Искровой разряд в газах. Разряды

Молния - это искровой разряд электростатического заряда кучевого облака, сопровождающийся ослепительной вспышкой и резким звуком (громом). Таким образом, следует рассмотреть подробно классификацию разрядов и понять, почему же сверкает молния.

Виды разрядов

темный (таунсендовский);

коронный;

искровой.

Искровой разряд

Этот разряд характеризуется прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. Внешне искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга. Эти полоски называют искровыми каналами. Они начинаются как от положительных, так и от отрицательных, а также от любой точки между ними. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательных - диффузные края и более мелкое ветвление.

Т.к. искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. (Для сухого воздуха, например, при давлении 1 атм. и расстоянии между электродами 10 мм, пробивное напряжение 30 кВ.) Но после того как разрядный промежуток "искровым" каналом, сопротивление промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное сопротивление. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает расти до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния. Например, для воздуха при нормальных условиях Ек3*106 В/м.

Величина Ек увеличивается с увеличением давления. Отношение критической напряженности поле к давлению газа р для данного газа остается приблизительным в широкой области изменения давления: Ек/рconst.

Время нарастания напряжения тем больше, чем больше емкость С между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последующими искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При большой емкости С канал искры ярко светится и имеет вид широких полос. То же самое происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или о конденсированной искре. Максимальная сила тока в импульсе, при искровом разряде, меняется в широких пределах, в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника, искровой разряд переходит в дуговой разряд.

В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе - образование цилиндрической ударной волны, температура на фронте которой ~104 К. Происходит быстрое расширение канала искры, со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновение ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты в случае молний.

В момент существования канала, особенно при высоких давлениях, наблюдается более яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала имеет максимум в его центре.

Рассмотрим механизм искрового разряда.

В настоящее время общепринятой считается так называемая стримерная теория искрового разряда, подтвержденная прямыми опытами. Качественно она объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной. Если вблизи катода зародилась электронная лавина, то на ее пути проходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скорость света, сами производят ионизацию газа, и дают начало первым электронным лавинам. Таким путем во всем объеме газа появляются слабо святящиеся скопления ионизированного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояний от катода к аноду. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении.

Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целые лавины быстрых электронов, образующие у самого "дна" тучи, плазменные "нити" - стример.

Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому в последствии пройдет импульс основного тока. Этот развивающийся от "дна" тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером. Дело в том, что канал формируется не плавно, а скачками - "ступенями".

Почему в движении лидера наступают паузы и притом относительно регулярные - точно неизвестно. Существует несколько теорий ступенчатых лидеров.

В 1938 году Шонланд выдвинул два возможных объяснения задержки, которая вызывает ступенчатый характер лидера. Согласно одному из них, должно происходить движение электронов вниз по каналу ведущего стримера (пилота). Однако часть электронов захватывается атомами и положительно заряженными ионами, так что требуется некоторое время для поступления новых продвигающихся электронов, прежде чем возникнет градиент потенциала, достаточный для того, чтобы ток продолжался. Согласно другой точке зрения, время требуется для того, чтобы положительно заряженные ионы скопились под головкой канала лидера и, таким образом, создали на ней достаточный градиент потенциала. В 1944 году Брюс предложил иное объяснение, в основе которого лежит перерастание тлеющего разряда в дуговой. Он рассмотрел "коронный разряд", аналогичный разряду острия, существующий вокруг канала лидера не только на головке канала, но и по всей его длине. Он дал объяснение тому, что условия для существования дугового разряда будут устанавливаться на некоторое время после того, как канал разовьется на определенное расстояние и, следовательно, возникнут ступени. Это явление еще до конца не изучено и конкретной теории пока нет. А вот физические процессы, происходящие вблизи головки лидера, вполне понятны. Напряженность поля под тучей достаточно велика - она составляет B/м; в области пространства непосредственно перед головкой лидера она еще больше. Увеличение напряженности поля в этой области хорошо объясняет рис.4, где штриховыми кривыми показаны сечения эквипотенциальных поверхностей, а сплошными кривыми - лини напряженности поля. В сильном электрическом поле вблизи головки лидера происходит интенсивная ионизация атомов и молекул воздуха. Она происходит за счет, во-первых, бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (так называемая ударная ионизация), и, во-вторых, поглощение атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация). Вследствие интенсивной ионизации встречающихся на пути лидера атомов и молекул воздуха плазменный канал растет, лидер движется к поверхности земли.

С учетом остановок по пути лидеру, чтобы достигнуть земли, потребовалось 10...20 мс при расстоянии 1 км между тучей и земной поверхностью. Теперь тучу соединяет с землей плазменный канал, прекрасно проводящий ток. Канал ионизированного газа как бы замкнул тучу с землей накоротко. На этом первая стадия развития начального импульса заканчивается.

Вторая стадия протекает быстро и мощно. По проложенному лидером пути устремляется основной ток. Импульс тока длится примерно 0,1мс. Сила тока достигает значений порядка А. Выделяется значительное количество энергии (до Дж). Температура газа в канале достигает. Именно в этот момент рождается тот необычайно яркий свет, который мы наблюдаем при разряде молнии, и возникает гром, вызванный внезапным расширением внезапно нагретого газа.

Существенно, что и свечение, и разогрев плазменного канала развиваются в направлении от земли к туче, т.е. снизу вверх. Для объяснения этого явления разобьем условно весь канал на несколько частей. Как только канал образовался (головка лидера достигла земли), вниз соскакивают прежде всего электроны, которые находились в самой нижней его части; поэтому нижняя часть канала первой начинает светиться и разогреваться. Затем к земле устремляются электроны из следующей (более высоко находящейся части канала); начинаются свечение и разогрев этой части. И так постепенно - от низа до верха - в движение к земле включаются все новые и новые электроны; в результате свечение и разогрев канала распространяются в направлении снизу вверх.

После того, как прошел импульс основного тока, наступает пауза длительностью от 10 до 50мс. За это время канал практически гаснет, его температура падает, степень ионизации канала существенно уменьшается.

Однако в туче еще сохранился большой заряд, поэтому новый лидер устремляется из тучи к земле, готовя дорогу для нового импульса тока. Лидеры второго и последующих ударов являются не ступенчатыми, а стреловидными. Стреловидные лидеры аналогичны ступеням ступенчатого лидера. Однако поскольку ионизированный канал уже существует, необходимость в пилоте и ступенях отпадает. Так как ионизация в канале стреловидного лидера "старше", чем у ступенчатого лидера, рекомбинация и диффузия у носителей носителей заряда происходят интенсивнее, а поэтому и степень ионизации в канале стреловидного лидера ниже. В результате скорость стреловидного лидера меньше скорости отдельных ступеней ступенчатого лидера, но больше скорости пилота. Значения скорости стреловидного лидера составляют от до м/с.

Если между последующими ударами молнии пройдет больше времени, чем обычно, то степень ионизации может быть настолько низкой, особенно в нижней части канала, что возникает необходимость в новом пилоте для повторной ионизации воздуха. Это объясняет отдельные случаи образования ступеней на нижних концах лидеров, предшествующих не первому, а последующим главным ударам молнии.

Как говорилось выше, новый лидер идет по пути, который был проторен начальным лидером. Он без остановки (1мс) пробегает весь путь сверху до низу. И снова следует мощный импульс основного тока. После очередной паузы все повторяется. В итоге высвечиваются несколько мощных импульсов, которые мы естественно, воспринимаем как единый разряд молнии, как единую яркую вспышку.

Основные условия на входе в систему

Расход (Нм3/ч) 140,544

Расход (кг/ч) 192,000

H2O в газе (% объема) 2.3

CO2 в газе (% объема) 12.4

O2 в газе (% объема) 3.7

Температура (°C) 270

Время работы (часов в год) 8,760

Проектное рабочее давление Положительное

Пылевая нагрузка на входе в систему PM (мг/Нм3) 512

Гарантированный уровень содержания пыли на выходе PM (мг/Нм3) 10

Эффективность удаления пыли системой PM (%) 98.05

Прочее

Источник загрязнения кат крекинг

Ожидаемое потребление энергии (кВт) 136

Потребление полной нагрузки (кВт) 279

Общая потеря давления (мм в ст)

Объем поставки

Электрофильтр (электростатический осадитель):

Мы предлагаем Вам один модульный электрофильтр модели 39R-1330-3712P, включающий в себя все пластины, разрядные электроды, секции крыши, изоляционные отсеки, дверцы доступа, все внутренние компоненты и источники питания для создания полного модуля контроля загрязнения воздуха.

