Самая высокая электропроводность металлов. Электронная проводимость металлов

Электрическая проводимость – это способность веществ проводить электрический ток под действием внешнего электрического поля. Электрическая проводимость – величина, обратная электрическому сопротивлению L = 1/ R .

где ρ – удельное сопротивление, Ом·м; - удельная электрическая проводимость, См/м (сименс/метр);S поперечное сечение, м 2 ; l – длина проводника, м) (в электрохимии удельная электрическая проводимость () читается - каппа ).

Единица измерения L – сименс (См), 1 См = 1 Ом -1 .

Удельная электрическая проводимость раствора характеризует проводимость объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по 1 м 2 и расположенными на расстоянии 1 м друг от друга. Единица измерения в системе СИ - См·м -1 .

Удельная проводимость раствора электролита определяется количеством ионов, переносящих электричество и скоростью их миграции:

, (2.5)

где α – степень диссоциации электролита; С – молярная концентрация эквивалента, моль/м 3 ; F – число Фарадея, 96485 Кл/моль;
- абсолютные скорости движения катиона и аниона (скорости при градиенте потенциала поля, равном 1 В/м); единица измерения скорости - м 2 В -1 с -1 .

Из уравнения (2.5) следует, что зависит от концентрации как для сильных так и для слабых электролитов (рисунок 2.1):

Рисунок 2.1 – Зависимость удельной электрической проводимости от концентрации электролитов в водных растворах

В разбавленных растворах при С → 0 стремится к удельной электропроводности воды, которая составляет около 10 -6 См/м и обусловлена присутствием ионов Н 3 О + и ОН - . С ростом концентрации электролита, вначале увеличивается, что отвечает увеличению числа ионов в растворе. Однако, чем больше ионов в растворе сильных электролитов, тем сильнее проявляется ионное взаимодействие, приводящее к уменьшению скорости движения ионов. У слабых электролитов в концентрированных растворах заметно снижается степень диссоциации и, следовательно, количество ионов, переносящих электричество. Поэтому, почти всегда, зависимость удельной электрической проводимости от концентрации электролита проходит через максимум.

2.1.3 Молярная и эквивалентная электрические проводимости

Чтобы выделить эффекты ионного взаимодействия, удельную электрическую проводимость делят на молярную концентрацию (С, моль/м 3), и получают молярную электрическую проводимость ; или делят на молярную концентрацию эквивалента и получаютэквивалентную проводимость.

. (2.6)

Единицей измерения является м 2 См/моль. Физический смысл эквивалентной проводимости состоит в следующем: эквивалентная проводимость численно равна электрической проводимости раствора, заключенного между двумя параллельными электродами, расположенными на расстоянии 1 м и имеющими такую площадь, что объем раствора между электродами содержит один моль эквивалента растворенного вещества (в случае молярной электрической проводимости – один моль растворенного вещества). Таким образом, в случае эквивалентной электрической проводимости в этом объеме будет N А положительных и N А отрицательных зарядов для раствора любого электролита при условии его полной диссоциации (N А – число Авогадро). Поэтому, если бы ионы не взаимодействовали друг с другом, то сохранялась бы постоянной при всех концентрациях. В реальных системахзависит от концентрации (рисунок 2.2). При С → 0,
→ 1, величинастремится к
, отвечающей отсутствию ионного взаимодействия. Из уравнений (2.5 и 2.6) следует:

Произведение
называютпредельной эквивалентной электрической проводимостью ионов , или предельной подвижностью ионов:

. (2.9)

Соотношение (2.9) установлено Кольраушем и называется законом независимого движения ионов . Предельная подвижность является специфической величиной для данного вида ионов и зависит только от природы растворителя и температуры. Уравнение для молярной электрической проводимости принимает вид (2.10):

, (2.10)

где
- число эквивалентов катионов и анионов, необходимых для образования 1 моль соли.

Пример:

В случае одновалентного электролита, например, HCl,
, то есть молярная и эквивалентная электрические проводимости совпадают.

