Фотография электронным микроскопом атомов урана. Там, внизу, еще много возможностей

Атом водорода, запечатлев электронные облака. И хотя современные физики с помощью ускорителей могут определять даже форму протона, атом водорода, по-видимому, так и останется самым мелким объектом, изображение которого имеет смысл называть фотографией. «Лента.ру» представляет обзор современных методов фотографирования микромира.

Строго говоря, обычной фотографии в наши дни почти не осталось. Изображения, которые мы по привычке называем фотографиями и можем найти, к примеру, в любом фоторепортаже «Ленты.ру», вообще-то, являются компьютерными моделями. Светочувствительная матрица в специальном приборе (по традиции его продолжают называть «фотоаппаратом») определяет пространственное распределение интенсивности света в нескольких разных спектральных диапазонах, управляющая электроника сохраняет эти данные в цифровом виде, а потом другая электронная схема на основе этих данных отдает команду транзисторам в жидкокристаллическом дисплее. Пленка, бумага, специальные растворы для их обработки - все это стало экзотикой. А если мы вспомним буквальное значение слова, то фотография - это «светопись». Так что говорить о том, что ученым удалось сфотографировать атом, можно лишь с изрядной долей условности.

Больше половины всех астрономических снимков уже давно делают инфракрасные, ультрафиолетовые и рентгеновские телескопы. Электронные микроскопы облучают не светом, а пучком электронов, а атомно-силовые и вовсе сканируют рельеф образца иглой. Есть рентгеновские микроскопы и магнитно-резонансные томографы. Все эти приборы выдают нам точные изображения различных объектов, и несмотря на то что о «светописи» говорить здесь, разумеется, не приходится, мы все же позволим себе именовать такие изображения фотографиями.

Эксперименты физиков по определению формы протона или распределения кварков внутри частиц останутся за кадром; наш рассказ будет ограничен масштабами атомов.

Оптика не стареет

Как выяснилось во второй половине XX века, оптическим микроскопам еще есть куда развиваться. Решающим моментом в биологических и медицинских исследованиях стало появление флуоресцентных красителей и методов, позволяющих избирательно помечать определенные вещества. Это не было «всего лишь новой краской», это был настоящий переворот.

Вопреки расхожему заблуждению, флуоресценция - это вовсе не свечение в темноте (последнее называется люминесценцией). Это явление поглощения квантов определенной энергии (скажем, синего света) с последующим излучением других квантов меньшей энергии и, соответственно, иного света (при поглощении синего испускаться будут зеленые). Если поставить светофильтр, который пропускает только излучаемые красителем кванты и задерживает свет, вызывающий флуоресценцию, можно увидеть темный фон с яркими пятнами красителей, а красители, в свою очередь, могут расцвечивать образец чрезвычайно избирательно.

Например, можно покрасить цитоскелет нервной клетки красным, синапсы выделить зеленым, а ядро - голубым. Можно сделать флуоресцентную метку, которая позволит обнаружить белковые рецепторы на мембране или синтезируемые клеткой в определенных условиях молекулы. Метод иммуногистохимического окрашивания совершил революцию в биологической науке. А когда генные инженеры научились делать трансгенных животных с флуоресцентными белками, этот метод пережил второе рождение: реальностью стали, например, мыши с окрашенными в разные цвета нейронами.

Кроме того, инженеры придумали (и отработали на практике) метод так называемой конфокальной микроскопии. Суть его заключается в том, что микроскоп фокусируется на очень тонкий слой, а специальная диафрагма отсекает создаваемую объектами вне этого слоя засветку. Такой микроскоп может последовательно сканировать образец сверху вниз и получать стопку снимков, которая является готовой основой для трехмерной модели.

