Как выглядят атомы под микроскопом. Ученые впервые увидели атом "вживую" - фото

Как известно, все материальное во Вселенной состоит из атомов. Атом – это мельчайшая единица материи, которая несет в себе ее свойства. В свою очередь, структура атома складывается из волшебного триединства микрочастиц: протонов, нейтронов и электронов.

При этом каждая из микрочастиц универсальна. То есть, не найти на свете двух разных протонов, нейтронов или электронов. Все они абсолютно друг на друга похожи. И свойства атома будут зависеть только от количественного состава этих микрочастиц в общем строении атома.

Например, структура атома водорода состоит из одного протона и одного электрона. Следующий по сложности, атом гелия состоит из двух протонов, двух нейтронов и двух электронов. Атом лития — из трех протонов, четырех нейтронов и трех электронов и т. д.

Структура атомов (слева направо): водорода, гелия, лития

Атомы соединяются в молекулы, а молекулы — в вещества, минералы и организмы. Молекула ДНК, являющаяся основой всего живого – структура, собранная из тех же трех волшебных кирпичиков мироздания, что и камень, лежащий на дороге. Хотя эта структура и намного более сложная.

Еще более удивительные факты открываются тогда, когда мы пытаемся поближе рассмотреть пропорции и строение атомной системы. Известно, что атом состоит из ядра и электронов, двигающихся вокруг него по траектории, описывающей сферу. То есть это даже нельзя назвать движением в обычном понимании этого слова. Электрон скорее находится везде и сразу в пределах этой сферы, создавая вокруг ядра электронное облако и формируя электромагнитное поле.

Схематические изображения строения атома

Ядро атома состоит из протонов и нейтронов, и в нем сосредоточена почти вся масса системы. Но при этом, само ядро настолько мало, что если увеличить его радиус до масштаба в 1 см, то радиус всей структуры атома достигнет сотни метров. Таким образом, все, что мы воспринимаем как плотную материю, более чем на 99% состоит из одних только энергетических связей между физическими частицами и менее чем 1% — из самих физических форм.

Но что представляют собой эти физические формы? Из чего они состоят, и насколько они материальны? Чтобы ответить на эти вопросы, давайте подробнее рассмотрим структуры протонов, нейтронов и электронов. Итак, мы спускаемся еще на одну ступеньку в глубины микромира – на уровень субатомных частиц.

Из чего состоит электрон

Самая маленькая частица атома – электрон. Электрон обладает массой, но при этом не обладает объемом. В научном представлении электрон не из чего не состоит, а представляет собой бесструктурную точку.

Под микроскопом электрон невозможно увидеть. Он наблюдаем только в виде электронного облака, которое выглядит как размытая сфера вокруг атомного ядра. При этом с точностью, где находится электрон в момент времени, невозможно сказать. Приборы же способны запечатлеть не саму частицу, а только лишь ее энергетический след. Суть электрона не вкладывается в представления о материи. Он скорее подобен некой пустой форме, существующей только в движении и за счет движения.

Никакой структуры в электроне до сих пор не было обнаружено. Он является такой же точечной частицей, как и квант энергии. Фактически, электрон — и есть энергия, однако, это более устойчивая ее форма, нежели та, которая представлена фотонами света.

В настоящий момент электрон считают неделимым. Это понятно, ведь невозможно разделить то, что не имеет объема. Однако в теории уже есть наработки, согласно которым в составе электрона лежит триединство таких квазичастиц как:

  • Орбитон – содержит информацию об орбитальном положении электрона;
  • Спинон – ответственен за спин или вращательный момент;
  • Холон – несет информацию о заряде электрона.

Впрочем, как видим, квазичастицы с материей уже не имеют абсолютно ничего общего, и несут в себе одну только информацию.

Фотографии атомов разных веществ в электронный микроскоп

Интересно, что электрон может поглощать кванты энергии, например, света или тепла. В этом случае атом переходит на новый энергетический уровень, а границы электронного облака расширяются. Бывает и такое, что энергия, поглощаемая электроном настолько велика, что он может выскочить из системы атома, и далее продолжить свое движение как независимая частица. При этом он ведет себя подобно фотону света, то есть, он будто бы перестает быть частицей и начинает проявлять свойства волны. Это было доказано в эксперименте.

Эксперимент Юнга

В ходе эксперимента на экран с двумя прорезанными в нем щелями был направлен поток электронов. Проходя через эти прорези, электроны сталкивались с поверхностью еще одного – проекционного – экрана, оставляя на нем свой след. В результате такой «бомбардировки» электронами на проекционном экране появлялась интерференционная картина, подобная той, которая появилась бы, если бы через две прорези проходили бы волны, но не частицы.