Рисунок 2.2 – Зависимость эквивалентной электропроводности от концентрации для сильных (а) и слабых (б) электролитов

Для растворов слабых электролитов эквивалентная электрическая проводимость остается небольшой вплоть до очень низких концентраций, по достижении которых она резко поднимается до значений, сравнимых с сильных электролитов. Это происходит за счет увеличения степени диссоциации, которая, согласно классической теории электролитической диссоциации, растет с разбавлением и, в пределе, стремится к единице.

Степень диссоциации можно выразить, разделив уравнение (2.7) на (2.8):

.

С увеличением концентрации растворов сильных электролитов уменьшается, но незначительно. Кольрауш показал, чтотаких растворов при невысоких концентрациях подчиняется уравнению:

, (2.11)

где А – постоянная, зависящая от природы растворителя, температуры и валентного типа электролита.

По теории Дебая – Онзагера снижение эквивалентной электрической проводимости растворов сильных электролитов связано с уменьшением скоростей движения ионов за счет двух эффектов торможения движения ионов, возникающих из-за электростатистического взаимодействия между ионом и его ионной атмосферой. Каждый ион стремится окружить себя ионами противоположного заряда. Облако заряда называют ионной атмосферой, в среднем оно сферически симметрично.

Первый эффект – эффект электрофоретического торможения . При наложении электрического поля ион движется в одну сторону, а его ионная атмосфера – в противоположную. Но с ионной атмосферой за счет гидратации ионов атмосферы увлекается часть растворителя, и центральный ион при движении встречает поток растворителя, движущегося в противоположном направлении, что создает дополнительное вязкостное торможение иона.

Второй эффект – релаксационного торможения . При движении иона во внешнем поле атмосфера должна исчезать позади иона и образовываться впереди него. Оба эти процесса происходят не мгновенно. Поэтому впереди иона количество ионов противоположного знака меньше, чем позади, то есть облако становится несимметричным, центр заряда атмосферы смещается назад, и поскольку заряды иона и атмосферы противоположны, движение иона замедляется. Силы релаксационного и электрофоретического торможения определяются ионной силой раствора, природой растворителя и температурой. Для одного и того же электролита, при прочих постоянных условиях, эти силы возрастают с увеличением концентрации раствора.

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению . В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах : [См]=.

Виды электропроводимости:

Электронная проводимость , где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

Ионная проводимость . Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

Дырочная проводимость . Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.


Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.

ЭЛЕКТРОПРОВОДНОСТЬ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ

Электропроводность металлов

Соответствующий квантовомеханический расчет дает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Однако кристаллическая решетка никогда не бывает совершенной. Нарушения строгой периодичности решетки бывают обусловлены наличием примесей или вакансий (т.е. отсутствие атомов в узле), а также тепловыми колебаниями в решетке. Рассеяние электронов на атомах примеси и на фотонах приводит к возникновению электросопроти-вления металлов. Чем чище металл и ниже температура, тем меньше это сопротивление.

Удельное электрическое сопротивление металлов можно представить в виде

где кол - сопротивление, обусловленное тепловыми колебаниями решетки, прим - сопротивление, обусловленное рассеянием электронов на примесных атомах. Слагаемое кол уменьшается с понижением температуры и обращается в нуль при T = 0K . Слагаемое прим при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла (т.е. сопротивление, которым металл обладает при 0K).

Пусть в единице объема металла имеется n свободных электронов. Назовем среднюю скорость этих электронов дрейфовой скоростью . По определению

В отсутствие внешнего поля дрейфовая скорость равна нулю, и электрический ток в металле отсутствует. При наложении на металл внешнего электрического поля дрейфовая скорость становится отличной от нуля - в металле возникает электрический ток. Согласно закону Ома дрейфовая скорость является конечной и пропорциональной силе
.

Из механики известно, что скорость установившегося движения оказывается пропорциональной приложенной к телу внешней силе F в том случае, когда, кроме силы - F , на тело действует сила сопротивления среды, которая пропорциональна скорости тела (примером может служить падение маленького шарика в вязкой среде). Отсюда заключаем, что кроме силы
, на электроны проводимости в металле действует сила "трения", среднее значение которой равно

(r -коэффициент пропорциональности).

Уравнение движения для "среднего" электрона имеет вид

,

где m * - эффективная масса электрона. Это уравнение позволяет найти установившееся значение .

