Где применяется ультразвук. Ультразвук

Введение……………………………………………………………………3

Ультразвук………………………………………………………………….4

Ультразвук как упругие волны……………………………………..4

Специфические особенности ультразвука………………………………..5

Источники и приемники ультразвука……………………………………..7

Механические излучатели…………………………………………...7

Электроакустические преобразователи…………………………….9

Приемники ультразвука……………………………………………..11

Применение ультразвука…………………………………………………...11

Ультразвуковая очистка……………………………………………...11

Механическая обработка сверхтвердых и хрупких

материалов……………………………………………………………13

Ультразвуковая сварка……………………………………………….14

Ультразвуковая пайка и лужение……………………………………14

Ускорение производственных процессов………………..…………15

Ультразвуковая дефектоскопия…………………………..…………15

Ультразвук в радиоэлектронике………………………..……………17

Ультразвук в медицине………………………………..……………..18

Литература…………………………………………………..……………….19

Двадцать первый век - век атома, покорения космоса, радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем ультразвуком занимались многие видные ученые.

Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.

В последние годы ультразвук начинает играть все большую роль в научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе. В настоящее время формируется новое направление химии – ультразвуковая химия, позволяющая ускорить многие химико-технологические процессы. Научные исследования способствовали зарождению нового раздела акустики – молекулярной акустики, изучающей молекулярное взаимодействие звуковых волн с веществом. Возникли новые области применения ультразвука: интроскопия, голография, квантовая акустика, ультразвуковая фазомерия, акустоэлектроника.

Наряду с теоретическими и экспериментальными исследованиями в области ультразвука выполнено много практических работ. Разработаны универсальные и специальные ультразвуковые станки, установки, работающие под повышенным статическим давлением, ультразвуковые механизированные установки для очистки деталей, генераторы с повышенной частотой и новой системой охлаждения, преобразователи с равномерно распределенным полем. Созданы и внедрены в производство автоматические ультразвуковые установки, которые включаются в поточные линии, позволяющие значительно повысить производительность труда.

льтразвук.

Ультразвук (УЗ) – упругие колебания и волны, частота которых превышает 15 – 20 кГц. Нижняя граница области УЗ-вых частот, отделяющая ее от области слышимого звука, определяется субъективными свойствами человеческого слуха и является условной, так как верхняя граница слухового восприятия у каждого человека своя. Верхняя граница УЗ-вых частот обусловлена физической природой упругих волн, которые могут распространяться лишь в материальной среде, т.е. при условии, что длина волны значительно больше длины свободного пробега молекул в газе или межатомных расстояний в жидкостях и твердых телах. В газах при нормальном давлении верхняя граница частот УЗ составляет » 10 9 Гц, в жидкостях и твердых телах граничная частота достигает 10 12 -10 13 Гц. В зависимости от длины волны и частоты УЗ обладает различными специфическими особенностями излучения, приема, распространения и применения, поэтому область УЗ-вых частот подразделяют на три области:

· низкие УЗ-вые частоты (1,5×10 4 – 10 5 Гц);

· средние (10 5 – 10 7 Гц);

· высокие (10 7 – 10 9 Гц).

Упругие волны с частотами 10 9 – 10 13 Гц принято называть гиперзвуком.

Ультразвук как упругие волны.

УЗ-вые волны (неслышимый звук) по своей природе не отличаются от упругих волн слышимого диапазона. В газах и жидкостях распространяются только продольные волны, а в твердых телах – продольные и сдвигов ые.

Распространение ультразвука подчиняется основным законам, общими для акустических волн любого диапазона частот. К основным законам распространения относятся законы отражения звука и преломления звука на границах различных сред, дифракции звука и рассеяния звука при наличии препятствий и неоднородностей в среде и неровностей на границах, законы волноводного распространения в ограниченных участках среды. Существенную роль при этом играет соотношение между длиной волны звука l и геометрическим размером D – размером источника звука или препятствия на пути волны, размером неоднородностей среды. При D>>l распространение звука вблизи препятствий происходит в основном по законам геометрической акустики (можно пользоваться законами отражения и преломления). Степень отклонения от геометрической картины распространения и необходимость учета дифракционных явлений определяются параметром , где r – расстояние от точки наблюдения до объекта, вызывающего дифракцию.

Скорость распространения УЗ-вых волн в неограниченной среде определяется характеристиками упругости и плотностью среды. В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости (дисперсия скорости звука). Уменьшение амплитуды и интенсивности УЗ-вой волны по мере ее распространения в заданном направлении, то есть затухание звука, вызывается, как и для волн любой частоты, расхождением фронта волны с удалением от источника, рассеянием и поглощением звука. На всех частотах как слышимого, так и неслышимых диапазонов имеет место так называемое «классическое» поглощение, вызванное сдвиговой вязкостью (внутренним трением) среды. Кроме того, существует дополнительное (релаксационное) поглощение, часто существенно превосходящее «классическое» поглощение.