Электростатический осадитель будет иметь следующие конструктивные особенности:

Падение давления (мм в ст) 12,7

Проектная температура конструкции (гр С) 371

Проектное давление конструкции (мм в ст) +/- 890

Объем бункера (м3) 152

Кл- во бункеров 3

Размеры горловины 457 x 864

Кол-во газовых проходов 39

Выходное напряжение трансформатора (кВ) 55

Выходной ток трансформатора (ма) 1100

Кол-во трансформаторов 3


Осадительные пластины нового более тяжелого конструкторского стиля из сплошных стальных листов толщиной не менее 18 мм. Листы имеют более жесткий рельеф жесткости в форме коробки усиленной ребрами жесткости, которые формируют плавное течение газа на поверхности пластины, чтобы свести к минимуму повторный его захват. Как верхние, так и нижние направляющие, ребра жесткости и крепления будут обеспечивать выравнивание пластин, компенсируя тепловое расширение. Пластины будут рассчитаны на максимальную температуру до 371 ° С

Конструкцией предусмотрены электромагнитные подъемники встряхиватели с гравитационным воздействием. Системы встряхивания будут организованы для автоматической работы и будут направлены на минимизацию рециркуляции частиц. Рабочие параметры встряхивателя будут иметь регулируемые характеристики частоты и интенсивности.

В конструкции установлены жёсткие электроды, которые будут изготовлены из бесшовной трубки толщиной стенки 1,7 мм с равномерно распределенными коронирующими штырями, приваренными к трубе. Электроды стабилизированы по уровню для работы их во всех диапазонах температур работы осадителя.

Каждая рама разрядного электрода будет вибрировать индивидуально, и система будет сконструирована таким образом, чтобы можно было варьировать как длительность, так и частоту вибрации.

Осадитель оборудован ступенчатыми трансформаторами/ выпрямителями. Каждый комплект установлен наружи, оснащен масляной изоляцией, выпрямителем охлаждаются воздухом. Трансформатор и выпрямители находятся в едином резервуаре.

Трансформатор будет снабжен заземляющим переключателем и блокировкой клавиш. Каждый комплект будет рассчитан на температуру макс + 45 градусов C (при максимальной температуре окружающей среды +50 градусов C).

Изоляторы высокого напряжения цилиндрические, под сжимающей нагрузкой.

Изоляторы фарфоровые, глазурованные внутри и снаружи и имеют выводы заземления. Изоляторы расположены вне зоны обработки газа и очищаются продувочным воздухом.

Осадитель оснащен предохранительными замками с последовательным расположением клавиш для предотвращения доступа к любому высоковольтному оборудованию без блокировки источника питания и заземления высоковольтного оборудования. Следующее оборудование будет блокировано: все дверцы доступа для быстрого открытия осадителя, трансформатора / выпрямителя и высоковольтные выключатели.

Объемом поставки предусмотрены сварные стойкие к атмосферным воздействиям индивидуальные изоляционные отсеки для изоляторов. Изоляционные отсеки будут доступны обслуживанию дверями с предохранительными блокировками для предотвращения доступа ко всем областям высокого напряжения, за исключением случаев, когда осадитель обесточивается и заземляется.

Корпус электростатического осадителя будет изготовлен из стали ASTM A-36 толщиной 4,8 мм с внешними конструктивными элементами жесткости ASTM A-36, которые усиливают конструкцию противостоять внутреннему давлению, ветру, прочих нагрузок. Корпус уплотнен сваркой с образованием полностью газонепроницаемой структуры.

Осадитель оснащен бункерами с поперечным лотком. Каждый бункер изготовлен из стали ASTM A-36 толщиной 3,8 мм, котрый усилен ребрами жесткости из ASTM A-36. Каждый бункер спроектирован так, чтобы выдержать его вес, когда он заполнен частицами. Плотность частицы составляет 1041 кг/м3 для структурного просеивания и 320 кг/м3 для размера емкости бункера. Кроме того, бункеры будут иметь достаточную емкость для хранения частиц, собранных в течение минимального периода в 12 часов работы. Сторона будет наклонена, чтобы обеспечить минимальный угол стенки бункера, равный 60 градусам от горизонтали. Конечный угол будет регулироваться таким образом, чтобы обеспечить минимальный угол наклона бункера 55 градусов.

Опоры осадителя: Электрофильтр будет включать в себя все стальные конструкции с самосмазывающимися скользящими пластинами между осадителем и опорной конструкцией. Конструкция будет спроектирована таким образом, чтобы обеспечить зазор 2438 мм – 0 мм между разгрузкой бункера и землей.

Патрубки: Осадитель оснащен фланцевыми впускными и выпускными патрубками. Патрубки изготовлены из стали ASTM A-36 с внешними ребрами жесткости.

Входной патрубок: входной патрубок горизонтальный входной пирамидный тип с нижним углом патрубка 45 градусов от горизонтали. Впускное сопло включает в себя три распределительных устройства для обеспечения равномерного потока через осадитель. Организация внешнего доступа в патрубок не требуется.

Выходной патрубок: выходной патрубок представляет собой горизонтальный пирамидный тип с нижним углом патрубка 60 ° от горизонтали. Выпускной патрубок включает в себя устройство распределения потока, обеспечивающее равномерный поток через электрофильтр. Доступ не требуется.

Термоизоляция и внешнее покрытие: производитель обеспечит заводскую термоизоляцию электростатического осадителя (включая корпус, бункер, впускные и выпускные патрубки). Изоляция будет состоять из 76 мм толщины 128 кг/м3 плотности минеральной ваты на всех поверхностях, кроме крыши электростатического осадителя. Крыша осадителя будет изолирована 152 мм из 128 кг/м3 плотности минеральной ваты плюс 51 мм стекловолоконной изоляцией над ребрами жесткости, а затем закрыта 6,4 мм толщиной кожухом «клетчатая пластина.

Изоляция на впускном, выпускном патрубке и сторонах электрофильтра будет покрыта неокрашенным алюминиевым листом толщиной 0,8 мм тип 3003, 1 х 4 коробчатым ребристым алюминиевым листом или окрашенной гофрированной сталью. Листы будут установлены вертикально и будут перекрывать одной секцией все швы. Термоизоляция бункеров будет покрыта неокрашенным алюминиевым листом толщиной 0,8 мм тип 3003, 1 х 4 коробчатым ребристым алюминиевым листом или окрашенной гофрированной сталью. Все кровельные стыки также будут покрыты плоскими материалами.

Материал покрытия будут крепиться с помощью TEK № 4.5 12-24 x 1¼ "Климатические крепежные винты с неопреновыми шайбами. Все соединения между листами и листами будут выполнены с помощью штифтов ¼ - 14 x 7/8" с неопреновыми шайбами. Все кровельные швы будут герметизированы прозрачным силиконовым герметиком.

Покраска: Завод производитель окрасит структурные опоры, люки доступа, изоляционные отсеки, поручни и внешнюю поверхность крыши одним слоем красной грунтовки и одним слоем промышленной краски с эмалевым покрытием. Все горячие металлические поверхности, которые будут открыты после завершения термоизоляции, будут окрашены высокотемпературной черной краской. Все лестницы, платформы (включая опоры) и перила будут окрашены желтой эмалью для безопасности.

ЭЛЕКТРИЧЕСКОЕ УПРАВЛЕНИЕ: Следующее электрическое оборудование управления будет предоставлено в проекте.

Класс защиты Оборудования на крыше: Установлен 4 класс защиты в соответствии с EEMAC для оборудования на крыше осадителя, а именно щита управления встряхивателя пластин осаждения и щита управления вибратора электродов.

Панель управления продувочной воздуходувкой: панель управления продувочной воздуходувкой класса защиты 4 по EEMAC, установленная на крыше, будет оснащена встроенным стартером и управлением пуском/ остановки.