Использование лазеров и сложных оптических систем управления лучом позволило решить проблему выгорания красителей и высыхания нежных биологических образцов под ярким светом: луч лазера сканирует образец только тогда, когда это необходимо для съемки. А чтобы не тратить время и силы на осмотр большого препарата через окуляр с узким полем зрения, инженеры предложили автоматическую систему сканирования: на предметный столик современного микроскопа можно положить стекло с образцом, и прибор самостоятельно отснимет масштабную панораму всего образца. При этом в нужных местах он будет наводить на резкость, а затем склеит множество кадров воедино.

В некоторые микроскопы можно посадить живых мышей, крыс или хотя бы мелких беспозвоночных животных. Другие дают небольшое увеличение, зато совмещены с рентгеновским аппаратом. Многие для устранения помех от вибраций монтируются на специальных столах массой в несколько тонн внутри помещений с тщательно контролируемым микроклиматом. Стоимость подобных систем превышает стоимость иных электронных микроскопов, а конкурсы на самый красивый кадр давно стали традицией. Кроме того, продолжается и совершенствование оптики: от поиска лучших сортов стекла и подбора оптимальных комбинаций линз инженеры перешли к способам фокусировки света.

Мы специально перечислили ряд технических подробностей для того, чтобы показать: прогресс в области биологических исследований давно связан с прогрессом в других областях. Если бы не существовало компьютеров, способных автоматически сосчитать число окрашенных клеток на нескольких сотнях фотографий, толку от супермикроскопов было бы немного. А без флуоресцентных красителей все миллионы клеток были бы неотличимы друг от друга, так что проследить за формированием новых или гибелью старых было бы практически невозможно.

По сути, первый микроскоп представлял собой струбцину с закрепленной на ней сферической линзой. Аналогом такого микроскопа может быть простая игральная карта с проделанным в ней отверстием и каплей воды. По некоторым данным подобные устройства применяли золотодобытчики на Колыме уже в прошлом столетии.

За дифракционным пределом

У оптических микроскопов есть принципиальный недостаток. Дело в том, что по форме световых волн невозможно восстановить форму тех предметов, которые оказались намного меньше длины волны: с тем же успехом можно пытаться исследовать тонкую текстуру материала рукой в толстой перчатке для сварочных работ.

Ограничения, создаваемые дифракцией, отчасти удалось преодолеть, причем без нарушения законов физики. Поднырнуть под дифракционный барьер оптическим микроскопам помогают два обстоятельства: то, что при флуоресценции кванты излучаются отдельными молекулами красителя (которые могут довольно далеко отстоять друг от друга), и то, что за счет наложения световых волн можно получить яркое пятно с диаметром, меньшим, чем длина волны.

При наложении друг на друга световые волны способны взаимно друг друга погасить, поэтому параметры освещения образца так, чтобы в яркую область попадал по возможности меньший участок. В сочетании с математическими алгоритмами, которые позволяют, например, убрать двоение изображения, такое направленное освещение дает резкое повышение качества съемки. Становится возможным, к примеру, исследовать в оптический микроскоп внутриклеточные структуры и даже (комбинируя описанный метод с конфокальной микроскопией) получать их трехмерные изображения.

Электронный микроскоп до электронных приборов

Для того чтобы открыть атомы и молекулы, ученым не пришлось их рассматривать - молекулярная теория не нуждалась в том, чтобы видеть объект. А вот микробиология стала возможна только после изобретения микроскопа. Поэтому первое время микроскопы ассоциировались именно с медициной и биологией: физики и химики, изучавшие существенно меньшие объекты, обходились другими средствами. Когда же и им захотелось посмотреть на микромир, дифракционные ограничения стали серьезной проблемой, тем более что описанные выше методы флуоресцентной микроскопии были еще неизвестны. Да и толку от повышения разрешающей способности с 500 до 100 нанометров немного, если объект, который надо рассмотреть, еще меньше!