Если после установления стационарного состояния выключить внешнее поле , дрейфовая скорость начнет убывать и по достижении состояния равновесия между электронами и решеткой обращается в нуль. Найдем закон убывания дрейфовой скорости после выключения внешнего поля. Положив в
, получим уравнение

Уравнение такого вида нам хорошо знакомо. Его решение имеет вид

,

где
-значение дрейфовой скорости в момент выключения поля.

Из следует, что за время

значение дрейфовой скорости уменьшается в e раз. Таким образом, величина представляет собой время релаксации, характеризующее процесс установления равновесия между электронами и решеткой, нарушенного действием внешнего поля .

С учетом формула может быть написана следующим образом:

.

Установившееся значение дрейфовой скорости можно найти, приравняв нулю сумму силы
и силы трения:

.

.

Установившееся значение плотности тока получим, умножив это значение на заряд электрона -e и плотность электронов n :

.

Коэффициент пропорциональности между
представляет собой удельную электропроводность . Таким образом,

.

Классическое выражение для электропроводности металлов имеет вид

,

где  - среднее время свободного пробега электронов, m - обычная (не эффективная) масса электрона.

Из сравнения формул и вытекает, что время релаксации совпадает по порядку величины с временем свободного пробега электронов в металле.

Исходя из физических соображений, удается произвести оценку величин, входящих в выражение, и тем самым вычислить по порядку величины проводимость . Полученные таким способом значения находятся в хорошем согласии с опытными данными. Также в согласии с опытом получается, что изменяется с температурой по закону 1/T . Напомним, что классическая теория дает, что обратно пропорциональна
.

Отметим, что выкладки, приведшие к формуле, одинаково пригодны как при классической трактовке движения электронов проводимости в металле, так и при квантовомеханической трактовке. Различие этих двух трактовок заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем, в соответствии с чем каждое слагаемое в формуле получает добавку в направлении,

противоположном . При квантовомеханической трактовке приходится принимать во внимание, что возмущаются полем и изменяют свою скорость лишь электроны, занимающие состояния вблизи уровня Ферми. Электроны, находящиеся на более глубоких уровнях, полем не возмущаются, и их вклад в сумму не изменяется. Кроме того, при классической трактовке в знаменателе формулы должна стоять обычная масса электронаm , при квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m * . Это обстоятельство является проявлением общего правила, согласно которому соотношения, полученные в приближении свободных электронов, оказываются справедливыми и для электронов, движущихся в периодическом поле решетки, если в них заменить истинную массу электрона m эффективной массой m * .

Сверхпроводимость

При температуре порядка нескольких кельвин электрическое сопротивление ряда металлов и сплавов скачком обращается в нуль-вещество, переходит в сверхпроводящее состояние . Температура, при которой происходит этот переход, носит название критической температуры и обозначается T k . Наибольшее наблюдавшееся значение T k составляет  20 К.

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь звено из сверхпроводника. В момент перехода в сверхпроводящее состояние, разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Открывший явление сверхпроводимости голландский ученый Г.Камерлинг - Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствии уменьшения тока в течение двух с половиной лет.

Кроме отсутствия электрического сопротивления, для сверхпроводящего состояния характерно то, что магнитное поле не проникает в толщу сверхпроводника. Это явление называется эффектом Мейсснера . Если сверхпроводящий образец охлаждается, будучи помещенным в магнитное поле, в момент перехода в сверхпроводящее состояние поле выталкивается из образца, а магнитная индукция в образце обращается в нуль. Формально можно сказать, что сверхпроводник обладает нулевой магнитной проницаемостью ( = 0). Вещества с < 1 называются диамагнетиками. Таким образом, сверхпроводник является идеальным диамагнетиком.

Достаточно сильное внешнее магнитное поле разрушает сверхпроводящее состояние. Значение магнитной индукции, при котором это происходит, называется критическим полем и обозначается B k . Значение B k зависит от температуры образца. При критической температуре B k = 0, с понижением температуры значение B k возрастает, стремясь к - значению критического поля при нулевой температуре. Примерный вид этой зависимости показан на рис.1

Если усиливать ток, текущий через сверхпроводник, включенный в общую цепь, то при значении силы тока I k сверхпроводящее состояние разрушается. Это значение силы тока называется критическим током . Значение I k зависит от температуры. Вид этой зависимости аналогичен зависимости B k от T (см. рис.1).