Контроллер T/R: Каждый трансформатор/ выпрямитель высокого напряжения будет оборудован щитом микропроцессорного управления в щите класса защиты 12 по EEMAC, и щит должен быть установлен в операторной заказчика. Все компоненты щита будут доступны обслуживанию через откидную переднюю дверцу. Управление напряжением будет полностью автоматическим с дополнительным ручным управлением. Как ручные, так и автоматические системы обеспечат полный контроль. Подавление дуги будет обеспечиваться устройством ограничения тока, чтобы уменьшить напряжение, когда искровое состояние существует в осадителе. Контроллеры рассчитаны на максимальную температуру окружающей среды 40° С. Все корпуса щитов изготовлены из стали 2,8 мм и окрашены серой эмалью ASA 61. Мы предоставим Вам удаленный контроллер графического напряжения (GVC) для каждого трансформатора / выпрямителя. Каждый контроллер GVC будет установлен на передней панели свободно стоящего блока управления высоким напряжением. Графический контроллер обеспечивает гистограмму и цифровые считывания первичных и вторичных напряжений и токов, а также мощность кВт, искрообразование, угол проводимости SCR (Кремниевого-управляемого выпрямителя) и состояние T/ R. Этот контроллер должен быть установлен в безопасной зоне операторной заказчика. Будут предусмотрены аварийные сигналы на блоке управления GVC для перегрузки по току переменного тока, перегрева T/ R, высокой температуры SCR, дисбаланса SCR, потери памяти, минимального напряжения постоянного тока и перенапряжения постоянного тока. Главное меню предоставляется для выбора функций работы и устранения неполадок. Дисплей графического контроллера составляет 16 строк по 40 символов. Устройство может производить кривые напряжения / тока, 24-часовые трендовые графики и 30-минутные трендовые графики. Оператор может удаленно устанавливать все параметры осадителя, такие как откат, скорость подъема, ограничение тока и т. д. В строке справки доступен текст для внесения всех настроек. Каждый контроллер также будет иметь три индикатора рядом с каждым GVC. Эти индикаторы предназначены для индикации включения управления, включения HV и сигнала тревоги.

Токоограничивающий реактор: для каждого трансформатора / выпрямителя будет установлен реактор ограничения по току, класса защиты 3R по EEMAC, которые будут размещены вблизи трансформатора / выпрямителя.

Электрооборудование установленное на заводе: Мы смонтируем на заводе производителе трансформаторы/ выпрямители и установим высоковольтные шинные каналы и шинные лотки. Мы предоставим кабелепровод и проложим кабель с панели управления / распределительной панели на крыше (PCDP) для встряхивателей, вибраторов и воздуходувок. Мы смонтируем все высоковольтные изоляторы, виброизоляторы и питающие изоляторы. Мы предоставим и установим клеммные коробки для всех соединений на крыше (ответственность заказчика по исходным условиям присоединения).


Проводная обвязка

Мы используем следующие типы проводки для указанных ниже соединений (оставляем за собой право заменить провод XLPE указанный ниже):

Кабель кабельных каналов

Этот кабель используется между панелями и соединительными коробками на крыше, а также между этими распределительными коробками и терминалами встряхивателей, воздуходувок и вибраторов. Каналы будут иметь номинальную 40% -ную загрузку в соответствии с N.E.C.

THHN / MTW / THWN-2 / T90 медный проводник

Стандарты Underwriters Laboratories UL-83, UL-1063, UL-758

AWM Спецификация 1316, 1317, 1318, 1319, 1320, 1321

ASTM класс скручивания B3, B8, B787

Федеральная специификация A-A-59544

Canadian Association стандарт C22.2 No. 75

NEMA WC70/ICEA S-95-658

Institute of Electrical and Electronics Engineers ARRA 2009; Section 1605

Проводник: Многожильные медные проводники без покрытия по ASTM-B3, ASTM-B787 и ASTM-B8

Изоляция: Цветной поливинилхлорид (ПВХ), теплостойкий и влагостойкий, огнезащитный компаунд по UL-1063 и UL-83

Оболочка: Жесткое покрытие из полиамида, нейлона по UL-1063 и UL-83. Скользкая, нейлоновая наружная оболочка для легкого вытягивания. VW-1 расчитана 14 AWG - 8 AWG. Все размеры бензин и маслостойкие.

Применения: Типовой строительный провод THHN / THWN-2 предназначен для применений общего назначения, как определено Национальным электрическим кодексом (NEC). Тип THHN / THWN-2 разрешен для новой конструкции или переустановки для приложений на 600 вольт. Применения, требующие типа THHN или THWN-2: проводник подходит для использования во влажных или сухих местах при температуре не выше 90 ° C или не превышать 75 ° C в масле или хладагентах. Применения, требующие типа MTW: проводник подходит для использования в сухих местах при температуре 90 ° C или не должен превышать 60 ° C во влажных местах или при воздействии на масла или охлаждающие жидкости. Применения, требующие типа AWM: проводник подходит для использования при температурах, не превышающих 105 ° C в сухих местах.


Виброизолирующий провод

Этот провод используется между коробками соединения каналов и встряхивателями, воздуходувками и вибраторами.

SOOW / SJOOW 90ºC Черный ROHS

Инженерная спецификация/ Стандарты:

UL Стандарт 62

NEC Статья 501.140 класс I Div. 2

NEC Статья 400

CSA C22.2 No. 49

CSA FT2 испытание пламенем

EPA 40 CFR, Часть 26, подпункт C, тяжелые металлы по Табл1, TCLP метод

Проводник: 18 AWG - 10 AWG Класс K скрученная голая медь по ASTM B-174

Изоляция: EPDM

Оболочка: CPE

Легенда: SOOW E54864 (UL) 600V -40C TO 90C -- CSA LL39753 SOOW 600V -40C TO 90C FT2 Водозащита P-07-KA070018-1-MSHA

Области применения: Изготовлены с использованием передовых синтетических резиновых смесей для работы при температуре от -40 ° C до 90 ° C с отличной устойчивостью к пламени, деформации, озону, маслам, кислотам и химикатам. SOOW имеет износостойкую и маслостойкую изоляцию и кожух. SOOW является гибким при низких температурах и исключительной гибкостью в нормальных условиях для электродвигателей, портативных ламп, зарядных устройств для аккумулятора, портативных осветительных приборов и переносного оборудования. Приложение «Национальный электрический кодекс» по статье 400.

Провод для подключения панелей

Этот провод используется для подключения различных компонентов внутри панелей (переключатели, источники света, plc, блоки, предохранители, клеммы и т. Д.).

MIL-W-16878/2 Тип C провод (M16878/2 провод) / Mil-DTL-16878/2

Инженерная спецификация/ Стандарты:

UL VW-1 испытание пламенем

RoHS Hook-up Wire RoHS соответствие

MIL-W-16878/2 Тип C провод (M16878/2 провод)

Описание:

Проводник: Луженая медь, твердая и многожильная

Изоляция: Поливинилхлорид (ПВХ), цветной

Применение: соединительный провод в соответствии с UL VW-1 испытание пламенем и используется в широком диапазоне отраслей, требующих высокотемпературного провода, который также может выдерживать суровые условия. Из-за его размера, негорючих материалов и стойкости к химическим веществам, типичные применения для провода MIL-Spec включают в себя сложные применения для военной или аэрокосмической промышленности. Провод может также использоваться для внутренней проводки электронного оборудования. Провод имеет температурный диапазон от -55 ° C до + 105 ° C (M16878 / 2 типа C) и 1000 вольт. Все типы кабелей MIL Spec имеют превосходный температурный диапазон и номинальное напряжение. M16878E подключается к проводным приложениям: военная техника, провод питания, проводка электроприборов и медицинская электроника. M16878EE может применяться для электронного использования в защищенных приложениях, где встречаются высокие температуры и является высоконадежным OEM-продуктом. M16878ET используется в аэрокосмических, промышленных, военных и многих других коммерческих рынках.