При значительной интенсивности звуковых волн появляются нелинейные эффекты:

· нарушается принцип суперпозиции и возникает взаимодействие волн, приводящее к появлению тонов;

· изменяется форма волны, ее спектр обогащается высшими гармониками и соответственно растет поглощение;

· при достижении некоторого порогового значения интенсивности УЗ в жидкости возникает кавитация (см. ниже).

Критерием применимости законов линейной акустики и возможности пренебрежения нелинейными эффектами является: М << 1, где М = v/c, v – колебательная скорость частиц в волне, с – скорость распространения волны.

Параметр М называется «число Маха».

Пецифические особенности ультразвука

Хотя физическая природа УЗ и определяющие его распространение основные законы те же, что и для звуковых волн любого диапазона частот, он обладает рядом специфических особенностей. Эти особенности обусловлены относительно высокими частотами УЗ.

Малость длины волны определяет лучевой характер распространения УЗ-вых волн. Вблизи излучателя волны распространяются в виде пучков, поперечный размер которых сохраняется близким к размеру излучателя. Попадая на крупные препятствия такой пучок (УЗ луч) испытывает отражение и преломление. При попадании луча на малые препятствия возникает рассеянная волна, что позволяет обнаруживать в среде малые неоднородности (порядка десятых и сотых долей мм.). Отражение и рассеяние УЗ на неоднородностях среды позволяют формировать в оптически непрозрачных средах звуковые изображения предметов, используя звуковые фокусирующие системы, подобно тому, как это делается с помощью световых лучей.

Фокусировка УЗ позволяет не только получать звуковые изображения (системы звуковидения и акустической голографии), но и концентрировать звуковую энергию. С помощью УЗ-вых фокусирующих систем можно формировать заданные характеристики направленности излучателей и управлять ими.

Периодическое изменение показателя преломления световых волн, связанное с изменением плотности в УЗ-волне, вызывает дифракцию света на ультразвуке , наблюдаемую на частотах УЗ мегагерцевого-гигагерцевого диапазона. УЗ волну при этом можно рассматривать как дифракционную решетку.

Важнейшим нелинейным эффектом в УЗ-вом поле является кавитация – возникновение в жидкости массы пульсирующих пузырьков, заполненных паром, газом или их смесью. Сложное движение пузырьков, их схлопывание, слияние друг с другом и т.д. порождают в жидкости импульсы сжатия (микроударные волны) и микропотоки, вызывают локальное нагревание среды, ионизацию. Эти эффекты оказывают влияние на вещество: происходит разрушение находящихся в жидкости твердых тел (кавитационная эрозия ), возникает перемешивание жидкости, инициируются или ускоряются различные физические и химические процессы. Изменяя условия протекания кавитации, можно усиливать или ослаблять различные кавитационные эффекты, например с ростом частоты УЗ увеличивается роль микропотоков и уменьшается кавитационная эрозия, с увеличением давления в жидкости возрастает роль микроударных воздействий. Увеличение частоты приводит к повышению порогового значения интенсивности, соответствующей началу кавитации, которое зависит от рода жидкости, ее газосодержания, температуры и т.д.. Для воды при атмосферном давлении оно обычно составляет 0,3¸1,0 Вт/см 2 . Кавитация – сложный комплекс явлений. УЗ-вые волны, распространяющиеся в жидкости, образуют чередующиеся области высоких и низких давлений, создающих зоны высоких сжатий и зоны разрежений. В разреженной зоне гидростатическое давление понижается до такой степени, что силы, действующие на молекулы жидкости, становятся больше сил межмолекулярного сцепления. В результате резкого изменения гидростатического равновесия жидкость «разрывается», образуя многочисленные мельчайшие пузырьки газов и паров. В следующий момент, когда в жидкости наступает период высокого давления, образовавшиеся ранее пузырьки схлопываются. Процесс схлопывания пузырьков сопровождается образованием ударных волн с очень большим местным мгновенным давлением, достигающим нескольких сотен атмосфер.

Сточники и приемники ультразвука.

В природе УЗ встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т.д.), так и среди звуков животного мира. Некоторые животные пользуются УЗ-выми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока – струи газа или жидкости. Вторая группа излучателей – электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Механические излучатели.

В излучателях первого типа (механических) преобразование кинетической энергии струи (жидкости или газа) в акустическую возникает в результате периодического прерывания струи (сирена), при натекании ее на препятствия различного вида (газоструйные генераторы, свистки).

