Фронтальная аксонометрическая проекция. Косоугольная диметрическая проекция (фронтальная)

ГОСТ 2.317-2011

Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ

Unified system of design documentation. Axonometric projections


МКС 01.100
ОКСТУ 0002

Дата введения 2012-01-01

Предисловие

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ФГУП "ВНИИНМАШ"), Автономной некоммерческой организацией "Научно-исследовательский центр CALS-технологий "Прикладная логистика" (АНО НИЦ CALS-технологий "Прикладная логистика")

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 12 мая 2011 г. N 39)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

Азстандарт

Минэкономики Республики Армения

Беларусь

Госстандарт Республики Беларусь

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Молдова-Стандарт

Росстандарт

Таджикистан

Таджикстандарт

Узбекистан

Узстандарт

Госпотребстандарт Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 августа 2011 г. N 211-ст межгосударственный стандарт ГОСТ 2.317-2011 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2012 г.

5 ВЗАМЕН ГОСТ 2.317-69

6 ПЕРЕИЗДАНИЕ. Декабрь 2018 г.


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает аксонометрические проекции, применяемые в графических документах всех отраслей промышленности и строительства.

На основе настоящего стандарта допускается, при необходимости, разрабатывать стандарты, учитывающие специфику выполнения аксонометрических проекций в организации.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 2.052-2015 Единая система конструкторской документации. Электронная модель изделия. Общие положения

ГОСТ 2.102-2013 Единая система конструкторской документации. Виды и комплектность конструкторских документов

ГОСТ 2.311-68 Единая система конструкторской документации. Изображение резьбы

ГОСТ 2.402-68 Единая система конструкторской документации. Условные обозначения зубчатых колес, реек, червяков и звездочек цепных передач

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 2.052 , а также следующие термины с соответствующими определениями:

3.1 аксонометрическая проекция: Проекция на плоскость с помощью параллельных лучей, идущих из центра проецирования (который удален в бесконечность) через каждую точку объекта до пересечения с плоскостью, на которую проецируется объект.

3.3 косоугольная проекция: Аксонометрическая проекция, у которой направление проецирования неперпендикулярно к плоскости проецирования.

3.4 коэффициент искажения: Отношение длины проекции отрезка оси на плоскость к его истинной длине.

3.5 прямоугольная проекция: Аксонометрическая проекция, у которой направление проецирования перпендикулярно к плоскости проецирования.

3.6 электронная модель изделия (модель): Электронная модель детали или сборочной единицы по ГОСТ 2.102 .

4 Основные положения

4.1 В зависимости от направления проецирования по отношению к плоскости проекций аксонометрические проекции делят на прямоугольные и косоугольные.

4.2 Настоящий стандарт устанавливает правила построения (отображения) на плоскости следующих аксонометрических проекций:

- прямоугольной изометрической проекции;

- прямоугольной диметрической проекции;

- косоугольной фронтальной изометрической проекции;

- косоугольной горизонтальной изометрической проекции;

- косоугольной фронтальной диметрической проекции.

4.3 Установленные настоящим стандартом аксонометрические проекции могут быть получены путем проецирования электронной модели изделия на плоскость в соответствии с требованиями настоящего стандарта.

4.4 Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям в соответствии с рисунком А.1 (приложение А).

4.5 При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии - параллельно измеряемому отрезку в соответствии с рисунком А.2 (приложение А).

4.6 В аксонометрических проекциях спицы маховиков и шкивов, ребра жесткости и подобные элементы штрихуют (см. рисунок 6).

4.7 При выполнении в аксонометрических проекциях зубчатых колес, реек, червяков и подобных элементов допускается применять условности по ГОСТ 2.402 .

В аксонометрических проекциях резьбу изображают по ГОСТ 2.311 .

Допускается изображать профиль резьбы полностью или частично, как показано на рисунке А.3 (приложение А).

4.8 В необходимых случаях допускается применять другие теоретически обоснованные аксонометрические проекции.

5 Прямоугольные проекции

5.1 Изометрическая проекция

5.1.1 Положение аксонометрических осей приведено на рисунке 1.

5.1.2 Коэффициент искажения по осям , , равен 0,82.

Изометрическую проекцию для упрощения, как правило, выполняют без искажения по осям , , , т.е. приняв коэффициент искажения равным 1.