Целевые показатели и гарантии

ОПРЕДЕЛЕНИЕ: Предлагаемое нами здесь оборудование при проектных условиях и входной пылевой нагрузке 512 мг/ Нм3 гарантирует содержание пыли на выходе осадителя не более 10 мг/ Нм3 что составляет 98,05 % масс входной нагрузки. Если входная удельная нагрузка превысит расчетную, эффективность 98,05% так же гарантируется; если удельная нагрузка равна или меньше расчетной, гарантируется остаточное содержание пыли 10 мг/ нм3.

НЕПРОЗРАЧНОСТЬ: Завод гарантирует среднюю непрозрачность дымового газа менее 10% в течение одного часа при работе при расчетных условиях. Прозрачность должна определяться сертифицированным устройством считывания дыма или сертифицированным монитором непрозрачности.

Квалификация тестирования частиц: Метод отбора проб твердых частиц будет осуществляться по методу № 5 Агентства по охране окружающей среды, как указано в Федеральном реестре. Частицы определяются как твердые вещества в условиях эксплуатации осадителя, которые могут быть собраны. Конденсаты сюда не включены.

Электрическая искра имеет вид тонкой, прихотливо изогнутой и ярко светящейся полоски, которая обычно сильно разветвлена (рис. 174). Этот светящийся канал искры никогда, однако, не бывает хоть сколько-нибудь похож на те остроугольные зигзаги, посредством которых принято условно изображать молнию.

Рис. 174. Характерный вид искры.

Полоска искры с огромной быстротой пронизывает разрядный промежуток, гаснет и вновь возникает. Фотографирование искры посредством камеры с быстро движущимся объективом (камеры Бейса) или с быстро движущейся пленкой показывает, что по одному и тому же каналу искры, который иногда деформируется, пробегает несколько разрядов. Для исследования отдельных стадий развития искры применяют фотозатворы, управляемые высокочастотным током и основанные на применении явления Керра (§ 95). Одно из первых исследований строения искры было выполнено проф. Рожанским в 1911 г. Рожанский производил фотографирование искры, отклоняя искру действием магнитного поля.

Пробой газа, завершающийся искровым разрядом, происходит при определенной напряженности поля, которая должна быть тем больше, чем больше плотность газа и чем меньше его начальная ионизация.

Ниже приведены числовые данные, характеризующие величину искрового промежутка в комнатном воздухе. Напряженность электрического поля близ электродов сильно зависит от кривизны

поверхности электрода, поэтому минимальные напряжения, при которых для данного расстояния между электродами начинается лавинный разряд, неодинаковы для электродов различной формы; между остриями искровой разряд начинается при более низком напряжении, чем между шарами или плрскими электродами.

Величина искрового промежутка в комнатном воздухе

(см. скан)

В комнатном воздухе обычно содержится лишь очень незначительное число ионов, примерно несколько тысяч в кубическом сантиметре (при нормальном электрическом состоянии атмосферы у поверхности земли - в среднем около 700 пар ионов в 1 см

Рис. 175. Схема развития отрицательного стримера

Когда к электродам приложено достаточно высокое напряжение, то начинается рост электронных лавин, но благодаря малому начальному числу ионов требуется время, чтобы начавшийся процесс завершился образованием искры. Если соединить электроды с источником тока высокого напряжения на чрезвычайно короткое время, то развитие электронных лабин не успеет завершиться искровым разрядом. Измерение времени, в течение которого в газе благодаря развитию лавин образуются каналы повышенной электропроводности, показало, что в данном случае большую роль играет фотонная ионизация.

На рис. 175 представлена схема, поясняющая, почему рост электропроводящего канала, или, как говорят, распространение

стримера, происходит быстрее, чем продвижение электронной лавины. На этом рисунке лавины условно показаны в виде заштрихованных конусов, а волнистыми линиями изображены пути фотонов. Нужно представить себе, что внутри каждого конуса, изображающего развивающуюся лавину, газ ионизируется ударами электронов; новоотщепленные электроны, разгоняемые полем, ионизируют встречаемые ими частицы газа, и таким образом лавинно нарастает число электронов, движущихся к аноду, и число положительных ионов, дрейфующих к катоду. Левые концы волнистых линий показывают атомы, которые были «возбуждены» ударом электрона и вслед за тем испустили фотон. Двигаясь со скоростью фотоны обгоняют лавину и в каком-то месте, которое изображено концом волнистой линии, ионизируют частицу газа. Отщепленный здесь электрон, устремляясь к аноду, порождает новую лавину далеко впереди первой лавины. Таким образом, пока первая лавина вырастает, скажем, на величину малой стрелки показанной на рис. 175, намечающийся канал повышенной электропроводности газа, т. е. стример, распространяется на величину большой стрелки показанной на том же рисунке. В следующей стадии отдельные лавины в отрицательном стримере, нагоняя друг друга, сливаются, образуя целостный канал ионизированного газа (на рисунке первая лавина уже нагнала вторую, а четвертая нагнала пятую).

Физико-математические условия, при соблюдении которых может происходить развитие стримеров, были теоретически изучены Миком и Лебом 1940 г.). Как уже было пояснено выше, отрицательный стример представляет собой, в сущности, ускоренное действием фотоионизации продвижение электронных лавин и их слияние в общий электропроводящий канал.

Совершенно иное строение и существенно иные свойства имеет положительный стример. Общей чертой его с отрицательным стримером является только фотоионизация, которая в обоих случаях играет главенствующую роль.

Положительный стример представляет собой канал газоразрядной плазмы, стремительно вырастающий от анода к катоду. На рис. 176 схематически пояснено, как происходит развитие такого канала. Возникновению положительного стримера предшествует пробег электронных лавин по газоразрядному промежутку. Они оставляют на своем пути большое число новообразованных положительных ионов, концентрация которых особенно велика там, где лавины получили свое наибольшее развитие, т. е. около анода (рис. 176, наверху слева). Если концентрация положительных ионов здесь достигает определенной величины (близкой к ионам в ), то, во-первых, обнаруживается интенсивная фотоионизация, во-вторых, электроны, освобождаемые частицами газа, поглотившими фотоны, притягиваются положительным пространственным зарядом в головную часть положительного стримера, и, в-третьих, вследствие фотоионизации концентрация положительных ионов на пути стримера к катоду возрастает. На рис. 176 пути фотонов показаны волнистыми линиями; фотоны выбрасываются в разные стороны из области положительного пространственного заряда (короткие стрелки указывают направление движения отщепленных электронов); видно, что многие электроны вовлекаются в область наибольисей концентрации положительных ионов в головную часть положительного стримера. Насыщение электронами пространства, заполненного положительными зарядами, превращает эту область в газоразрядную плазму.

(кликните для просмотра скана)

Так формируется в газе канал, обладающий высокой электропроводностью. Формирование этого канала с газоразрядной плазмой и является развитием положительного стримера (рис. 176). Если на пути прорастания этого канала в направлении к катоду в головной части стримера имеется достаточная концентрация положительных ионов, то стример продвигается с громадной скоростью. В противном случае он обрывается.

Поясненные выше схемы развития стримеров дают только приблизительное представление о подготовительной стадии искрового разряда. Действительная картина развития стримера более сложна, так как образующиеся пространственные заряды резко искажают электрическое поле, вызвавшее возникновение стримера.

В длинных газоразрядных промежутках неравномерности поля и недостаточная фотоионизация по направлению кратчайшего расстояния от головной части стримера к электроду приводят к искривлениям канала и возникновению многочисленных ответвлений.

Развитие положительных стримеров начинается у положительного электрода в местах наибольшей напряженности поля: около острых выступов, острых кромок и других неровностей поверхности анода. Поэтому при разряде между острием и диском часто наблюдаются искры, соединяющие положительное острие с центром отрицательного диска, и искры, соединяющие кромки положительно заряженного диска с отрицательным острием (рис. 177); в первом случае пробой происходит при меньшем напряжении.

Рис. 177. Характерный вид искрового разряда между острием и диском при большом разрядном промежутке.

Рис. 178. Фотография искры на движущейся пленке.

Деформации поля зарядами, образующимися в стримере, и сочетание сложных процессов, происходящих в стримере, приводят к тому, что искровой разряд часто развивается толчками. При этом

новый стример пробегает путь, проложенный предыдущим угасшим стримером. На рис. 178 представлена фотография единичного искрового разряда на. быстро движущейся фотопленке. Здесь видно толчкообразное развитие искры и видно, что отрицательный и положительный стримеры растут навстречу друг другу. Когда головки стримеров встречаются, образуется проводящий канал, по которому и происходит разряд.