Зная о том, что электроны могут себя вести и как волна, и как частица, физики из Германии в 1926 году создали электронную линзу. Идея, лежащая в ее основе, была очень простой и понятной любому школьнику: раз электромагнитное поле отклоняет электроны, то с его помощью можно поменять форму пучка этих частиц, растащив их в разные стороны, или, напротив, уменьшить диаметр пучка. Спустя пять лет, в 1931 году Эрнст Руска и Макс Кнолл построили первый в мире электронный микроскоп. В приборе образец сначала просвечивался пучком электронов, а потом электронная линза расширяла прошедший насквозь пучок перед тем, как тот падал на специальный люминесцентный экран. Первый микроскоп давал увеличение всего в 400 раз, но замена света на электроны открыла дорогу к фотографированию с увеличением в сотни тысяч раз: конструкторам пришлось всего лишь преодолеть несколько препятствий технического характера.

Электронный микроскоп позволил рассмотреть устройство клеток в недосягаемом ранее качестве. Но по этому снимку нельзя понять возраст клеток и наличие в них тех или иных белков, а эта информация очень нужна ученым.

Сейчас электронные микроскопы позволяют фотографировать вирусы крупным планом. Существуют разные модификации приборов, позволяющие не только просвечивать тонкие срезы, но и рассматривать их в «отраженном свете» (в отраженных электронах, конечно). Мы не будем подробно рассказывать про все варианты микроскопов, но заметим, что недавно исследователи - они научились восстанавливать изображение по дифракционной картине.

Потрогать, а не рассмотреть

Еще одна революция произошла за счет дальнейшего отхода от принципа «осветить и посмотреть». Атомный силовой микроскоп, равно как и сканирующий туннельный микроскоп, уже ничем на поверхность образцов не светит. Вместо этого по поверхности перемещается особо тонкая игла, которая буквально подпрыгивает даже на неровностях размером с отдельный атом.

Не вдаваясь в детали всех подобных методов, заметим главное: иглу туннельного микроскопа можно не только перемещать вдоль поверхности, но и использовать для перестановки атомов с места на место. Именно таким образом ученые создают надписи, рисунки и даже мультфильмы, в которых нарисованный мальчик играет с атомом. Настоящим атомом ксенона, перетаскиваемым иглой сканирующего туннельного микроскопа.

Туннельным микроскоп называют потому, что он использует эффект протекающего через иглу туннельного тока: электроны проходят через зазор между иглой и поверхностью за счет предсказанного квантовой механикой туннельного эффекта. Для работы такого прибора нужен вакуум.

Намного менее требователен к окружающим условиям атомный силовой микроскоп (АСМ) - он может (с рядом ограничений) работать без откачки воздуха. В определенном смысле АСМ является нанотехнологичным наследником патефона. Игла, закрепленная на тонком и гибком кронштейне-кантилевере (cantilever и есть «кронштейн»), движется вдоль поверхности без подачи на нее напряжения и следует рельефу образца так же, как игла патефона следует вдоль бороздок грампластинки. Изгиб кантилевера заставляет отклоняться закрепленное на нем зеркало, зеркало отклоняет лазерный луч, и это позволяет очень точно определять форму исследуемого образца. Главное только иметь достаточно точную систему перемещения иглы, а также запас игл, которые должны быть идеально острыми. Радиус закругления у кончиков таких игл может не превышать одного нанометра.

АСМ позволяет видеть отдельные атомы и молекулы, однако, как и туннельный микроскоп, не позволяет заглянуть под поверхность образца. Иными словами, ученым приходится выбирать между возможностью видеть атомы и возможностью изучать весь объект целиком. Впрочем, и для оптических микроскопов внутренности изучаемых образцов не всегда доступны, ведь минералы или металлы обычно свет пропускают плохо. Кроме того, с фотографированием атомов все равно возникают сложности - эти объекты предстают простыми шариками, форма электронных облаков на таких снимках не видна.

Синхротронное излучение, возникающее при торможении разогнанных ускорителями заряженных частиц, позволяет изучать окаменевшие останки доисторических животных. Вращая образец под рентгеновскими лучами, мы можем получать трехмерные томограммы - именно так был найден, например, мозг внутри черепа рыб, вымерших 300 миллионов лет назад. Можно обойтись и без вращения, если регистрацию прошедшего излучения фиксацией рассеянных за счет дифракции рентгеновских лучей.