Рисунок 1

5.1.3 Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (см. рисунок 2).

1 2 ; 3 - эллипс (большая ось расположена под углом 90° к оси )

Рисунок 2

Если изометрическую проекцию выполняют без искажения по осям , , , то большая ось эллипсов 1, 2, 3

Если изометрическую проекцию выполняют с искажением по осям , , , то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось - 0,58 диаметра окружности.

5.1.4 Пример изометрической проекции детали приведен на рисунке 3.

Рисунок 3

5.2 Диметрическая проекция

5.2.1 Положение аксонометрических осей приведено на рисунке 4.

Рисунок 4

5.2.2 Коэффициент искажения по оси равен 0,47, а по осям и - 0,94.

Диметрическую проекцию, как правило, выполняют без искажения по осям и и с коэффициентом искажения 0,5 по оси .

5.2.3 Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы (см. рисунок 5).

1 - эллипс (большая ось расположена под углом 90° к оси ); 2 - эллипс (большая ось расположена под углом 90° к оси ); 3 - эллипс (большая ось расположена под углом 90° к оси )

Рисунок 5

Если диметрическую проекцию выполняют без искажения по осям и , то большая ось эллипсов 1 , 2 , 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 - 0,95, эллипсов 2 и 3 - 0,35 диаметра окружности.

Если диметрическую проекцию выполняют с искажением по осям и , то большая ось эллипсов 1 , 2 , 3 равна диаметру окружности, а малая ось эллипса 1 - 0,9, эллипсов 2 и 3 - 0,33 диаметра окружности.

5.2.4 Пример диметрической проекции детали приведен на рисунке 6.

Рисунок 6

6 Косоугольные проекции

6.1 Фронтальная изометрическая проекция

6.1.1 Положение аксонометрических осей приведено на рисунке 7.

Рисунок 7

Допускается применять фронтальные изометрические проекции с углом наклона оси 30° и 60°.

6.1.2 Фронтальную изометрическую проекцию выполняют без искажения по осям , , .

6.1.3 Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, - в эллипсы (см. рисунок 8).

1 - окружность; 2 - эллипс (большая ось составляет с осью угол 22°30"); 3 - эллипс (большая ось составляет с осью угол 22°30")

Рисунок 8

Большая ось эллипсов 2 и 3 равна 1,3, а малая ось - 0,54 диаметра окружности.

6.1.4 Пример фронтальной изометрической проекции детали приведен на рисунке 9.

Рисунок 9

6.2 Горизонтальная изометрическая проекция

6.2.1 Положение аксонометрических осей приведено на рисунке 10.

Рисунок 10

Допускается применять горизонтальные изометрические проекции с углом наклона оси 45° и 60°, сохраняя угол между осями и 90°.

6.2.2 Горизонтальную изометрическую проекцию выполняют без искажения по осям , и .

6.2.3 Окружности, лежащие в плоскостях, параллельных горизонтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных фронтальной и профильной плоскостям проекций, - в эллипсы (см. рисунок 11).

1 - эллипс (большая ось составляет с осью угол 15°); 2 - окружность; 3 - эллипс (большая ось составляет с осью угол 30°)

Рисунок 11

Большая ось эллипса 1 равна 1,37, а малая ось - 0,37 диаметра окружности.

Большая ось эллипса 3 равна 1,22, а малая ось - 0,71 диаметра окружности.

6.2.4 Пример горизонтальной изометрической проекции приведен на рисунке 12.

Рисунок 12

6.3 Фронтальная диметрическая проекция

6.3.1 Положение аксонометрических осей приведено на рисунке 13.

Допускается применять фронтальные диметрические проекции с углом наклона оси 30° и 60°.

Коэффициент искажения по оси равен 0,5, а по осям и - 1.

Рисунок 13

6.3.2 Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость проекций в окружности, а окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, - в эллипсы (см. рисунок 14). Большая ось эллипсов 2 и 3 равна 1,07, а малая ось - 0,33 диаметра окружности.

1 - окружность; 2 - эллипс (большая ось составляет с осью угол 7°14"); 3 - эллипс (большая ось составляет с осью угол 7°14")

Рисунок 14

6.3.3 Пример фронтальной диметрической проекции детали приведен на рисунке 15.

