества A может иметь одну из двух возможностей: or . В нечеткой теории точка может принадлежать множеству A и одновременно не принадлежать A (т.е. принадлежать множеству ) с различными значениями функций принадлежности и , как показано на рис. 2.7.



Понравилась статья? Поделитесь с друзьями!