УЗ сирена – два диска с большим количеством отверстий, помещенные в камеру (рис. 1).



Поступающий под большим давлением в камеру воздух выходит через отверстия обоих дисков. При вращении диска-ротора (3) его отверстия будут совпадать с отверстиями неподвижного диска-статора (2) только в определенные моменты времени. В результате возникнут пульсации воздуха. Чем больше скорость вращения ротора, тем больше частота пульсации воздуха, которая определяется по формуле:

где N – число отверстий, равнораспределенных по окружности ротора и статора; w - угловая скорость ротора.

Давление в камере сирен обычно составляет от 0,1 до 5,0 кгс/см 2 . Верхний предел частоты УЗ, излучаемого сиренами не превышает 40¸50 кГц, однако известны конструкции с верхним пределом 500 кГц. КПД генераторов не превышает 60%. Так как источником излучаемого сиреной звука являются импульсы газа, вытекающего из отверстий, частотный спектр сирен определяется формой этих импульсов. Для получения синусоидальных колебаний используют сирены с круглыми отверстиями, расстояния между которыми равны их диаметру. При отверстиях прямоугольной формы, отстоящих друг от друга на ширину отверстия, форма импульса треугольная. В случае применения нескольких роторов (вращающихся с разной скоростью) с отверстиями расположенными неравномерно и разной формы, можно получить шумовой сигнал. Акустическая мощность сирен может достигать десятков кВт. Если в поле излучения мощной сирены поместить вату, то она воспламенится, а стальные стружки нагреваются докрасна.

Принцип действия УЗ генератора-свистка почти такой же, как и обычного милицейского свистка, но размеры его значительно больше. Поток воздуха с большой скоростью разбивается об острый край внутренней полости генератора, вызывая колебания с частотой, равной собственной частоте резонатора. При помощи такого генератора можно создавать колебания с частотой до 100 Кгц при относительно небольшой мощности. Для получения больших мощностей применяют газоструйные генераторы, у которых скорость истечения газа выше. Жидкостные генераторы применяют для излучения УЗ в жидкость. В жидкостных генераторах (рис. 2) в качестве резонансной системы служит двустороннее острие, в котором возбуждаются изгибные колебания.



Струя жидкости, выходя из сопла с большой скоростью, разбивается об острый край пластинки, по обе стороны которой возникают завихрения, вызывающие изменения давления с большой частотой.

Для работы жидкостного (гидродинамического) генератора необходимо избыточное давление жидкости 5 кГ/см 2 . частота колебаний такого генератора определяется соотношением:

где v – скорость жидкости, вытекающей из сопла; d – расстояние между острием и соплом.

Гидродинамические излучатели в жидкости дают относительно дешевую УЗ-вую энергию на частотах до 30¸40 кГц при интенсивности в непосредственной близости от излучателя до нескольких Вт/см 2 .

Механические излучатели используются в низкочастотном диапазоне УЗ и в диапазоне звуковых волн. Они относительно просты по конструкции и в эксплуатации, их изготовление не дорого, но они не могут создавать монохроматическое излучение и тем более излучать сигналы строго заданной формы. Такие излучатели отличаются нестабильностью частоты и амплитуды, однако при излучении в газовых средах они имеют относительно высокую эффективность и мощность излучения: их кпд составляет от нескольких % до 50%, мощность от нескольких ватт до десятков кВт.

Электроакустические преобразователи.

Излучатели второго типа основываются на различных физических эффектах электромеханического преобразования. Как правило, они линейны, то есть воспроизводят по форме возбуждающий электрический сигнал. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магнитострикционные преобразователи и пьезоэлектрические преобразователи. Наиболее широкое распространение получили излучатели магнитострикционного и пьезоэлектрического типов.

В 1847 г. Джоуль заметил, что ферромагнитные материалы, помещенные в магнитное поле, изменяют свои размеры. Это явление назвали магнитострикционным эффектом . Если по обмотке, наложенной на ферромагнитный стержень, пропустить переменный ток, то под воздействием изменяющегося магнитного поля стержень будет деформироваться. Никелевые сердечники, в отличии от железных, в магнитном поле укорачиваются. При пропускании переменного тока по обмотке излучателя его стержень деформируется в одном направлении при любом направлении магнитного поля. Поэтому частота механических колебаний будет вдвое больше частоты переменного тока.

Чтобы частота колебаний излучателя соответствовала частоте возбуждающего тока, в обмотку излучателя подводят постоянное напряжение поляризации. У поляризованного излучателя увеличивается амплитуда переменной магнитной индукции, что приводит к увеличению деформации сердечника и повышению мощности.

Магнитострикционный эффект используется при изготовлении УЗ-вых магнитострикционных преобразователей (рис. 3).