Рисунок 15

Приложение А (справочное). Условности и нанесение размеров

Приложение А
(справочное)

Рисунок А.1 - Нанесение линий штриховки в сечении

Рисунок А.2 - Нанесение размеров

Рисунок А.3 - Изображение резьбы

УДК 744.4:006.354

Ключевые слова: конструкторская документация, прямоугольные проекции, изометрическая проекция, диметрическая проекция, косоугольные проекции, фронтальная изометрическая проекция, горизонтальная изометрическая проекция, фронтальная диметрическая проекция



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2018


К атегория:

Технические чертежи

Фронтальная косоугольная диметрическая проекция

Во фронтальной косоугольной диметрической проекции принято следующее положение аксонометрических осей: ось ох направлена горизонтально; ось оу - под углом 45° к оси ох и ось oz - вертикально. По этим осям и следует вести построение фронтальной проекции предмета. Допускается применять «левое» расположение осей.

Линейные размеры, параллельные оси оу, откладывают в масштабе, вдвое меньшем, чем по осям ох и oz. Характерным для этого вида аксонометрических проекций является то, что фигуры, параллельные фронтальной плоскости проекций V, изображаются без искажений. Поэтому такие аксонометрические проекции и называются фронтальными. Построение фронтальной проекции всегда начинают с нанесения осей, которые проводят тонкими сплошными линиями. Последовательность построения фронтальных проекций некоторых фигур показана на рис. 2.

Рис. 1. Положение аксонометрических осей: а - «правое»; б - «левое».

Если расположить ось вращения цилиндра параллельно оси oz или ох, то его основания проецируются в виде эллипсов.

Фронтальная диметрическая проекция куба с вписанными в его грани окружностями изображена на рис. 34. Окружность, расположенная на передней грани куба, изображается без искажений, а окружности, расположенные на верхней и боковой гранях, изображаются в виде эллипсов одинаковой формы и размеров.

Для построения эллипса на гранях находят восемь точек, которые затем плавно соединяют по лекалу. Четыре точки определяются сразу - это середины сторон параллелограммов, изображающих грани куба. Четыре другие точки определяются на диагоналях параллелограммов путем переноса их с диагоналей квадрата.

Для построения эллипса на верхней грани сначала на передней грани куба отмечают точки 1 и 2 пересечения диагоналей квадрата с окружностью. Затем из этих точек проводят прямые параллельно оси oz до верхнего ребра куба (верхней стороны квадрата). Из полученных на ребре точек проводят прямые параллельно оси оу до пересечения их с диагоналями параллелограмма. Это и будут точки эллипса.

Рис. 2. Последовательность построения фронтальной косоугольной диметрической проекции: а - куба; б - цилиндра; 8 - шестигранной призмы.

Рис. 3. Фронтальная днметрическая проекция куба с вписанными в его грани окружностями.

Аналогично находят диагональные точки при построении эллипса на боковой грани куба. Соединив найденные точки плавной кривой по лекалу, получим эллипсы.

Угол наклона большой оси эллипса равен примерно 7° по отношению к оси ох, если эллипс изображает окружность на верхней грани куба, и по отношению к оси oz, если эллипс изображает окружность на боковой грани куба. Малую ось эллипса располагают перпендикулярно большой.

На практике при построении фронтальных проекций деталей цилиндрической формы обычно вычерчивают не эллипсы, а овалы. Форма овала близка к форме эллипса, но вычертить его более просто, так как построение выполняют циркулем по правилам сопряжений.

Рис. 4. Построение овала на верхней грани куба.

Рис. 5. Прямоугольные проекции модели.

Овал на верхней грани куба строят следующим образом: – проводят аксонометрические оси ох, оу и oz; затем из центра О - окружность диаметром, равным диаметру окружности, изображенной на рис. 34; – проводят большую ось овала под углом 7° к оси ох и перпендикулярно к ней малую ось. Продолжение малой оси пересекает окружность в точках O1 и 02; – из точек Oi и,02, как из центров, проводят вспомогательные дуги радиусом 001 равным 002, до пересечения с продолжением малой оси в точках 03 и 04, являющихся центрами больших дуг овала; – проводят прямые 04Л и 03В, которые пересекут большую ось овала в точках 06 и Ов, являющихся центрами малых дуг овала; – из центров 03 и 04 проводят большие дуги овалов радиусом 04А, равным 03В; – из центров 08 и 06 проводят малые дуги, замыкающие овал, радиусом ОьА, равным ОйВ.