Аналогичная, но еще более сложная картина обнаруживается при развитии молнии. Начальной стадией является развитие пилотирующего стримера молнии, свечение которого почти неуловимо. Обычно пилотирующий стример распространяется от отрицательно заряженного облака. По еще узкому каналу повышенной ионизации, образованному пилотирующим стримером молнии, устремляются со скоростью порядка тысяч километров в секунду мощные электронные лавины, создающие довольно яркое свечение. Электропроводность канала при этом чрезвычайно возрастает и сечение канала расширяется. Эту стадию называют развитием лидера молнии. При малой начальной ионизации воздуха развитие лидера происходит скачкообразно - с остановками на десятки миллисекунд через каждые его распространения (такие лидеры называют «ступенчатыми» в отличие от так называемых «стрельчатых», которые распространяются с непрерывной стремительностью).

Рис. 179. Фотография молнии на движущейся пленке. Здесь паузы между первыми ударами последняя пауза в чечетыре раза длиннее.

При приближении лидера к земле в земле индуцируются заряды противоположного знака, и от высоких зданий, молниеотводов, деревьев вырастает встречный лидер. В момент его слияния с лидером, опускающимся от облака, т. е. когда разрядный промежуток между облаком и землей оказывается замкнутым электропроводящим каналом, по этому каналу пробегает главный разряд молнии со скоростью порядка десятков тысяч километров в секунду. Если канал имел разветвления (а так обычно и бывает), то главный разряд распространяется по всем ответвлениям Диаметр основного канала

молнии обычно имеет величину 10-20 см и наиболее яркое свечение в нижней части. В канале создается повышенное давление, которое после удара молнии вызывает разрыв канала, что и порождает явление грома. Заряд, переносимый молнией, обычно составляет несколько кулонов и часто несколько десятков кулонов. Мгновенное значение величины тока молнии часто составляет десятки, а иногда и сотни тысяч амперов.

Молниевой разряд уносит заряды обычно только из некоторой части облака. К этому месту устремляются заряды из других частей облака. Поэтому чаще всего вслед за первым ударом молнии через сотые доли секунды по тому же, но иногда несколько деформированному или иначе разветвленному каналу происходят повторные удары молнии (два, три и больше); каждому из них предшествует лидер, восстанавливающий электропроводность канала.

Рис. 180. Схема грозового (кучевс-дождевого) облака.

Рис. 179 воспроизводит картину пяти ударов молнии по одному каналу, снятых на движущуюся пленку. В некоторых случаях сильный ветер так смещает канал молнии, что даже при фотографировании обычным аппаратом можно различить отдельные удары разрядов.

На рис. 180 показана схема наиболее часто встречающегося распределения зарядов в грозовом облаке. На переднем крае облака и по нижней части его обычно распределены отрицательные заряды. Здесь же имеется область положительных зарядов; положительно заряжена также вся верхняя часть облака. Направление ветра, (на рисунке оно указано стрелками), уносящего облако, обычно противоположно наземному ветру. Вначале сильный дождь уносит из облака положительный заряд, позже идет умеренный отрицательно заряженный дождь.

В отсутствие грозы электрическое поле в атмосфере направлено сверху вниз, так как земля заряжена отрицательно, а положительный заряд рассеян в атмосфере.

Когда отсутствуют возмущающие влияния, создаваемые, в частности, грозовыми облаками, напряженность электрического поля в атмосфере уменьшается с высотой. У земли напряженность электрического поля имеет порядок На высоте она равна а на высоте примерно Напряженность поля на высоте 20 км в 100 раз меньше, чем у земли.

Это быстрое уменьшение напряженности электрического поля с высотой показывает, что в сравнении с однородным полем электрическое поле в атмосфере весьма усложнено зарядами, распределенными в атмосферном воздухе.

При грозах напряженность поля в атмосфере может в 100 и 1000 раз превышать нормальную.

Под грозовым облаком направление поля чаще всего меняется на обратное, от земли к отрицательно заряженному нижнему краю облака, а напряженность поля вблизи земли перед молниевым разрядом может достигать 200-300 тысяч вольт на метр. Разность потенциалов между облаком и землей перед ударом молнии часто составляет сотни миллионов, а иногда и миллиарды вольт. Большинство ударов молний происходит от отрицательно заряженных облаков. Молнии нередко имеют в длину несколько километров. Часто молниевые разряды происходят между отдельными тучами. Наблюдались грозы, при которых насчитывалось 4-7 тысяч ударов молний за час. На земном шаре в среднем за сутки происходит около 44 тысяч гроз (единовременно в среднем около 1800 гроз) и ежеминутно происходит несколько тысяч ударов молний.

Рис. 181. Фотография шаровой молнии

В редких случаях наблюдаются молниевые разряды совершенно иного типа. На рис. 181 воспроизведена одна из фотографий шаровой молнии. По описанию наблюдателей шаровые молнии обычно имеют вид светящихся шаров диаметром около 10-20 см, а иногда и нескольких метров. Шаровые молнии передвигаются плавно, с небольшой скоростью и в некоторых случаях скачкообразно. Отмечены случаи, когда шаровые молнии, касаясь земли или каких-либо предметов, взрывались и причиняли сильные разрушения.

Многочисленные попытки лабораторного воспроизведения такого типа разряда не дали удовлетворительных результатов, несмотря на то, что некоторым исследователям (Плантэ в Гезехусу в 1900 г., Кэвуду и др.)

удавалось получать разряды шарового типа. На рис. 182 пояснен опыт Плантэ. Если, применяя высоковольтный источник постоянного напряжения, анод погрузить в электролит и подносить к поверхности электролита катод, то зажигается дуговой разряд. Но когда в электролит погружен катод и к поверхности электролита подносится анод, дуга не может образоваться, так как исключается возможность накала и термоэлектронной эмиссии из датода. Плантэ обнаружил, что в этом случае при соблюдении определенных условий между анодом и поверхностью электролита образуется светящийся и быстро вращающийся шарик, который через некоторое время проскальзывает по поверхности электролита к катоду.

Рис. 182. Схема опыта Плантэ.

Рис. 183. Фотография четочной молнии.

Одна из многочисленных гипотез, предложенных для объяснения шаровой молнии (гипотеза Мейснера), трактует этот тип разряда как завихрение газоразрядной плазмы, происходящее в изгибе линейной молнии. По другой гипотезе (Матиаса) предполагается, что в шаровой молнии химически аккумулируется энергия разряда, причем образуются неустойчивые, способные разлагаться со взрывом высшие соединения азота с кислородом.

Иногда молния оказывается состоящей из нескольких десятков небольших светящихся шаров (диаметром меньше 10 см), удаленных один от другого на расстояние менее метра. Этот вид разряда называют неточной молнией (рис. 183). Приемлемой, достаточно обоснованной теории шаровых и четочных молний еще не имеется.

Если при использовании высокого постоянного напряжения между электродами поставлена пластина из твердого диэлектрика (стекла, эбонита и т. п.) и пластина эта имеет такую толщину, что искра ее не пробивает, а ширину не слишком большую, то наблюдается скользящий искровой разряд, который проходит по поверхности пластины и огибает ее. Для исследования этого разряда его создают на фотографической пластинке и потом проявляют ее (рис. 184). Получаемые таким путем изображения разряда называют фигурами Лихтенберга. Их радиус пропорционален напряжению разрядного импульса. Этим пользуются (применяя особые приборы для фотографирования скользящего разряда - клидонографы) при массовом, статистическом исследовании молний»

В СССР ведется систематическое изучение молний и методов грозозащиты. Ведущая роль в этой области принадлежит высоковольтной лаборатории Энергетического института Академии наук СССР.

Когда напряжение недостаточно велико для пробоя газоразрядного промежутка, на электродах наблюдается особый тип разряда-корона.

Рис. 184. Скользящий разрядит положительного электрода.

Коронный разряд на высоковольтных сетях вызывает утечки электроэнергии.