И это еще не все возможности, которые открывает рентгеновское излучение. При облучении им многие материалы флуоресцируют, причем по характеру флуоресценции можно определить химический состав вещества: таким способом ученые окраску древних артефактов, стертые в Средние века труды Архимеда или окраску перьев давно вымерших птиц.

Позируют атомы

На фоне всех тех возможностей, которые предоставляют рентгеновские или оптико-флуоресцентные методы, новый способ фотографирования отдельных атомов уже кажется не таким уж большим прорывом в науке. Суть метода, который позволил получить представленные на этой неделе изображения, такова: с ионизированных атомов срывают электроны и направляют их на специальный детектор. Каждый акт ионизации срывает электрон с определенного положения и дает одну точку на «фотографии». Накопив несколько тысяч таких точек, ученые сформировали картинку, отображающую наиболее вероятные места обнаружения электрона вокруг ядра атома, а это по определению и есть электронное облако.

В заключение скажем, что возможность видеть отдельные атомы с их электронными облаками - это скорее вишенка на торте современной микроскопии. Ученым было важно исследовать структуру материалов, изучать клетки и кристаллы, а обусловленное этим развитие технологий дало возможность дойти до атома водорода. Все, что меньше, - уже сфера интересов специалистов по физике элементарных частиц. А биологам, материаловедам и геологам еще есть куда совершенствовать микроскопы даже с довольно скромным на фоне атомов увеличением. Специалистам по нейрофизиологии, к примеру, давно хочется иметь прибор, способный видеть отдельные клетки внутри живого мозга, а создатели марсоходов продали бы душу за электронный микроскоп, который влезал бы на борт космического аппарата и мог бы работать на Марсе.

Nion Hermes Scanning Transmission Electron Microscope стоит 3,7 млн фунтов стерлингов ($ 5,5 млн) и позволяет увидеть объекты в миллион раз меньше человеческого волоса. Главный фокус электронного микроскопа заключается в том, что вместо пучка фотонов, как обычные световые микроскопы, он использует пучок электронов. Длина волн электронов меньше, что и позволяет получать большее увеличение при лучшем разрешении.


Что до области применения подобного устройства, то она обширна. Возьмем, для начала, электротехнику. Все предпочитают компактные носимые девайсы. Наши гаджеты становятся меньше день ото дня. Для их создания необходимы транзисторы, полупроводники и пр. детали, но чтобы создавать такие миниатюрные изделия необходимо уметь оперировать материалами на уровне атомов. Ведь если в структуру, к примеру, графена, двумерного листа атомов углерода, добавить лишний атом, изменится сам материал! Поэтому, необходим особый атомарный контроль, сохраняющий целостность материала.

Ученые в лаборатории SuperSTEM развивают свой проект с дисульфид молибденом. Это другой 2D материал, наподобие графена. Он используется в качестве промышленного катализатора, например, для удаления серы из ископаемого топлива. Датская химическая компания Haldor Topsoe использует электронные микроскопы, чтобы изучить, как переставляя атомы дисульфид молибдена, можно повлиять на его каталитические свойства.

Супер микроскоп востребован и в наномедицине. С его помощью можно проверить насколько надежно молекула препарата прикреплена к наночастице, действующей в качестве транспорта лекарств.

А еще, с его помощью можно рассматривать кристаллические структуры частиц метеоритной пыли. Хотя, все это пока просто хороший задел на будущее.

Давайте попробуем. Не думаю, что все написанное ниже полностью справедливо, и я вполне мог что-то упустить, но анализ существующих ответов на подобные вопросы и собственные размышления выстроились вот во что:

Возьмем атом водорода: один протон и один электрон на его орбите.