Построение овала - приближенного изображения окружности - в профильной плоскости аналогичное.

Рассмотрим построение фронтальной диметрической проекции модели по чертежу, приведенному на рис. 5. Сначала проводят оси проекций ох, оу и oz. Наиболее характерным видом модели является вид спереди, поэтому построение фронтальной проекции начинают с вычерчивания в плоскости осей ох-oz такого же изображения, каким является вид спереди. В этой плоскости тонкими, едва заметными линиями намечают прямоугольник, соответствующий наибольшей высоте и ширине модели. Для этого по оси ох от точки о влево откладывают 60 мм (ширина модели), а по оси oz вверх - 40 мм (высота модели). Из полученных отметок проводят прямые, соответственно параллельные осям проекции ох и oz. Посередине габаритного прямоугольника проводят вертикальную осевую линию.

По отношению к этой осевой линии в габаритном прямоугольнике вычерчивают контур модели, соответствующий очертанию ее изображения на виде спереди. Из угловых точек вычерченного контура проводят параллельные прямые под углом 45° по отношению к оси ох, соответствующие направлению оси оу во фронтальной проекции.

На наклонных прямых откладывают размер толщины модели, уменьшенной в два раза, т. е. 50: 2 = 25 мм. Полученные на наклонных прямых отметки соединяют последовательно прямыми линиями, в результате чего получают изображение модели во фронтальной проекции. Все указанные построения выполняют тонкими, едва заметными линиями. По окончании построения обводят полученное изображение контурными линиями и удаляют линии построения и линии невидимого контура.

Рис. 6. Последовательность построения фронтальной димет-рической проекции модели.

Рис. 7. Последовательность построения фронтальной диметрической проекции кронштейна.


Аксонометрические деталей и узлов машин нередко используются в конструкторской документации для того, чтобы наглядно показать конструктивные особенности детали (сборочного узла), представить, как выглядит деталь (узел) в пространстве. В зависимости от того, под каким углом расположены оси координат, аксонометрические проекции подразделяются на прямоугольные и косоугольные.

Вам понадобится

  • Программа для построения чертежей, карандаш, бумага, ластик, транспортир.

Инструкция

Прямоугольные проекции. Изометрическая проекция. При построении прямоугольной изометрической проекции учитывают коэффициент искажения по осям X, Y, Z, равный 0,82, при этом , параллельные плоскостям проекций, проецируются на аксонометрические плоскости проекций в виде эллипсов, ось которых равна d, а ось – 0,58d, где d – диаметр исходной окружности. Для простоты расчетов изометрическую проекцию без искажения по осям (коэффициент искажения равен 1). В этом случае проецируемые окружности будут иметь вид эллипсов с осью, равной 1,22d, и малой осью, равной 0,71d.

Диметрическая проекция. При построении прямоугольной диметрической проекции коэффициент искажения по осям X и Z, равный 0,94, а по оси Y – 0.47. На диметрическую проекцию упрощенно выполняют без искажения по осям X и Z и с коэффициентом искажения по оси Y = 0,5. Окружность, параллельная фронтальной плоскости проекций, проецируется на нее в виде эллипса с большой осью, равной 1,06d и малой осью, равной 0,95d, где d – диаметр исходной окружности. Окружности, параллельные двум другим аксонометрическим плоскостям, проецируются на них в виде эллипсов с осями, равными соответственно 1.06d и 0,35d.

Косоугольные проекции. Фронтальная изометрическая проекция. При построении фронтальной изометрической проекции стандартом установлен оптимальный угол наклона оси Y к горизонтали 45 градусов. Допускаются углы наклона оси Y к горизонтали - 30 и 60 градусов. Коэффициент искажения по осям X, Y и Z равен 1. Окружность 1, расположенная фронтальной плоскости проекций, проецируется на нее без искажений. Окружности, параллельные горизонтальной и профильной плоскостям проекций, выполняются в виде эллипсов 2 и 3 с большой осью, равной 1.3d и малой осью, равной 0,54d, где d – диаметр исходной окружности.