Исследование короны показало, что на положительном электроде коронный разряд при относительно невысоких напряжениях состоит из ряда электронно-лавинных импульсов, длящихся каждый десятитысячные доли секунды. При более высоком напряжении прерывистость явлений менее сказывается и основную роль играют стримеры, обрывающиеся там, где напряженность поля слишком мала для их распространения. Строение и характер свечения коронного разряда на отрицательном электроде в некоторой мере сходны с околокатодной зоной тлеющего разряда.

Искровой разряд.

Если между двумя электродами в воздухе появляется электрическое поле напряженностью порядка 3·10 В/м, то возникает электрическая искра в виде ярко светящегося сложно изогнутого тонкого канала, соединяющего оба электрода (рис.4.8).

Пример искрового разряда – молния. Особенности такого разряда объясняются теорией стримеров. Согласно этой теории возникновению ярко светящегося канала искры предшествует появление отдельных слабо светящихся скоплений ионизированных частиц. В промежутке между электродами эти скопления – стримеры образуют проводящие мостики, по которым затем устремляется мощный поток электронов. Причиной возникновения стримеров является как образование электронных лавин, так и фотоионизация, т.е. ионизация газа возникающим в разряде излучением. В результате образуются вторичные лавины, которые нагоняют друг друга, образуя хорошо проводящий канал. Так, сила тока в канале молнии может составлять от 10 до 10 А, а напряжение между облаком и землей перед возникновением молнии достигает 10 – 10 В.

Съемки камерой с вращающимся объективом показали, что молнии предшествует развитие слабо светящегося канала – лидера, распространяющегося от облака к земле со скоростью 10 – 10 м/с. При этом происходит сильный разогрев воздуха в главном канале и возникает ударная звуковая волна – гром.

В промышленности используют электроискровую обработку металлов – упрочнение поверхности и сверление.

Коронный разряд.

Если один электрод тонкий (провод), а другой имеет большую поверхность (цилиндр) (рис.4.9), то возникает неоднородное электрическое поле. У провода силовые линии сгущаются и при напряженности поля 3·10 В/м возникают электронные лавины и свечение у провода в виде короны.

При удалении от провода напряженность поля уменьшается и электронные лавины обрываются.

Коронный разряд возникает при отрицательном потенциале на проводе, при положительном и при переменном напряжении между проводом и цилиндром. Меняется только направление лавин.

Электроны вылетающие за пределы короны, присоединяются к нейтральным атомам, заряжая их отрицательно. Это используют в электростатических фильтрах для очистки промышленных газов. Газ с пылью пропускают через систему электродов провод – цилиндр. Пыль заряжается прилипающими электронами и притягивается к цилиндру, затем стряхивается в бункер, а в атмосферу выходит газ без пыли.

Коронный разряд может возникнуть возле любых тонких проводников, заострений. Такой разряд наблюдался в предгрозовую пору на верхушках корабельных мачт, деревьев. Можно наблюдать зажигание короны возле проводов, находящихся под высоким напряжением. Для предотвращения коронного разряда и токов утечки, проводники должны иметь достаточно большой диаметр.

Дуговой разряд.

Дуговой разряд был открыт в 1802 году профессором физики В.Петровым. Он получил разряд в виде светящейся дуги, раздвигая два угольных электрода, предварительно приведенные в соприкосновение и присоединенные к мощной батарее гальванических элементов. В месте контакта сопротивление цепи высокое и происходит сильный разогрев, угли раскаляются. В результате возникает термоэлектронная эмиссия из катода. Электроны бомбардируют анод, образуя в нем углубление – кратер. Температура анода около 4000 К, при 20 атм она может подняться до 7000 К. Сила тока достигает десятков и сотен ампер, а напряжение на разрядном промежутке составляет несколько десятков вольт. Этот тип дугового разряда применяется для сварки и резки металлов.

4. Плазмой называют сильно ионизованный газ, в котором концентрации положительных ионов и отрицательных электронов практически одинаковы. Плазма может быть высокотемпературной, полученной при высоких температурах термической ионизацией атомов, например, при термоядерном синтезе или в области дугового разряда. Газоразрядная низкотемпературная плазма возникает в электрическом поле.

Плазма имеет сходство с обычными газами и подчиняется газовым законам. Однако по электропроводности она приближается к металлам, для нее характерно сильное взаимодействие с электрическими и магнитными полями. Наличие подвижных разноименно заряженных частиц сопровождается их рекомбинацией и свечением.

Плазма используется в магнитогидродинамических (МГД) генераторах электрического тока. Низкотемпературная плазма применяется в газовых лазерах и плазменных телевизорах.

ЛЕКЦИЯ 5

Тема: Магнитное поле в вакууме и в веществе

Вопросы: 1) Действие магнитного поля на проводник с током. Магнитная

индукция.

2) Магнитное поле проводника с током. Закон Био-Савара-Лапласа.

3) Контур с током в магнитном поле.

4) Работа в магнитном поле.

1. В 1820 году Ампер открыл действие тока на магнитную стрелку: при пропускании тока через проводник расположенная рядом с ним магнитная стрелка поворачивается перпендикулярно к проводнику. Опыты Ампера показали, что проводники с током притягиваются друг к другу, если токи в них текут в одну сторону, и отталкиваются, если токи текут в противоположных направлениях. Таким образом, было установлено, что вокруг проводников с током существует магнитное поле. Обнаружить его можно по действию на проводник с током или постоянный магнит.

Пусть в однородном магнитном поле помещен прямой проводник длиной l с током I (рис.5.1).

Из опытов было установлено, что на проводник со стороны магнитного поля действует сила (сила Ампера)

F = I l B sinα,

где α – угол между проводником и направлением магнитного поля.

Направление силы можно определить по правилу левой руки (если четыре пальца расположить по направлению тока, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец покажет направление силы).

Если угол α между направлениями вектора В и тока в проводнике отличен от 90°, то для определения направления силы более удобно пользоваться правилом буравчика: воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор В и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора В . Поступательное перемещение буравчика будет показывать направление силы. Правило буравчика часто называют правилом правого винта.

Сила Ампера зависит как от силы тока, так и от магнитного поля. Величина В называется магнитной индукцией и служит основной силовой характеристикой магнитного поля.

Если положить I = 1 А, l = 1 м, α = 90º, то B = F. Отсюда вытекает физический смысл В. Магнитной индукцией В называется физическая величина, численно равная силе, с которой магнитное поле действует на прямой проводник единичной длины с током единичной силы, расположенный перпендикулярно к силовым линиям магнитного поля.

Единица измерения магнитной индукции: [B] = Н/А·м = Тл (тесла).

Теперь становится понятным, почему два проводника с током притягиваются или отталкиваются: в зависимости от направления токов магнитное поле одного проводника выталкивает или втягивает другой проводник с током.

Магнитное поле удобно изображать с помощью силовых линий. Представление о таких линиях дает расположение железных опилок возле полюсов постоянного магнита.

Линией магнитной индукции (силовой линией) называется такая линия, проведенная в магнитном поле, касательная к которой в любой точке совпадает с вектором магнитной индукции в этой точке. Линии магнитной индукции замкнуты и охватывают проводник с током. Тот факт, что силовые линии не имеют начала, говорит об отсутствии магнитных зарядов.

Направление силовых линий определяется по правилу буравчика: если ввинчивать буравчик так, чтобы винт двигался по направлению тока, то направление движения рукоятки совпадет с направлением силовой линии. Густота силовых линий пропорциональна величине магнитной индукции. Вблизи проводника с током магнитное поле неоднородно, чем ближе к проводнику, тем поле сильнее и силовые линии гуще. Однородное магнитное поле можно создать внутри длинной катушки с током.

Как видно из рисунка 5.6, магнитное поле катушки с током аналогично магнитному полю постоянного магнита, т.е. имеет «северный» конец N, из которого выходят силовые линии, и «южный» S, в который силовые линии входят. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции.

Введем понятие – магнитный поток или поток Ф вектора магнитной индукции сквозь площадку S: Ф =В Scosα, где α – угол между нормалью (перпендикуляром) к площадке и магнитной индукцией В .

Единица измерения потока вектора магнитной индукции [Ф] = Тл·м² = Вб (вебер).