Сверхпроводимость представляет собой явление, в котором квантовомеханические эффекты обнаруживаются не в микроскопических, а в крупных, макроскопических масштабах. Теория сверхпроводимости была создана в 1957 г. Дж. Бардиным, Л. Купером и Дж. Шриффером. Ее называют кратко теорией БКШ. Эта теория очень сложна. Поэтому мы вынуждены ограничиться изложением ее на уровне научно-популярных книг, что, по-видимому, не сможет полностью удовлетворить взыскательного читателя.

Разгадка сверхпроводимости заключается в том, что электроны в металле, кроме кулоновского отталкивания, испытывают особый вид взаимного притяжения, которое в сверхпроводящем состоянии преобладает над отталкиванием. В результате электроны проводимости объединяются в так называемые куперовские пары . Электроны, входящие в такую пару, имеют противоположно направленные спины. Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в возбужденное состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости.

Поясним сказанное более подробно. Электрон, движущийся в металле, деформирует (поляризует) состоящую из положительных ионов кристаллическую решетку. В результате этой деформации электрон оказывается окруженным "облаком" положительного заряда, перемещающимся по решетке вместе с электроном. Электрон и окружающее его облако представляют собой положительно заряженную систему, к которой будет притягиваться другой электрон. Таким образом, ионная решетка играет роль промежуточной среды, наличие которой приводит к притяжению между электронами.

На квантовомеханическом языке притяжение между электронами объясняется как результат обмена между электронами квантами возбуждения решетки - фононами. Электрон, движущийся в металле, нарушает режим колебаний решетки - возбуждает фононы. Энергия возбуждения передается другому электрону, который поглощает фонон. В результате такого обмена фононами возникает дополнительное взаимодействие между электронами, которое имеет характер притяжения. При низких температурах это притяжение у веществ, являющихся сверхпроводниками, превышает кулоновское отталкивание.

Взаимодействие, обусловленное обменом фононами, наиболее сильно проявляется у электронов, обладающих противоположными импульсами и спинами. В результате два таких электрона объединяются в куперовскую пару. Эту пару не следует представлять себе как два слипшихся электрона. Напротив, расстояние между электронами пары весьма велико, оно составляет примерно 10 -4 см, т.е. на четыре порядка превышает межатомные расстояния в кристалле. Примерно 10 6 куперовских пар заметно перекрываются, т.е. занимают общий объем.

В куперовские пары объединяются не все электроны проводимости. При температуре T , отличной от абсолютного нуля, имеется некоторая вероятность того, что пара будет разрушена. Поэтому всегда наряду с парами имеются "нормальные" электроны, движущиеся по кристаллу обычным образом. Чем ближе T и T k , тем доля нормальных электронов становится больше, обращаясь в 1 при T = T k . . Следовательно, при температуре выше T k сверхпроводящее состояние возможно.

Образование куперовских пар приводит к перестройке энергетического спектра металла. Для возбуждения электронной системы, находящиеся в сверхпроводящем состоянии, надо разрушить хотя бы одну пару, на что требуется энергия, равная энергии связи E св электронов в паре. Эта энергия представляет собой минимальное количество энергии, которое может воспринять система электронов сверхпроводника. Следовательно, в энергетическом спектре электронов, находящихся в сверхпроводящем состоянии, имеется щель ширины E св, расположенная в области уровня Ферми. Значения энергии, принадлежащие этой щели, запрещены. Существование щели было доказано экспериментально.

Итак, возбужденное состояние электронной системы, находящейся в сверхпроводящем состоянии, отделено от основного состояния энергетической щелью ширины E св. Поэтому квантовые переходы этой системы не всегда будут возможными. При малых скоростях своего движения (отвечающих силе тока, меньшей I k) электронная система ее будет возбуждаться, а это и означает движение без трения, т.е. без электрического сопротивления.