Горизонтальная изометрическая проекция. Горизонтальная изометрическая проекция детали (узла) строится на аксонометрических осях, расположенных, как показано на рис. 7. Допускается изменять угол между осью Y и горизонталью на 45 и 60 градусов, оставляя неизменным угол 90 градусов между осями Y и X. Коэффициент искажения по осям X, Y, Z равен 1. Окружность, лежащая в плоскости, параллельной горизонтальной плоскости проекций, проецируется в виде окружности 2 без искажения. Окружности, параллельные фронтальной и профильной плоскостям проекций, вид эллипсов 1 и 3. Размеры осей эллипсов связаны с диаметром d исходной окружности следующими зависимостями:
эллипс 1 – большая ось равна 1,37d, малая ось – 0, 37d; эллипс 3 – большая ось равна 1,22d, малая ось – 0.71d.

Фронтальная диметрическая проекция. Косоугольная фронтальная диметрическая проекция детали (узла) строится на аксонометрических осях, подобных осям фронтальной изометрической проекции, но от нее коэффициентом искажения по оси Y, который равен 0,5. По осям X и Z коэффициент искажения равен 1. Также допустимо изменение угла наклона оси Y к горизонтали до значений 30 и 60 градусов. Окружность, лежащая в плоскости, параллельной фронтальной аксонометрической плоскости проекций, проецируется на нее без искажений. Окружности, параллельные плоскостям проекций горизонтальной и профильной, вычерчиваются в виде эллипсов 2 и 3. Размеры эллипсов от размера диаметра окружности d выражаются зависимостью:
большая ось эллипсов 2 и 3 равна 1,07d; малая ось эллипсов 2 и 3 равна 0,33d.

Видео по теме

Обратите внимание

Аксонометрическая проекция (от др.-греч. ἄξων «ось» и др.-греч. μετρέω «измеряю») - способ изображения геометричеук4уеских предметов на чертеже при помощи параллельных проекций.

Полезный совет

Плоскость, на которую производится проецирование, называется аксонометрической или картинной. Аксонометрическая проекция называется прямоугольной, если при параллельном проецировании проецирующие лучи перпендикулярны картинной плоскости (=90) и косоугольной, если лучи составляют с картинной плоскостью угол 0

Источники:

  • Справочник по черчению
  • аксонометрическая проекция окружности

Изображение предмета на чертеже должно давать полное представление о его форме и конструкторских особенностях и может быть выполнено при помощи прямоугольного проецирования, линейной перспективы и аксонометрической проекции.

Инструкция

Помните, что диметрия является одним из видов аксонометрической проекции предмета, при котором изображение жестко привязывают к натуральной системе координат Oxyz. Диметрия тем, что два коэффициента искажения по осям собой равны и отличны от третьего. Диметрия прямоугольной и фронтальной.

При прямоугольной диметрии ось z вертикально, ось х с горизонтальной линией угол 7011`, а угол y – 410 25`. Приведенный коэффициент искажения по оси у ky = 0,5 (реальный 0,47), kx = kz = 1 (реальные 0,94). ГОСТ 2.317–69 рекомендует пользоваться только приведенными коэффициентами при построении изображений в прямоугольной диметрической проекции.

Чтобы начертить прямоугольную диметрическую проекцию, отметьте на чертеже вертикальную ось Оz. Для построения оси х изобразите на чертеже прямоугольник с катетами 1 и 8 единиц, вершиной которого является точка О. Гипотенуза прямоугольника станет осью х, которая отклоняется от горизонта на угол 7011`. Для построения оси у также изобразите прямоугольный треугольник с вершиной в точке О. Величина катетов в данном случае 7 и 8 единиц. Полученная гипотенуза будет осью у, отклоняющейся от горизонта на угол 410 25`.

При построении диметрической проекции размер предмета получается увеличенным в 1,06 раз. При этом изображение проецируются в эллипс в координатных плоскостях хОу и уО с большей осью, равной 1.06d, где d – диаметр проецируемой окружности. Малая ось эллипса равна 0.35 d.