Если поле неоднородное и поверхность не плоская, то ее разбивают на бесконечно малые элементы dS так, что каждый элемент можно считать плоским, а поле однородным. Поток вектора магнитной индукции через элемент поверхности dФ = ВdScosα, а через всю поверхность

2. В результате многих опытов разных ученых был выведен закон Био – Савара – Лапласа, позволяющий рассчитывать магнитную индукцию полей, создаваемых проводниками с током.


Тогда величина магнитной индукции в точке, удаленной от проводника на расстояние r определяется по закону Био-Савара-Лапласа, как

,

где величина μ0 = 4π·10 Гн/м называется магнитной постоянной.

Направление вектора dВ перпендикулярно плоскости, в которой лежат dl и r. Вектор dВ направлен по касательной ксиловой линии, проведенной через рассматриваемую точку поля, в соответствии с правилом буравчика.

Для магнитного поля выполняется принцип суперпозиции: если имеется несколько проводников с током, то магнитная индукция в любой точке равна векторной сумме магнитных индукций, создаваемых в этой точке каждым проводником отдельно. Принцип суперпозиции справедлив и для элементов тока. Применяя совместно закон Био-Савара-Лапласа и принцип суперпозиции, можно определить магнитную индукцию различных проводников с током.


Пример. Магнитное поле в центре кругового проводника с током.

Магнитные индукции каждого элемента тока dl в центре направлены в одну сторону, перпендикулярную к плоскости контура проводника, и просто суммируются. Это можно понять, если провести через центр силовые линии каждого элемента проводника с током и построить к ним касательные. Направление магнитной индукции кругового проводника с током можно определять и по правилу буравчика: если ввинчивать буравчик, вращая рукоятку по направлению тока, то винт покажет направление магнитной индукции в центре.

Величину магнитной индукции определим по закону Био-Савара-Лапласа

Создаваемые круговыми токами магнитные поля удобно описывать с помощью магнитного момента pm = IS, где I–ток в контуре, а S– площадь, обтекаемая током. За направление магнитного момента принимают направление нормали к плоскости витка, совпадающее с направлением вектора В в центре. Тогда

Можно показать, что магнитная индукция внутри длинной катушки с током (соленоида) B = μ0μnI, где n – число витков на единице длины катушки.

3. Поместим проводник, согнутый в виде прямоугольной рамки, в однородное магнитное поле.


При протекании тока по проводнику на каждую его сторону действует сила со стороны магнитного поля. На верхнюю и нижнюю стороны действуют растягивающие контур силы. На боковые стороны действуют силы F1 = F2 = IBl sin90º, где l - длина боковой стороны. Каждая из этих сил создает вращающий момент М = Fd, где d – плечо силы.

Момент пары сил М = 2Fd.= 2IBl d. Из рис.5.10 видно, что . Тогда M = IBla sinα или M = IBSsinα, где S – площадь рамки. Контур с током поворачивается до тех пор, пока его вращающий момент не станет равным нулю, т.е. станет равным нулю угол α. Таким образом, рамка с током в магнитном поле стремиться развернуться перпендикулярно к силовым линиям. Можно связать вращающий момент и магнитный момент контура с током

Вращающий момент перестает действовать, когда магнитный момент контура с током ориентирован вдоль направления магнитной индукции поля.


Рис.5.11

3. Магнитное поле может перемещать проводник с током, значит, поле совершает работу. Пусть прямой проводник длиной l под действием однородного магнитного поля переместится на расстояние dx в направлении, перпендикулярном к силовым линиям магнитного поля.


Рис.5.12

Работа dA = Fdx = Il Bdx. Так как произведение перемещения на длину проводника – это площадь dS, описываемая проводником при движении, то dA = IBdS, или dA = IdФ. Следовательно, работа по перемещению проводника в магнитном поле равна произведению силы тока в проводнике на магнитный поток, проходящий сквозь площадь, описываемую проводником при движении.

ЛЕКЦИЯ 6

Тема: Действие магнитного поля на движущийся заряд. Магнитное поле в

веществе

Вопросы: 1) Сила Лорентца.

2) Движение заряда в магнитном поле.

3) Магнитное поле в веществе.

4) Ферромагнетики.

1. Проводник с током создает в окружающем пространстве магнитное поле. Поскольку электрический ток представляет собой направленное движение заряженных частиц, то и любой движущийся заряд создает магнитное поле. Можно записать закон Био-Савара-Лапласа для одного заряда. Для этого преобразуем Idl = jSdl = nqvSdl = Nqv. Здесь j – плотность тока, n - число заряженных частиц в единице объема (концентрация частиц), v - скорость частиц. N – полное число частиц в отрезке dl проводника. Теперь магнитная индукция, создаваемая отрезком проводника с током, может быть представлена как

,

а магнитная индукция поля, создаваемого в вакууме одним зарядом q на расстоянии r от заряда

Направление силовых линий определяется по правилу буравчика.

Магнитное поле действует на ток, а значит и на каждый заряд должна тоже действовать сила. Выражение для нее получил Г.Лорентц.

На заряд q, движущийся в магнитном поле со скоростью v действует сила F = qvBsinα, где α – угол между направлением скорости и магнитной индукции. Направление силы для положительного заряда определяется по правилу левой руки или правого винта (вращать от v к B ).

Таким образом, между движущимися зарядами существует как электрическое, так и магнитное взаимодействие.

2. Пусть частица с зарядом q и скоростью v влетает в однородное магнитное поле перпендикулярно к линиям магнитной индукции B (рис.6.3).

Сила, действующая на частицу, F = qvBsin90º. Сила перпендикулярна к скорости, значит, она не совершает работы и не меняет энергию и величину скорости частицы. Однако, сила, перпендикулярная к скорости, всегда вызывает центростремительное ускорение и движение по окружности, т.е.

Радиус окружности траектории тем больше, чем больше скорость частицы. С увеличением магнитной индукции радиус уменьшается. Он зависит также от удельного заряда q/m частицы.

Период обращения частицы Т = 2πR/v. Подставив выражение для радиуса, получим , т.е. период от скорости не зависит.

Пусть теперь заряженная частица влетает в магнитное поле под углом α к направлению магнитной индукции (рис.6.4).

В этом случае скорость частицы v0 можно представить как векторную сумму тангенциальной скорости vt, направленной вдоль В, и нормальной скорости vn, перпендикулярной к В.

vt = v0 cosα, подставив эту скорость в выражение для силы Лорентца, получим F = qvtBsin0º, т.е. F = 0. Значит, вдоль силовой линии сила на частицу не действует и она движется равномерно и прямолинейно в этом направлении.

vn = v0 sinα,. сила Лоренца F = qvnBsin90º вызывает центростремительное ускорение и движение по окружности с радиусом и периодом . В результате частица описывает траекторию в виде цилиндрической спирали с шагом (расстояние между витками спирали, на которое частица перемещается вдоль силовой линии, сделав один полный оборот) f = vt T.

Закономерности движения заряженных частиц в магнитных и электрических полях используются в ускорителях, магнетронах, масс-спектрометрах и др.

3. Все вещества состоят из атомов и молекул, движение электронов в которых представляет собой замкнутые молекулярные токи. Каждый из этих токов создает магнитное поле, т.е. обладает магнитным моментом

где I – сила тока, S - площадь, обтекаемая током, n - единичный вектор нормали к плоскости витка с током.

В обычных условиях в результате теплового движения частиц магнитные моменты молекулярных токов разориентированы. Если поместить вещество в магнитное поле, то магнитные моменты частиц частично или полностью ориентируются вдоль внешнего магнитного поля, усиливая его (рис.6.6).

Вещества, способные намагничиваться, называются магнетиками. Магнитное состояние вещества характеризуется вектором намагничения, т.е. магнитным моментом единицы объема вещества

Единица измерения намагниченности – тесла. Для удобства рассмотрения ввели физическую величину Н – напряженность магнитного поля. Это силовая характеристика магнитного поля, связанная с магнитной индукцией соотношением . Она характеризует магнитное поле в вакууме. Из опытов следует, что вектор намагничения пропорционален напряженности магнитного поля , где χ – магнитная восприимчивость вещества.