Радиус атома водорода - это как раз радиус орбиты его электрона. В природе он равен 53 пикометрам, то есть 53×10^-12 метра, мы же хотим увеличить его до 30×10^-2 метра - где-то в 5 миллиардов раз.

Диаметр протона (то есть, нашего атомного ядра) - 1.75×10^−15 м. Если увеличить его до желаемых размеров, он окажется размером 1×10^−5 метра, то есть одна сотая миллиметра. Это неразличимо неворуженным взглядом.

Давайте лучше увеличим протон сразу до размеров горошины. Орбита электрона окажется тогда радиусом с футбольное поле.

Протон будет представлять собой область положительного заряда. Он состоит из трех кварков, которые меньше его примерно в тысячу раз - их мы точно не увидим. Существует мнение, что если посыпать этот гипотетический объект магнитной стружкой, она соберется вокруг центра в сферическое облачко.

Электрон увидеть не выйдет. Никакой шарик вокруг атомного ядра летать не будет, «орбита» электрона представляет собой лишь область, в разных точках которой электрон может находиться с разной вероятностью. Можно представить это себе как сферу диаметром со стадион вокруг нашей горошины. В случайных точках внутри этой сферы возникает и моментально пропадает отрицательный электрический заряд. Причем, делает это настолько быстро, что даже в любой отдельно взятый момент времени говорить о его конкретном расположении не имеет смысла... да, это непостижимо. Проще говоря, это никак не «выглядит».

Интересно, кстати, что, увеличив атом до макроскопических размеров, мы надеемся его «увидеть» - то есть, засечь отраженный от него свет. На самом же деле атомы обыкновенных размеров свет не отражают, речь в атомных масштабах идет о взаимодействиях между электронами и фотонами. Электрон может поглотить фотон и перейти на следующий энергетический уровень, он может испустить фотон и так далее. При гипотетическом увеличении этой системы до размеров футбольного поля понадобится слишком много допущений, чтобы предсказать поведение этой невозможной конструкции: будет ли фотон так же воздействовать на гигантский атом? Нужно ли «смотреть» на него, бомбардируя его специальными гигантскими фотонами? Будет ли он излучать гиганские фотоны? Все эти вопросы, строго говоря, не имеют смысла. Думаю, впрочем, можно с уверенностью сказать, что атом не станет отражать свет так, как делал бы это металлический шарик.

Возможность увидеть своими глазами субатомные частицы крайне важна для современной физики. Ранее учёным уже удавалось сделать фотографии и . Однако сфотографировать сам атом, а не какую-либо его часть представлялось крайне трудной задачей даже при использовании самых высокотехнологичных устройств.

Дело в том, что согласно законам квантовой механики , невозможно одинаково точно определить все свойства субатомной частицы. Этот раздел теоретической физики построен по принципу неопределённости Гейзенберга , который гласит, что невозможно одинаково точно измерить координаты и импульс частицы — точные измерения одного свойства непременно изменят данные о другом.

Поэтому, вместо того чтобы определять местонахождение (координаты частицы), квантовая теория предлагает измерить так называемую волновую функцию .

Волновая функция работает почти так же, как и звуковая волна. Различие лишь в том, что математическое описание звуковой волны определяет движение молекул в воздухе в определённом месте, а волновая функция описывает вероятность появления частицы в том или ином месте по уравнению Шрёдингера .

Измерить волновую функцию также непросто (прямые наблюдения приводят к её коллапсу), но физики-теоретики могут примерно предсказать её значения.

Экспериментально измерить все параметры волновой функции можно только в том случае, если собрать её из отдельных разрушающих измерений, проведённых на полностью идентичных системах атомов или молекул.

Физики из голландского исследовательского института AMOLF представили новый метод, не требующий никаких "перестроек", и опубликовали результаты своей работы в журнале Physical Review Letters. Их методика построена на гипотезе 1981 года трёх советских физиков-теоретиков, а также на более поздних исследованиях.