Ширина энергетической щели E св с ростом температуры уменьшается и обращается в нуль при критической температуре T k . Соответственно все куперовские пары разрушаются, и вещество переходит в нормальное (несверхпроводящее) состояние.

Из теории сверхпроводимости следует, что магнитный поток Ф, связанный со сверхпроводящим кольцом (или цилиндром), по которому циркулирует ток, должен быть целым кратным величины
, гдеq - заряд носителя тока

.

Величина

представляет собой квант магнитного потока .

Квантование магнитного потока было экспериментально обнаружено в 1961 г. Дивером и Фейрбэнком и независимо от них Доллом и Небауэром. В опытах Дивера и Фейрбэнка образцом служил поясок олова, нанесенный на медную проволоку диаметром около 10 -3 см. Проволока играла роль каркаса и в сверхпроводящее состояние не переходила. Измеренные значения магнитного потока в этих опытах, как и в опытах Долла и Небауэра, оказались целыми кратными величины, в которой в качестве q надо взять удвоенный заряд электрона (q = - 2e ) . Это служит дополнительным подтверждением правильности теории БКШ, согласно которой носителями тока в сверхпроводнике являются куперовские пары, заряд которых равен суммарному заряду двух электронов, т.е. - 2e .

Полупроводники

Полупроводниками являются кристаллические вещества, у ко­торых валентная зона полностью заполнена электронами, а ширина запрещенной зоны невелика (у собственных полупроводников не более 1 эВ). Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и диэлектриками. Однако характерным для них является не величина проводимости, а то, что их проводимость растет с повышением температуры (напомним, что у металлов она уменьшается).

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники. Электрические свойства примесных полупроводников определяются имеющимися в них искусственно вводимыми примесями.

При рассмотрении электрических свойств полупроводников большую роль играет понятие "дырок". Остановимся на выяснении физического смысла этого понятия.

В собственном полупроводнике при абсолютном нуле все уровни валентной зоны полностью заполнены электронами, а в зоне проводимости электроны отсутствуют (рис.2,a). Электрическое поле не может перебросить электроны из валентной зоны в зону проводимости. Поэтому собственные полупроводники ведут себя при абсолютном нуле как диэлектрики. При температурах, отличных от 0 К, часть электронов с верхних уровней валентной зоны переходит в результате теплового возбуждения на нижние уровни зоны проводимости (рис.2,б). В этих условиях электрическое поле получает возможность изменять состояние электронов, находящихся в зоне проводимости. Кроме того, вследствие образования вакантных уровней в валентной зоне электроны этой зоны также могут изменять свою скорость под воздействием внешнего поля. В результате электропроводность полупроводника ста­новится отличной от нуля.

Оказывается, что при наличии вакантных уровней поведение электронов валентной зоны может быть представлено как движение положительно заряженных квазичастиц, получивших название "дырок". Из равенства нулю проводимости полностью заполненной валентной зоны вытекает, что сумма скоростей всех электронов такой зоны равна нулю

Выделим из этой суммы скорость k -го электрона

Из полученного соотношения вытекает, что, если k -й электрон в валентной зоне отсутствует, то сумма скоростей оставшихся электронов оказывается равной
. Следовательно, все эти электроны создадут ток, равный
. Таким образом, возникший ток оказывается эквивалентным току, который создавала бы частица с зарядом +e , имеющая скорость отсутствующего электрона. Это воображаемая частица и есть дырка.

К понятию дырок можно прийти также следующим путем. Вакантные уровни образуются у потолка валентной зоны. Как было показано, эффективная масса электрона, находящегося у потолка энергетической зоны, является отрицательной. Отсутствие частицы с отрицательным зарядом (-e ) и отрицательной массой m * эквивалентно наличию частицы с положительным зарядом (+e ) и положительной массой | m * | т.е. дырки.

Итак, по своим электрическим свойствам валентная зона с небольшим числом вакантных состояний эквивалентна пустой зоне, содержащей небольшое число положительно заряженных квазичастиц, называемых дырками.

Подчеркнем, что движение дырки не есть перемещение какой-то реальной положительно заряженной частицы. Представление о дырках отображает характер движения всей многоэлектронной системы в полупроводнике.