Полное значение магнитной индукции в магнетике равно

Значит, магнитная индукция в веществе , где μ – магнитная проницаемость вещества. Она показывает, во сколько раз магнитное поле в веществе сильнее, чем в вакууме.

Есть некоторые вещества, у которых μ<1, их называют диамагнетиками (азот, вода, серебро, висмут). У них магнитный момент молекулярных токов устанавливается против поля, что объясняется появлением дополнительного вращения электронных орбиталей (прецессии) в магнитном поле.

У многих веществ μ >1, их называют парамагнетиками (кислород, алюминий и др.). У диамагнетиков и парамагнетиков магнитная проницаемость близка к единице, т.е. они намагничиваются слабо.

На границе раздела двух различных сред с разными значениями магнитной проницаемости линии магнитной индукции преломляются. Нормальная составляющая ветора магнитной индукции не меняется

Касательные к границе раздела составляющие индукции испытывают скачок, причем

Из этих формул вытекает закон преломления линий индукции

где - угол между линиями магнитной индукции в среде 1 и нормалью к поверхности раздела, а - соответствующий угол в среде 2. Значит, линии индукции, входя в среду с большей магнитной проницаемостью, удаляются от нормали и сгущаются (рис.6.7).

Рис.6.7 а – шар в магнитном поле (μ шара больше μ среды);

б - шар в магнитном поле (μ шара меньше μ среды);

в - железный цилиндр помещен в первоначально однородное

магнитноеполе.

4. Есть вещества, которые способны сильно намагничиваться, их магнитная проницаемость имеет величину порядка тысяч единиц и может достигать в специальных случаях миллиона. Такие свойства проявляет железо и его сплавы, поэтому этот класс веществ назвали ферромагнетиками. Свойства ферромагнетиков проявляют и другие металлы (табл.6.1).

Табл.6.1 Ферромагнитные металлы

Ферромагнетики - вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры ТК (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов. Иными словами, ферромагнетик - такое вещество, которое при охлаждении ниже определённой температуры приобретает магнитные свойства. Выше точки Кюри ферромагнитные свойства исчезают.

Для ферромагнетиков характерна сильная ориентировка магнитных моментов атомов без внешнего магнитного поля. В результате обменного взаимодействия электронов образуются отдельные области самопроизвольного намагничения – домены. Такие домены были обнаружены на опыте с помощью порошковых фигур. На хорошо отполированную поверхность ферромагнетика помещают слой жидкости с порошком оксида железа. Крупинки оседают в местах неоднородности магнитного поля, то есть у стенок доменов, и границы доменов хорошо видны в микроскопе (рис.6.7).

Рис. 6.7 а – без магнитного поля; б – магнитное поле перпендикулярно плоскости чертежа; в – магнитное поле противоположного направления.

Направления намагничения в отдельных доменах различны и таковы, что полный магнитный момент ферромагнетика равен нулю. При включении внешнего магнитного поля растут домены, у которых вектор намагничения составляет острый угол с направлением внешнего магнитного поля, а объем доменов с тупым углом уменьшается.

Рис.6.8 Процесс намагничения ферромагнетика: а,б,в – смещение

границ; г и д – вращение вектора намагничения

В случае слабых полей (область 1) смещения границ обратимы и точно следуют за изменением поля. При увеличении поля смещения границ доменов делаются необратимыми и невыгодные домены исчезают. Затем при еще большем увеличении поля изменяется направление магнитного момента внутри домена. В очень сильном магнитном поле магнитные моменты всех доменов устанавливаются параллельно полю и ферромагнетик теперь намагничен до насыщения.

Все эти процессы намагничивания происходят с некоторой задержкой, то есть отстают от изменения поля, это явление называется гистерезисом (рис.6.8).

Рис.6.9 Петля гистерезиса

Если уменьшать магнитное поле, то когда поле Н станет равным нулю, в магнетике наблюдается остаточное намагничение +В. Чтобы полностью размагнитить магнетик, надо приложить магнитное поле противоположного знака –Нс. Это поле называют коэрцитивной силой ферромагнетика.

При циклическом перемагничении ферромагнетика изменение индукции в нем будет изображаться петлей гистерезиса. Работа при циклическом перемагничении пропорциональна площади петли гистерезиса. На нее затрачивается энергия магнитного поля, которая в конечном итоге превращается в тепло.

7. Искровой разряд

Искровой разряд, в отличии от других видов разряда, является прерывистым даже при пользовании источником постоянного напряжения. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных полос, постоянно сменяющих одна другую. Светящиеся полосы - искровые каналы - распространяются от обоих электродов. Разрядный промежуток в случае искры неоднороден, поэтому количественное исследование процессов в искровом разряде является затруднительным. Одним из основных методов исследования искрового разряда является фотографирование.

Потенциал зажигания искрового разряда весьма высок. Однако, когда промежуток уже пробит, сопротивление его резко уменьшается, и через промежуток проходит значительный ток. Если мощность источника мала, то разряд гаснет. После этого напряжение на разрядном промежутке снова возрастает и разряд вновь может зажечься. Такой процесс носит название релаксационных колебаний разряда. Если разрядный промежуток имеет большую ёмкость, каналы искры ярко светятся и производят впечатление широких полос. Это конденсированный искровой разряд.

Если между электродами находится какое-нибудь препятствие, то искра пробивает его, образуя более или менее узкое отверстие. Установлено, что температура газа в канале искры может возрастать до очень больших значений (10000-12000 К). Образование областей высокого давления и их передвижение в газе носят взрывной характер и сопровождаются звуковыми эффектами. Это может быть слабое потрескивание (при незначительных избыточных давлениях) или гром.

Особым видом искрового разряда является скользящий разряд, происходящий вдоль поверхности раздела какого-либо твёрдого диэлектрика и газа вокруг металлического электрода (острия), касающегося этой поверхности. Если в качестве диэлектрика использовать фотопластинку, то можно сделать эту картину видимой для глаза. Очертания, получаемые при помощи искрового разряда на поверхности диэлектрика, называют фигурами Лихтенберга. Фигуры Лихтенберга могут служить для определения полярности разряда и для определения высокого напряжения, так как максимальное напряжение разрядного импульса прямо пропорционально радиусу поверхности, которую занимает фигура. На этом принципе основаны приборы для измерения очень высоких напряжений - клинодографы. Если расстояние между электродами мало, то искровой разряд сопровождается разрушением анода - эрозией. Этот эффект используется для точечной сварки и резки металлов.

На основе многочисленных наблюдений над искровым разрядом в 1940 году Мик и независимо от него Ретер выдвинули теорию искрового разряда, которая получила название стримерной. Стример - это область газа с высокой степенью ионизации, распространяющаяся в направлении катода (положительный стример) или в направлении анода (отрицательный стример). Стримерная теория представляет собой теорию однолавинного пробоя. Согласно этой теории между электродами проходит лавина электронов. После прохождения лавины электроны попадают на анод, а положительные ионы, имея значительно меньшие скорости, образуют конусообразное ионизированное пространство. Плотность ионов в этом пространстве недостаточна для пробоя. Однако под действием фотоэлектронов возникают дополнительные лавины. Эти лавины будут двигаться к стволу главной лавины, если поле её пространственного заряда соизмеримо с приложенным напряжением. Таким образом пространственный заряд непрерывно увеличивается, и процесс развивается как самораспространяющийся стример. Когда напряжение, приложенное к разрядному промежутку, превышает минимальное пробивное значение, поле пространственного заряда, образованное лавиной, будет соизмеримо с величиной внешнего поля ещё до того, как лавина достигнет анода. В этом случае стримеры возникают в середине промежутка. Таким образом, для возникновения стримера необходимо соблюдение двух основных условий: 1) поле лавины и поле, созданное приложенным к электродам напряжением, должны находиться в определённом соотношении и 2) фронт лавины должен излучать достаточное количество фотонов для поддержания и развития стримера.

При большой мощности источника искровой разряд переходит в дуговой. К искровым разрядам относится и молния. В этом случае одним электродом является облако, а другим - земля. Напряжение в молнии достигает миллионов вольт, а ток - до сотни килоампер. Переносимый молнией заряд обычно составляет 10-30 кулон, а в отдельных случаях достигает 300 кулон.



Понравилась статья? Поделитесь с друзьями!