Эти преобразователи отличаются большими относительными деформациями, повышенной механической прочностью, малой чувствительностью к температурным воздействиям. Магнитострикционные преобразователи имеют небольшие значения электрического сопротивления, в результате чего для получения большой мощности не требуются высокие напряжения.

Чаще всего применяют преобразователи из никеля (высокая стойкость против коррозии, низкая цена). Магнитострикционные сердечники могут быть изготовлены и из ферритов. У ферритов высокое удельное сопротивление, в результате чего потери на вихревые токи в них ничтожно малы. Однако феррит – хрупкий материал, что вызывает опасность их перегрузки при большой мощности. Кпд магнитострикционных преобразователей при излучении в жидкость и твердое тело составляет 50¸90%., интенсивность излучения достигает нескольких десятков Вт/см 2 .

В 1880 году братья Жак и Пьер Кюри открыли пьезоэлектрический эффект – если деформировать пластинку кварца, то на ее гранях появляются противоположные по знаку электрические заряды. Наблюдается и обратное явление – если к электродам кварцевой пластинки подвести электрический заряд, то ее размеры уменьшатся или увеличатся в зависимости от полярности подводимого заряда. При изменении знаков приложенного напряжения кварцевая пластинка будет то сжиматься, то разжиматься, то есть она будет колебаться в такт с изменениями знаков приложенного напряжения. Изменение толщины пластинки пропорционально приложенному напряжению.

Принцип пьезоэлектрического эффекта используется при изготовлении излучателей УЗ-вых колебаний, которые преобразуют электрические колебания в механические. В качестве пьезоэлектрических материалов применяют кварц, титанат бария, фосфат аммония.

Кпд пьезоэлектрических преобразователей достигает 90%, интенсивность излучения – несколько десятков Вт/см 2 . Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрического преобразователя вогнутой формы, излучающего сходящуюся волну. В фокусе подобных концентраторов достигается интенсивность 10 5 -10 6 Вт/см 2 .

Приемники ультразвука.

В качестве приемников ультразвука на низких и средних частотах чаще всего применяют электроакустические преобразователи пьезоэлектрического типа. Такие приемники позволяют воспроизводить форму акустического сигнала, то есть временную зависимость звукового давления. В зависимости от условий применения приемники делают либо резонансными, либо широкополосными. Для получения усредненных по времени характеристик звукового поля используют термическими приемниками звука в виде покрытых звукопоглощающим веществом термопар или термисторов . Интенсивность и звуковое давление можно оценивать и оптическими методами, например по дифракции света на УЗ.

Рименение ультразвука.

Многообразные применения УЗ, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством УЗ-вых волн, второе – с активным воздействием на вещество и третье – с обработкой и передачей сигналов. При каждом конкретном применении используется УЗ определенного частотного диапазона (табл. 1). Расскажем лишь о некоторых из многочисленных областей, где нашел применение УЗ.

Ультразвуковая очистка.

Качество УЗ очистки несравнимо с другими способами. Например, при полоскании деталей на их поверхности остается до 80% загрязнений, при вибрационной очистке – около 55%, при ручной – около 20%, а при ультразвуковой – не более 0,5%. Кроме того, детали, имеющие сложную форму, труднодоступные места, хорошо можно очистить только с помощью ультразвука. Особое преимущество УЗ-вой очистки заключается в ее высокой производительности при малой затрате физического труда, возможности замены огнеопасных или дорогостоящих органических растворителей безопасными и дешевыми водными растворами щелочей, жидким фреоном и др.

Ультразвуковая очистка – сложный процесс, сочетающий местную кавитацию с действием больших ускорений в очищающей жидкости, что приводит к разрушению загрязнений. Если загрязненную деталь поместить в

Таблица 1

Применения

Частота в герцах

10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11

Получение информации

Научные исследования

в газах, жидкостях

в твердых телах

gggggggggggggggg

О свойствах и составе веществ;

о технологических процессах

в жидкостях

в твердых телах

гидролокация

УЗ дефектоскопия

контроль размеров

Медицинская диагностика

Воздействие на вещество

Коагуляция аэрозолей

Воздействие на горение

Воздействие на химические процессы

Эмульгирование

Диспергирование

Распыление

Кристаллизация

Металлизация, пайка

Механическая обработка

Пластическое деформирование

Хирургия

Обработка

сигналов

Линии задержки

Акустооптические устройства

Преобразователи сигналов в акустоэлектронике

жидкость и облучить ультразвуком, то под действием ударной волны кавитационных пузырьков поверхность детали очищается от грязи.