Собственная проводимость полупроводников

Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока - электронов, занимающих уровни вблизи дна зоны, одновременно в валентной зоне освобождается такое же число мест на верхних уровнях, в результате чего появляются дырки

Распределение электронов по уровням валентной зоны и зоны проводимости описываются функцией Ферми-Дирака. Это распределение можно сделать очень наглядным, изобразив, как это сделано на рис. график функции распределения совместно со схемой энергетических зон.

Соответствующий расчет дает, что у собственных полупроводников отсчитанное от потолка валентной зоны значение уровня Ферми равно

,

где E - ширина запрещенной зоны, а m д * и m э * - эффективные массы дырки и электрона, находящегося в зоне проводимости. Обычно второе слагаемое пренебрежимо мало, и можно полагать
. Это означает, что уровень Ферми лежит посредине запрещенной зоны, Следовательно, для электронов, перешедших в зону проводимости, величинаE - E F мало отличается от половины ширины запрещенной зоны. Уровни зоны проводимости лежат на хвосте кривой распределения. Поэтому вероятность их заполнения электронами можно находить по формуле (1.23) предыдущего параграфа. Положив в этой формуле
, получим, что

.

Количество электронов, перешедших в зону проводимости, а следовательно и количество образовавшихся дырок, будет пропорционально вероятности. Эти электроны и дырки являются носителями тока. Поскольку проводимость пропорциональна числу носителей, она также должна быть пропорциональна выражению. Следовательно, электропроводность собственных полупроводников быстро растет с температурой, изменяясь по закону

,

где  E - ширина запрещенной зоны, 0 - величина, изменяющаяся с температурой гораздо медленнее, чем экспонента, в связи с чем ее можно в первом приближении считать константой.

Если на графике откладывать зависимость ln от T , то для собственных полупроводников получается прямая линия, изображен­ная на рис.4. По наклону этой прямой можно определить ширину запрещенной зоны  E .

Типичными полупроводниками являются элементы IV группы периодической системы Менделеева - германий и кремний. Они образуют решетку типа алмаза, в которой каждый атом связан ковалентными (парно-электронными) связями с четырьмя равноотстоящими от него соседними атомами. Условно такое взаимное расположение атомов можно представить в виде плоской структуры, изображенной на рис. 5. Кружки со знаком обозначают положительно заряженные атомные остатки (т.е. ту часть атома, которая остается после удаления валентных электронов), кружки со знаком- валентные электроны, двойные линии - ковалентные связи.

При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один электрон. Покинутое электроном место перестает быть нейтральным, в его окрестности возникает избыточный положительный заряд , т.е. образу­ется дырка (на рис.5 она изображена пунктирным кружком). На это место может перескочить электрон одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся электрон.

При встрече свободного электрона с дыркой они рекомбинируют (соединяются). Это означает, что электрон нейтрализует избыточный положительный заряд, имеющийся в окрестности дырки, и теряет свободу передвижения до тех пор, пока снова не получит от кристаллической решетки энергию, достаточную для своего высвобождения. Рекомбинация приводит к одновременному исчезновению свободного электрона и дырки. На схеме уровней процессу рекомбинации соответствует переход электрона из зоны проводимости на один из свободных уровней валентной зоны.

Итак, в собственном полупроводнике идут одновременно два процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса быстро растет с температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок. Следовательно, каждой температуре соответствует определенная равновесная концентрация электронов и дырок, которая изменяется с температурой пропорционально выражению.

Когда внешнее электрическое поле отсутствует, электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок - в направлении поля. Оба движения- и дырок, и электронов - приводит к переносу заряда вдоль кристалла. Следовательно, собственная электропроводность обусловливается как бы носителями заряда двух знаков - отрицательными электронами и положительными дырками.

Отметим, что при достаточно высокой температуре собственная проводимость наблюдается во всех без исключения полупроводниках. Однако в полупроводниках, содержащих примесь, электропроводность слагается из собственной и примесной проводимостей.