Видео по теме

Обратите внимание

Во многих отраслях промышленности используются чертежи. Правила изображения предметов и оформления чертежей регламентируются "Единой системой конструкторской документации" (ЕСКД).

Чтобы сделать любую деталь, необходимо спроектировать ее и выпустить чертежи. На чертеже должны быть представлены основные и вспомогательные виды детали, которые при грамотном прочтении дают всю необходимую информацию о форме и размерах изделия.

Инструкция

Как , проектирование новых деталей изучение государственных и отраслевых стандартов, по которым выполняется конструкторская документация. Найдите все ГОСТы и ОСТы, которые понадобятся при выполнении чертежа детали. Для этого вам нужны номера стандартов, по которым вы сможете их найти в интернете в электронном виде или в архиве предприятия в бумажном виде.

Перед тем, как начать выполнять чертеж, подберите необходимый листа, на котором он будет располагаться. Учитывайте количество проекций детали, которые вам нужно изобразить на чертеже. Для деталей простой формы (особенно для тел вращения) достаточно бывает основного вида и одной проекции. Если проектируемая деталь имеет сложную форму, большое количество сквозных и глухих отверстий, пазов, то желательно сделать несколько проекций, а также дать дополнительные местные виды.

Начертите главный вид детали. Выберите тот вид, который будет давать наиболее полное представление о форме детали. Сделайте другие виды, если это необходимо. Нанесите разрезы и сечения, показывающие внутренние отверстия и пазы детали.

Нанесите размеры в соответствии с ГОСТ 2.307-68. Габаритные размеры лучше всего величину детали, поэтому проставьте эти размеры так, чтобы их легко можно было обнаружить на чертеже. Все размеры проставляйте с допусками или указывайте квалитет, по которому должна быть изготовлена деталь. Помните о том, что в реальной , на , изготовить деталь с точными размерами. Всегда будет отклонение в большую или меньшую сторону,которое должно в интервал допуска на размер.

Обязательно указывайте шероховатость поверхностей детали в соответствии с ГОСТ 2.309-73. Это очень важно, особенно для точных деталей приборостроения, которые входят в состав сборочных единиц и соединяются по посадке.

Напишите технические требования, предъявляемые к детали. Укажите ее изготовления, обработки, нанесения покрытия, эксплуатации и хранения. В основной надписи чертежа не забудьте указать материал, из которого изготовлена деталь.

Видео по теме

При проектировке и практической отладке систем электроснабжения приходится пользоваться различными схемами. Иногда они даются в готовом виде, прилагаемом к технической системе, но в некоторых случаях схему приходится чертить самостоятельно, восстанавливая ее по монтажу и соединениям. От правильного вычерчивания схемы зависит, насколько она будет доступной для понимания.

Инструкция

Используйте для вычерчивания схемы электроснабжения компьютерную программу “Visio”. Для накопления вначале можно схему абстрактной питающей цепи, включающей произвольный набор элементов. В соответствии со стандартами и требованиями единой системы конструкторской принципиальная вычерчивается в однолинейном изображении.

Выберите настройки параметров страницы. В меню «Файл» воспользуйтесь соответствующей командой, а в открывшемся окне установите требуемый формат будущего изображения, например, А3 или А4. Выберите также книжную или альбомную ориентацию чертежа. Масштаб установите 1:1, а единицу измерения – миллиметры. Завершите выбор нажатием на кнопку “OK”.

При помощи меню «Открыть» найдите библиотеку трафаретов. Откройте набор основных надписей и перенесите на лист будущего чертежа рамку, форму надписи и дополнительные графы. Заполните графы необходимыми , поясняющими схему.

Собственно схему питающей цепи вычертите, применив трафареты из программы, или же используйте другие имеющиеся в вашем распоряжении заготовки. Удобно использовать специально разработанный комплект для черчения электрических схем различных питающих цепей.

Поскольку многие компоненты схемы питания отдельных групп часто однотипны, изобразите сходные методом копирования уже начерченных элементов, а после этого внесите корректировки. При этом элементы группы выделите «мышью» и переместите скопированный фрагмент на нужное место в схеме.

В завершение работы переместите из набора трафаретов компоненты схемы ввода. Аккуратно заполните пояснительные надписи к схеме. Сохраните изменения под необходимым именем. При необходимости готовый схемы электроснабжения выведите на печать.