В ходе эксперимента команда учёных направила два лазерных луча на атомы водорода, помещённые в специальную камеру. В результате такого воздействия электроны покинули свои орбиты с той скоростью и в том направлении, которые определялись их волновыми функциями. Сильное электрическое поле в камере, где находились атомы водорода, направило электроны на определённые части планарного (плоского) детектора.

Положение электронов, попадающих на детектор, определялось их начальной скоростью, а не позицией в камере. Таким образом, распределение электронов на детекторе рассказало учёным о волновой функции этих частиц, которая была у них, когда они покинули орбиту у ядра атома водорода.

Движения электронов отображались на фосфоресцентном экране в виде тёмных и светлых колец, которые учёные сфотографировали цифровой камерой с высоким разрешением.

"Мы очень довольны нашими результатами. Квантовая механика так мало имеет дело с повседневной жизнью людей, что вряд ли кто-то мог подумать о получении реального фотоснимка квантовых взаимодействий в атоме", — говорит ведущий автор исследования Анета Стодолна (Aneta Stodolna). Также она утверждает, что разработанная методика может иметь и практическое применение, к примеру, для создания проводников толщиной в атом, развития технологии молекулярных проводов, что значительно усовершенствует современные электронные приборы.

"Примечательно, что эксперимент был проведён именно на водороде — одновременно простейшем и самом распространённом веществе в нашей Вселенной. Нужно будет понять, можно ли применить эту методику для более сложных атомов. Если да, то это большой прорыв, который позволит развить не только электронику, но и нанотехнологии", — говорит Джеф Ландин (Jeff Lundeen) из университета Оттавы, который не принимал участия в исследовании.

Впрочем, сами учёные, проводившие эксперимент, не задумываются о практической стороне вопроса. Они считают, что их открытие в первую очередь относится к фундаментальной науке, которая поможет передать больше знаний будущим поколениям физиков.

На данной фотографии вы смотрите на первое прямое изображение орбит электрона вокруг атома — фактически волновую функцию атома!

Для получения фотографии орбитальной структуры атома водорода, исследователи использовали новейший квантовой микроскоп — невероятное устройство, которое позволяет ученым заглянуть в область квантовой физики.

Орбитальная структура пространства в атоме занята электроном. Но при описании этих микроскопических свойств материи, ученые полагаются на волновые функции — математические способы описания квантовых состояний частиц, а именно того, как они ведут себя в пространстве и во времени.

Как правило, в квантовой физике используют формулы типа уравнения Шредингера для описания состояний частиц.

Препятствия на пути исследователей

До сегодняшнего момента, ученые фактически никогда не наблюдали волновую функцию. Попытка уловить точное положение или импульс одинокого электрона было сродни попытке поймать рой мух. Прямые наблюдения искажались весьма неприятным явлением — квантовой когерентностью.

Чтобы измерить все квантовые состояния нужен инструмент, который может проводить множество измерений состояний частицы с течением времени.

Но как увеличить и так микроскопическое состояние квантовой частицы? Ответ нашла группа международных исследователей. С помощью квантового микроскопа — устройства, которое использует фотоионизацию для прямых наблюдений атомных структур.

В своей статье в популярном журнале Physical Review Letters, Aneta Stodolna работающая в институте молекулярной физики (AMOLF) в Нидерландах рассказывает, как она и ее команда получили структуры узловых электронных орбиталей атома водорода помещенных в статическом электрическом поле.

Методика работы

После облучения лазерными импульсами, ионизированные электроны покидали свои орбиты и по измеренной траектории попадали в 2D детектор (двойная микроканальная пластина . Детектор расположен перпендикулярно к самому полю). Существует множество траекторий, по которым могут перемещаться электронов до столкновения с детектором. Это обеспечивает исследователей набором интерференционных картин, — моделей которые отражают узловую структуру волновой функции.
Исследователи использовали электростатическую линзу, которая увеличивает исходящую волну электронов более чем в 20000 раз.



Понравилась статья? Поделитесь с друзьями!