Примесная проводимость полупроводников

Примесная проводимость возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов. На рис.6 условно изображена решетка германия с примесью пятивалентных атомов фосфора. Для образования ковалентных связей с соседями атому фосфора достаточно четырех электронов. Следовательно, пятый валентный электрон оказывается как бы лишним и легко отщепляется от атома за счет энергии теплового движения, образуя странствующий свободный электрон.

В отличие от случая, рассмотренного в предыдущем параграфе, образование свободного электрона не сопровождается нарушением ковалентных связей, т.е. образованием дырки. Хотя в окрестности атома примеси возникает избыточный положительный заряд, но он связан с этим атомом и перемещаться по решетке не может.

Благодаря этому заряду атом примеси может захватить приблизив­шийся к нему электрон, но связь захваченного электрона с атомом будет непрочной и легко нарушается вновь за счет тепловых колебаний решетки.

Таким образом, в полупроводнике с примесью, валентность которой на единицу больше валентности основных атомов, имеется только один вид носителей тока-электроны. Соответственно говорят, что такой полупроводник обладает электронной проводимостью или является полупроводником n - типа (от слова negativ - отрицательный). Атомы примеси, поставляющие электроны проводимости называются донорами .

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Деление твёрдых тел на проводники, полупроводники и диэлектрики связано со строением их энергетических зон. Теория энергетических зон рассмотрена во введении к данному циклу работ.

В металле зона проводимости заполнена электронами не целиком, а лишь частично, приблизительно до уровня Ферми. По этой причине электроны в металле свободны и могут переходить с занятых уровней на свободные под влиянием слабых электрических полей. Концентрация свободных электронов в металле велика (порядка ~ 10 28 м -3), поэтому от температуры и других внешних факторов она зависит слабо. По этой причине согласно (6), температурная зависимость удельной проводимости, а значит и сопротивления, определяется изменением подвижности электронов. При этом существенным является то, что электронный газ в металле вырожден , т.е. его энергия является не температурой, а концентрацией электронов. Действительно, электроны в металле занимают энергетические уровни до уровня Ферми, который отстоит от «дна» валентной зоны на несколько электрон-вольт. Тепловая же энергия электронов (~ ) при обычных температурах намного меньше, порядка ~ 10 -2 эВ. Следовательно, поглощать тепловую энергию могут лишь немногие электроны с верхних уровней. Средняя энергия электронов, таким образом, почти не меняется с увеличением температуры.

У электронного газа, находящегося в состоянии вырождения, скорости хаотического движения электронов также определяются не температурой тела, а концентрацией носителей заряда. Эти скорости могут в десятки раз превышать среднюю скорость теплового движения, вычисленную из классической теории ( »10 5 м/с), т.е. »10 6 м/с.

Движущиеся электроны обладают как корпускулярными, так и волновыми свойствами. Длина волны электрона определяется формулой де Бройля:

, (8)

где - постоянная Планка,

Скорость электрона,

Эффективная масса электрона (понятие вводится для того, чтобы описать его движение носителя в твёрдом теле).

Подставив значение скорости =10 6 м/с в (8), найдём длину волны де Бройля для электрона в металле, она составляет величину 0,4 – 0,9 нм.



Итак, в металлических проводниках, где длина волны электрона порядка 0,5 нм, микродефекты создают значительное рассеяние электронных волн. Скорость направленного движения электронов при этом уменьшается, что согласно (4) приводит к уменьшению подвижности. Подвижность электронов в металле сравнительно невелика. В таблице 1 приведены подвижности электронов для некоторых металлов и полупроводников.

Таблица 1. Подвижность электронов в различных материалах при =300 К

С увеличением температуры увеличиваются колебания узлов решётки и появляется всё больше и больше препятствий на пути направленного движения электронов и электропроводность уменьшается, а сопротивление металла растёт.

Опыт показывает, что для чистых металлов зависимость от температуры линейна:

, (9)

где - термический коэффициент сопротивления,

Температура по шкале Цельсия,

Сопротивление при =0°С.

Для определения и необходимо построить график зависимости .

Рис.1. Зависимость сопротивления металла от температуры

Точка пересечения прямой с осью даст значение . Значение находится по формуле:

(10)



Понравилась статья? Поделитесь с друзьями!