Серьезной проблемой является борьба с загрязнением воздуха пылью, дымом, копотью, окислами металлов и т.д. Ультразвуковой метод очистки газа и воздуха может применяться в существующих газоотводах независимо от температуры и влажности среды. Если поместить УЗ-вой излучатель в пылеосадочную камеру, то эффективность ее действия возрастает в сотни раз. В чем сущность УЗ-вой очистки воздуха? Пылинки, которые беспорядочно движутся в воздухе, под действием ультразвуковых колебаний чаще и сильнее ударяются друг о друга. При этом они сливаются и размер их увеличивается. Процесс укрупнения частиц называется коагуляцией. Улавливаются укрупненные и утяжеленные частицы специальными фильтрами.

Механическая обработка сверхтвердых

и хрупких материалов.

Если между рабочей поверхностью УЗ-вого инструмента и обрабатываемой деталью ввести абразивный материал, то при работе излучателя частицы абразива будут воздействовать на поверхность детали. Материал разрушается и удаляется при обработке под действием большого числа направленных микроударов (рис. 4).


Кинематика ультразвуковой обработки складывается из главного движения – резания, т.е. продольных колебаний инструмента, и вспомогательного движения – движения подачи. Продольные колебания являются источником энергии абразивных зерен, которые и производят разрушение обрабатываемого материала. Вспомогательное движение – движение подачи – может быть продольным, поперечным и круговым. Ультразвуковая обработка обеспечивает большую точность – от 50 до 1 мк в зависимости от зернистости абразива. Применяя инструменты различной формы можно выполнять не только отверстия, но и сложные вырезы. Кроме того, можно вырезать криволинейные оси, изготавливать матрицы, шлифовать, гравировать и даже сверлить алмаз. Материалы, используемые в качестве абразива – алмаз, корунд, кремень, кварцевый песок.

Ультразвуковая сварка.

Из существующих методов ни один не подходит для сварки разнородных металлов или если к толстым деталям нужно приварить тонкие пластины. В этом случае УЗ-вая сварка незаменима. Ее иногда называют холодной, потому что детали соединяются в холодном состоянии. Окончательного представления о механизме образования соединений при УЗ-вой сварке нет. В процессе сварки после ввода ультразвуковых колебаний между свариваемыми пластинами образуется слой высокопластичного металла, при этом пластины очень легко поворачиваются вокруг вертикальной оси на любой угол. Но как только ультразвуковое излучение прекращают, происходит мгновенное «схватывание» пластин.

Ультразвуковая сварка происходит при температуре значительно меньшей температуры плавления, поэтому соединение деталей происходит в твердом состоянии. С помощью УЗ можно сваривать многие металлы и сплавы (медь, молибден, тантал, титан, многие стали). Наилучшие результаты получаются при сварке тонколистовых разнородных металлов и приварке к толстым деталям тонких листов. При УЗ-вой сварке минимально изменяются свойства металла в зоне сварки. Требования к качеству подготовки поверхности значительно ниже, чем при других методах сварки. УЗ сварке хорошо поддаются и неметаллические материалы (пластмасса, полимеры)

Ультразвуковая пайка и лужение.

В промышленности все большее значение приобретает УЗ-вая пайка и лужение алюминия, нержавеющей стали и других материалов. Трудность пайки алюминия состоит в том, что его поверхность всегда покрыта тугоплавкой пленкой окиси алюминия, которая образуется практически мгновенно при соприкосновении металла с кислородом воздуха. Эта пленка препятствует соприкосновению расплавленного припоя с поверхностью алюминия.

В настоящее время одним из эффективных методов пайки алюминия является ультразвуковой, пайка с применением УЗ производится без флюса. Введение механических колебаний ультразвуковой частоты в расплавленный припой в процессе пайки способствует механическому разрушению окисной пленки и облегчает смачивание припоем поверхности.

Принцип УЗ-вой пайки алюминия заключается в следующем. Между паяльником и деталью создается слой жидкого расплавленного припоя. Под действием УЗ-вых колебаний в припое возникает кавитация, разрушающая оксидную пленку. Перед пайкой детали нагревают до температуры, превышающей температуру плавления припоя. Большим преимуществом метода является то, что его можно с успехом применять для пайки керамики и стекла.

Ускорение производственных процессов

с помощью ультразвука.

¾ Применение ультразвука позволяет значительно ускорить смешивание различных жидкостей и получить устойчивые эмульсии (даже таких как вода и ртуть).

¾ Воздействуя УЗ-выми колебаниями большой интенсивности на жидкости, можно получать тонкодисперсные аэрозоли высокой плотности.

¾ Сравнительно недавно начали применять УЗ для пропитки электротехнических намоточных изделий. Применение УЗ позволяет сократить время пропитки в 3¸5 раз и заменить 2-3 кратную пропитку одноразовой.