Построение изометрической проекции детали позволяет получить максимально подробное представление о пространственных характеристиках объекта изображения. Изометрия с вырезом части детали дополнительно к внешнему виду показывает внутреннее устройство предмета.

Вам понадобится

  • - набор чертежных карандашей;
  • - линейка;
  • - угольники;
  • - транспортир;
  • - циркуль;
  • - ластик.

Инструкция

Начертите оси тонкими линиями так, чтобы изображение разместилось по центру листа. В прямоугольной изометрии углы между осями составляют сто градусов. В горизонтальной косоугольной изометрии углы между осями X и Y составляют девяносто градусов. А между осями X и Z; Y и Z - сто тридцать пять градусов.

Начните выполнять с верхней поверхности изображаемой детали. От углов горизонтальных поверхностей проведите вниз вертикальные линии и отложите на этих линиях соответствующие линейные размеры с чертежа детали. В изометрии линейные размеры по всем трем осям остаются единице. Последовательно соедините полученные точки на вертикальных линиях. Внешний контур детали готов. Выполните изображения имеющихся на гранях детали отверстий, пазов и пр.

Помните, что при изображении предметов в изометрии видимость криволинейных элементов будет искажаться. Окружность в изометрии изображается как эллипс. Расстояние между точками эллипса по осям изометрии равно диаметру окружности, а оси эллипса не совпадают с осями изометрии .

Все действия должны выполняться с помощью чертежных инструментов - линейки, карандаша, циркуля и транспортира. Используйте несколько карандашей разной твердости. Твердый - для тонких линий, твердо- - для пунктирных и штрихпунктирных линий, мягкий - для основных линий. Не забудьте начертить и заполнить основную надпись и рамку в соответствии с ГОСТ. Также построение изометрии можно выполнять в специализированном программном обеспечении, таком как Компас, AutoCAD.

Источники:

  • черчение в изометрии

Не так уж много найдется в наше время людей, которым ни разу в жизни не приходилось чертить или рисовать что-то на бумаге. Умение выполнить простейший чертеж какой-либо конструкции иногда бывает очень полезным. Можно потратить уйму времени, объясняя «на пальцах», как сделана та или иная вещь, в то время как бывает достаточного одного взгляда на ее чертеж, чтобы понять это без всяких слов.

Вам понадобится

  • – лист ватмана;
  • – чертежные принадлежности;
  • – чертежная доска.

Инструкция

Выберите формат листа, на котором будет выполняться чертеж – в соответствии с ГОСТ 9327-60. Формат должен быть таким, чтобы на листе можно было разместить основные виды детали в соответствующем масштабе, а также все необходимые разрезы и сечения. Для несложных деталей выбирают формат А4 (210х297 мм) или А3 (297х420 мм). Первый может располагаться своей длинной стороной только вертикально, второй – вертикально и горизонтально.

Начертите рамку чертежа, отступив от левого края листа 20 мм, от остальных трех – 5 мм. Начертите основную надпись – таблицу, в которую заносятся все данные о детали и чертеже. Ее размеры определяются ГОСТ 2.108-68. Ширина основной надписи является неизменной – 185 мм, высота варьируется от 15 до 55 мм в зависимости от назначения чертежа и вида учреждения, для которого он выполняется.

Выберите масштаб главного изображения. Возможные масштабы определяются ГОСТ 2.302-68. Их следует выбрать такими, чтобы на чертеже хорошо просматривались все основные элементы детали . Если при этом некоторые места просматриваются не достаточно ясно, их можно вынести отдельным видом, показав с необходимым увеличением.

Выберите главное изображение детали . Оно должно представлять собой такое направление взгляда на деталь (направление проецирования), с которого ее конструкция раскрывается наиболее полно. В большинстве случаев главным изображением является положение, в котором деталь находится на станке во время выполнения основной операции. Детали, имеющие ось вращения, располагаются на главном изображении, как правило, таким образом, чтобы ось имела горизонтальное положение. Главное изображение располагается в верхней части чертежа слева (если имеется три проекции) или близко к центру (при отсутствии боковой проекции).