¾ Под действием УЗ значительно ускоряется процесс гальванического осаждения металлов и сплавов.

¾ Если в расплавленный металл вводить УЗ-вые колебания, заметно измельчается зерно, уменьшается пористость.

¾ Ультразвук применяется при обработке металлов и сплавов в твердом состоянии, что приводит к «разрыхлению» структуры и к искусственному их старению.

¾ УЗ при прессовании металлических порошков обеспечивает получение прессованных изделий более высокой плотности и стабильности размеров.

Ультразвуковая дефектоскопия.

Ультразвуковая дефектоскопия – один из методов неразрушающего контроля. Свойство УЗ распространяться в однородной среде направленно и без существенных затуханий, а на границе раздела двух сред (например, металл – воздух) почти полностью отражаться позволило применить УЗ-вые колебания для выявления дефектов (раковины, трещины, расслоения и т.п.) в металлических деталях без их разрушения.

При помощи УЗ можно проверять детали больших размеров, так как глубина проникновения УЗ в металле достигает 8¸10 м. Кроме того, ультразвуком можно обнаружить очень мелкие дефекты (до 10 -6 мм).

УЗ-вые дефектоскопы позволяют выявлять не только образовавшиеся дефекты, но и определять момент повышенной усталости металла.

Существует несколько методов ультразвуковой дефектоскопии, основными из которых являются теневой, импульсный, резонансный, метод структурного анализа, ультразвуковой визуализации.

Теневой метод основан на ослаблении проходящих УЗ-вых волн при наличии внутри детали дефектов, создающих УЗ-вую тень. При этом методе используется два преобразователя. Один из них излучает ультразвуковые колебания, другой принимает их (рис. 5). Теневой метод малочувствителен, дефект можно обнаружить если вызываемое им изменение сигнала составляет не менее 15¸20%. Существенный недостаток теневого метода в том, что он не позволяет определить на какой глубине находится дефект.

Импульсный метод УЗ-вой дефектоскопии основан на явлении отражения ультразвуковых волн. Принцип действия импульсного дефектоскопа показан на рис. 6. Высокочастотный генератор вырабатывает кратковременные импульсы. Посланный излучателем импульс, отразившись, возвращается обратно к преобразователю, который в это время работает на прием. С преобразователя сигнал поступает на усилитель, а затем на отклоняющие пластины электроннолучевой трубки. Для получения на экране трубки изображения зондирующих и отраженных импульсов предусмотрен генератор развертки. Работой высокочастотного генератора управляет синхронизатор, который с определенной частотой формирует высокочастотные импульсы. Частота посылки импульсов может изменяться с таким расчетом, чтобы отраженный импульс приходил к преобразователю раньше посылки следующего импульса.

Импульсный метод позволяет исследовать изделия при одностороннем доступе к ним. Метод обладает повышенной чувствительностью, отражение даже 1% УЗ-вой энергии будет замечено. Преимущество импульсного метода состоит еще и в том, что он позволяет определить на какой глубине находится дефект.

Ультразвук в радиоэлектронике.

В радиоэлектронике часто возникает необходимость задержать один электрический сигнал относительно другого. Удачное решение нашли ученые, предложив ультразвуковые линии задержки (ЛЗ). Действие их основано на преобразовании электрических импульсов в импульсы УЗ-вых механических колебаний, скорость распространения которых значительно меньше скорости распространения электромагнитных колебаний. После обратного преобразования механических колебаний в электрические импульс напряжения на выходе линии будет задержан относительно входного импульса.

Для преобразования электрических колебаний в механические и обратно используют магнитострикционные и пьезоэлектрические преобразователи. Соответственно этому ЛЗ подразделяются на магнитострикционные и пьезоэлектрические.

Магнитострикционная ЛЗ состоит из входного и выходного преобразователей, магнитов, звукопровода и поглотителей.

Входной преобразователь состоит из катушки, по которой протекает ток входного сигнала, участка звукопровода из магнитострикционного материала, в котором возникают механические колебания УЗ-вой частоты, и магнита, создающего постоянное подмагничивание зоны преобразования. Выходной преобразователь по устройству почти не отличается от входного.

Звукопровод представляет собой стержень из магнитострикционного материала, в котором возбуждаются УЗ-вые колебания, распространяющиеся со скоростью примерно 5000 м/с. для задержки импульса, например, на 100 мкс длина звукопровода должна быть около 43 см. Магнит нужен для создания начальной магнитной индукции и подмагничивания зоны преобразования.

Принцип действия магнитострикционной ЛЗ основан на изменении размеров ферромагнитных материалов под воздействием магнитного поля. Механическое возмущение, вызванное магнитным полем катушки входного преобразователя, передается по звокопроводу и, дойдя до катушки выходного преобразователя, наводит в ней электродвижущую силу.