Определите расположение остальных изображений (вида сбоку, сверху, сечений, разрезов). Виды детали образуются ее проецированием на три или две взаимно перпендикулярные плоскости (метод Монжа). При этом деталь должна располагаться таким образом, чтобы большинство или все ее элементы проецировались без искажения. Если какой-то из этих видов является информационно излишним, не выполняйте его. Чертеж должен иметь только те изображения, которые необходимы.

Выберите разрезы и сечения, которые необходимо выполнить. Их отличие друг от друга состоит в том, что на показывается и то, что находится за секущей плоскостью, в то время как на сечении отображает только то, что располагается в самой плоскости. Секущая плоскость может быть ступенчатой и ломаной.

Приступите непосредственно к черчению. При начертании линий руководствуйтесь ГОСТ 2.303-68, в котором определяются виды линий и их параметры. Располагайте изображения друг от друга на таком расстоянии, чтобы оставалось достаточно места для простановки размеров. Если плоскости разрезов проходят по монолиту детали , штрихуйте сечения линиями, идущими под углом 45°. Если при этом линии штриховки совпадают с основными линиями изображения, можно чертить их под углом 30° или 60°.

Начертите размерные линии и проставьте размеры. При этом руководствуйтесь следующими правилами. Расстояние от первой размерной линии до контура изображения должно быть не менее 10 мм, расстояние между соседними размерными линиями – не менее 7 мм. Стрелки должны иметь длину около 5 мм. Написание цифр осуществляйте в соответствии с ГОСТ 2.304-68, их высоту принимайте равной 3,5-5 мм. Цифры размещайте ближе к середине размерной линии (но не на оси изображения) с некоторым смещением относительно цифр, проставленных на соседних размерных линиях.

Видео по теме

Источники:

Соотношение углов и плоскостей любого предмета визуально меняется в зависимости от положения объекта в пространстве. Именно поэтому деталь на чертеже обычно выполняется в трех ортогональных проекциях, к которым добавлено пространственное изображение. Обычно это . При ее выполнении не используются точки схода, как при построении фронтальной перспективы. Поэтому размеры по мере удаления от наблюдателя не меняются.

Вам понадобится

  • - линейка;
  • - циркуль;
  • - лист бумаги.

Инструкция

Определите осей. Для этого начертите из точки О окружность произвольного радиуса. Центральный угол ее равен 360º. Разделите окружность на 3 равные , использовав в качестве базового радиуса ось ОZ. При этом угол каждого сектора будет равен 120º. Два радиуса как раз и представляют собой нужные вам оси ОX и OY.

Определите положение . Разделите углы между осями пополам. Соедините точку О с этими новыми точками тонкими линиями. Положение центра окружности зависит от условий . Отметьте его точкой и проведите к ней в обе стороны перпендикуляр. Эта линия определит положение большого диаметра.

Вычислите размеры диаметров. Они зависят от того, применяете вы коэффициент искажения или нет. В этот коэффициент по всем осям составляет 0,82, но довольно часто его округляют и принимают за 1. С учетом искажения большой и малый диаметры эллипса составляют соответственно 1 и 0,58 от исходного. Без применения коэффициента эти размеры составляют 1, 22 и 0, 71 диаметра первоначальной окружности.

Видео по теме

Обратите внимание

Для создания объемного изображения можно построить не только изометрическую, но и диметрическую проекцию, а также фронтальную или линейную перспективу. Проекции используются при построении чертежей деталей, а перспективы - в основном в архитектуре. Окружность в диметрии тоже изображается как эллипс, но там другое расположение осей и другие коэффициенты искажения. При выполнении различных видов перспектив учитываются изменения размеров при удалении от наблюдателя.

Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X " и Z" составят прямой угол, ось Y" обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z ", так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Сначала строим проекции его на П 1 и на П 2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П 4 , параллельная заданной секущей плоскости А-А , на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А .

2. 2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

3. 3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

4. Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3 ).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

1. Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

2. Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение - аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку - начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название - изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.


Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317-69:
а - прямоугольная изометрическая проекция; б - прямоугольная диметрическая проекция;
в - косоугольная фронтальная изометриче­ская проекция;
г - косоугольная фронтальная диметрическая проекция



Рис. 107. Продолжение: д - косоугольная горизонтальная изометриче­ская проекция

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).


Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.



Понравилась статья? Поделитесь с друзьями!