Пьезоэлектрические ЛЗ устроены следующим образом. На пути электрического сигнала ставят пьезоэлектрический преобразователь (пластинку кварца), который жестко соединен с металлическим стержнем (звукопроводом). Ко второму концу стержня прикреплен второй пьезоэлектрический преобразователь. Сигнал, подойдя к входному преобразователю, вызывает механические колебания УЗ-вой частоты, которые затем распространяются в звукопроводе. Достигнув второго преобразователя, УЗ-вые колебания вновь преобразуются в электрические. Но так как скорость распространения УЗ в звукопроводе значительно меньше скорости меньше скорости распространения электрического сигнала, сигнал, на пути которого был звукопровод, отстает от другого на величину, равную разности скорости распространения УЗ и электромагнитных сигналов на определенном участке.

Ультразвук в медицине.

Применение УЗ для активного воздействия на живой организм в медицине основывается на эффектах, возникающих в биологических тканях при прохождении через них УЗ-вых волн. Колебания частиц среды в волне вызывают своеобразный микромассаж тканей, поглощение УЗ – локальное нагревание их. Одновременно под действием УЗ происходят физико-химические превращения в биологических средах. При умеренной интенсивности звука эти явления не вызывают необратимых повреждений, а лишь улучшают обмен веществ и, следовательно, способствуют жизнедеятельности организма. Эти явления находят применение в УЗ-вой терапии (интенсивность УЗ до 1 Вт/см 2). При больших интенсивностях сильное нагревание и кавитация вызывают разрушение тканей. Этот эффект находит применение в УЗ-вой хирургии . Для хирургических операций используют фокусированный УЗ, который позволяет производить локальные разрушения в глубинных структурах, например мозга, без повреждения окружающих тканей (интенсивность УЗ достигает сотен и даже тысяч Вт/см 2). В хирургии применяют также УЗ-вые инструменты, рабочий конец которых имеет вид скальпеля, пилки, иглы и т.п. Наложение УЗ-вых колебаний на такие, обычные для хирургии, инструменты придает им новые качества, существенно снижая требуемое усилие и, следовательно, травматизм операции; кроме того, проявляется кровоостанавливающий и обезболивающий эффект. Контактное воздействие тупым УЗ-вым инструментом применяется для разрушения некоторых новообразований.

Воздействие мощного УЗ на биологические ткани применяется для разрушения микроорганизмов в процессах стерилизации медицинских инструментов и лекарственных веществ.

УЗ нашел применение в зубоврачебной практике для снятия зубного камня. Он позволяет безболезненно, бескровно, быстро удалять зубной камень и налет с зубов. При этом не травмируется слизистая полость рта и обеззараживаются «карманы» полости, а пациент вместо боли испытывает ощущение теплоты.

Литература.

1. И.П. Голямина. Ультразвук. – М.: Советская энциклопедия, 1979.

2. И.Г. Хорбенко. В мире неслышимых звуков. – М. : Машиностроение, 1971.

3. В.П. Северденко, В.В. Клубович. Применение ультразвука в промышленности. – Минск: Наука и техника, 1967.


Релаксация акустическая – внутренние процессы восстановления термодинамического равновесия среды, нарушаемого сжатиями и разрежениями в УЗ-вой волне. Согласно термодинамическому принципу равномерного распределения энергии по степеням свободы, энергия поступательного движения в звуковой волне переходит на внутренние степени свободы, возбуждая их, в результате чего уменьшается энергия, приходящаяся на поступательное движение. Поэтому релаксация всегда сопровождается поглощением звука, а также дисперсией скорости звука.

В монохроматической волне изменение колеблющейся величины W во времени происходит по закону синуса или косинуса и описывается в каждой точке формулой: .

Различают два вида магнитострикции: линейная, при которой геометрические размеры тела изменяются в направлении приложенного поля, и объемная, при которой геометрические размеры тела изменяются во всех направлениях. Линейная магнитострикция наблюдается при значительно меньших напряженностях поля, чем объемная. Поэтому практически в магнитострикционных преобразователях используется линейная магнитострикция.

Термистор – резистор, сопротивление которого, зависит от температуры. Термопара – два проводника из разных металлов, соединенных вместе. На концах проводников возникает ЭДС пропорционально температуре.

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

, (3)

Для поперечных волн она определяется по формуле

Дисперсия звука - зависимость фазовой скорости монохроматической звуковых волн от их частоты . Дисперсия скорости звука может быть обусловлена как физическим свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны .

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны .

Волна Лэмба - упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

, (5)

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова - вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения , понимая под этим удельную мощность излучателя , т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Интенсивность звука измеряется в системе единиц СИ в Вт/м 2 . В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик - от пороговых значений ~ 10 -12 Вт/м 2 до сотен кВт/м 2 в фокусе ультразвуковых концентраторов.

Таблица 1 - Свойства некоторых распространенных материалов

Материал Плотность, кг/м 3 Скорость продольной волны, м/c Скорость поперечной волны, м/c , 10 3 кг/(м 2 *с)
Акрил 1180 2670 - 3,15
Воздух 0,1 330 - 0,00033
Алюминий 2700 6320 3130 17,064
Латунь 8100 4430 2120 35,883
Медь 8900 4700 2260 41,830
Стекло 3600 4260 2560 15,336
Никель 8800 5630 2960 49,544
Полиамид (нейлон) 1100 2620 1080 2,882
Сталь (низколегированный сплав) 7850 5940 3250 46,629
Титан 4540 6230 3180 26,284
Вольфрам 19100 5460 2620 104,286
Вода (293К) 1000 1480 - 1,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т.е. . Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r 2 , амплитуда волны убывает пропорционально , а для цилиндрической волны - пропорционально .

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле

, (6)

Коэффициент затухания от времени определяется

, (7)

Для измерения коэффициента также используют единицу дБ/м, в этом случае

, (8)

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике .

, (9)

  • где A 1 – амплитуда первого сигнала,
  • A 2 – амплитуда второго сигнала

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

Коэффициенты отражения и прохождения будут определяться следующим образом

, (12)

, (13)

  • где D – коэффициент прохождения звукового давления

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z 1 >Z 2 , то при отражении фаза волны изменяется на 180˚ .

Коэффициент пропускания энергии из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

, (14)

Интерференция и дифракция ультразвуковых волн

Интерференция звука - неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции - сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука - отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука - расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны , степень отклонений от геометрической картины зависит от значения волнового параметра

, (15)

  • где D - поперечник объекта (например, поперечник ультразвукового излучателя или препятствия),
  • r - расстояние точки наблюдения от этого объекта

Излучатели ультразвука

Излучатели ультразвука - устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию энергию какого-либо другого вида.

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи . В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях , магнитострикционных преобразователях , электродинамических излучателях , электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса : они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости .

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр , излучаемая мощность звука , направленность излучения . В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса , границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f 0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Чувствительность излучателя ультразвука - отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью , т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м 2 .

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия , представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля .

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

, (17)

Однако поскольку D обычно значительно больше , уравнение можно упростить и привести к виду

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. связано с получением информации посредством ультразвуковых волн, - с активным воздействием на вещество и - с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.

Ультразвук - упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.

Источники Ультразвука

Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Наиболее распространены керамические преобразователи из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвукового пучка, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.Примеры излучателей:свисток Гальтона,жидкостный и ультразвуковой свисток,сирена.

Распространение ультразвука.

Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной

скоростью.

Дифракция, интерференция

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

Поглощение ультразвуковых волн

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань - 6,8 см; мышечная - 3,6 см; жировая и мышечная ткани вместе - 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот - это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Глубина проникновения ультразвуковых волн

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Преломление ультразвуковых волн

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис - дерма - фасция - мышца) будет наблюдаться преломление ультразвуковых волн.

Отражение ультразвуковых волн

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1-0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость - окружающие её ткани и ткани - воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца - надкостница - кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком. Ультразвук сильно поглощается газами и во много раз слабее - твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны. Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение. Все это позволяет широко использовать ультразвук в технике.

Описанные свойства ультразвука используются в эхолоте - приборе для определения глубины моря (рис. 25.11). Корабль снабжают источником и приемником ультразвука определенной частоты. Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде, с помощью формулы (25.3) определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на

пути корабля в горизонтальном направлении. При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины. -

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость. Это используют для ускорения самых различных технологических процессов (например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий - взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волнами или инфразвуком. Они также не вызывают звуковых ощущений, Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении, Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.

Энциклопедичный YouTube

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты , дельфины , летучие мыши , грызуны , долгопяты).

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон .

Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку.

Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Сирена - механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.

Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей (осаждение туманов), разрушение пены, ускорение процессов массо- и теплообмена и т. д.).

Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией , ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.

Ультразвук обладает следующими эффектами:

  • противовоспалительным, рассасывающим действиями;
  • анальгезирующим, эспазмолитическим действиями;
  • кавитационным усилением проницаемости кожи. [ ]

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. [ ] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоту и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учёта воды и теплоносителя с 1960-х годов в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднён, при соединении разнородных металлов, металлов с прочными оксидными плёнками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.), при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.



Понравилась статья? Поделитесь с друзьями!