Такой рисунок возникает из-за того, что волна, проходя между двух щелей, делится на две волны. В результате дальнейшего движения волны накладываются друг на друга, и на некоторых участках происходит их взаимное гашение. В результате мы получаем много полос на проекционном экране, вместо одной, как это было бы, если бы электрон вел себя как частица.

Структура ядра атома: протоны и нейтроны

Протоны и нейтроны составляют ядро атома. И притом, что в общем объеме ядро занимает менее 1%, именно в этой структуре сосредоточена почти вся масса системы. А вот на счет структуры протонов и нейтронов физики разделились во мнениях, и на данный момент существует сразу две теории.

  • Теория №1 — Стандартная

Стандартная модель говорит о том, что протоны и нейтроны состоят из трех кварков, соединенных между собой облаком глюонов. Кварки являются точечными частицами, так же, как кванты и электроны. А глюоны – это виртуальные частицы, обеспечивающие взаимодействие кварков. Однако в природе так и не было найдено ни кварков, ни глюонов, потому эта модель поддается жестокой критике.

  • Теория №2 — Альтернативная

А вот по альтернативной теории единого поля, разработанной Эйнштейном, протон, как и нейтрон, как и любой другая частица физического мира, представляет собой вращающееся со скоростью света электромагнитное поле.

Электромагнитные поля человека и планеты

Каковы же принципы строения атома?

Все в мире – тонкое и плотное, жидкое, твердое и газообразное – это лишь энергетические состояния бесчисленных полей, пронизывающих пространство Вселенной. Чем выше уровень энергии в поле, тем оно тоньше и менее уловимо. Чем ниже энергетический уровень, тем оно более устойчивое и ощутимое. В структуре атома, как и в структуре любой другой единицы Вселенной, лежит взаимодействие таких полей – разных по энергетической плотности. Выходит, а материя – только иллюзия ума.

1. Но начнем мы совсем с другой стороны. Прежде чем отправиться в путешествие к глубинам материи, давайте обратим свой взор вверх.

Например, известно, что до Луны в среднем почти 400 тысяч километров, до Солнца - 150 миллионов, до Плутона (который уже не виден без телескопа) - 6 миллиардов, до ближайшей звезды Проксимы Центавра - 40 триллионов, до ближайшей крупной галактики туманности Андромеды - 25 квинтиллионов, и наконец до окраин обозримой Вселенной - 130 секстиллионов.

Впечатляюще, конечно, но разница между всеми этими «квадри-», «квинти-» и «сексти-» не кажется столь уж огромной, хотя они и различаются между собой в тысячу раз. Совсем другое дело микромир. Разве в нем может быть скрыто так уж много интересного, ведь ему просто негде там поместиться. Так говорит нам здравый смысл и ошибается .

2. Если на одном конце логарифмической шкалы отложить самое маленькое известное расстояние во Вселенной, а на другом - самое большое, то посередине окажется… песчинка. Её диаметр - 0.1 мм.

3. Если положить в ряд 400 млрд песчинок, их ряд обогнёт весь земной шар по экватору. А если собрать эти же 400 млрд в мешок, весить он будет около тонны.

4. Толщина человеческого волоса - 50–70 микронам, то есть их 15–20 штук на миллиметр. Для того чтобы выложить ими расстояние до Луны, потребуется 8 триллионов волос (если складывать их не по длине, а по ширине, конечно). Поскольку на голове у одного человека их около 100 тысяч, то если собрать волосы у всего населения России, до Луны хватит с лихвой и даже еще останется.

5. Размер бактерий - от 0.5 до 5 микрон. Если увеличить среднюю бактерию до такого размера, что она удобно ляжет нам в ладонь (в 100 тысяч раз), толщина волоса станет равной 5 метрам.

6. Кстати, внутри человеческого тела обитает целый квадриллион бактерий, а их общий вес составляет 2 килограмма. Их, собственно, даже больше, чем клеток самого тела. Так что вполне можно сказать, что человек - это просто такой организм, состоящий из бактерий и вирусов с небольшими вкраплениями чего-то еще.

7. Размеры вирусов различаются еще больше, чем бактерий, - чуть ли не в 100 тысяч раз. Если бы дело обстояло так с людьми, то они были бы ростом от 1 сантиметра до 1 километра, и их социальное взаимодействие стало бы любопытным зрелищем.

8. Средняя длина наиболее распространенных разновидностей вирусов - 100 нанометров или 10^(-7) степени метра. Если мы снова выполним операцию приближения таким образом, чтобы вирус стал размером с ладонь, то длина бактерии будет 1 метр, а толщина волоса - 50 метров.

9. Длина волны видимого света - 400–750 нанометров, и увидеть объекты меньше этой величины попросту невозможно. Попытавшись осветить такоей объект, волна просто обогнет его и не отразится.

10. Иногда задают вопрос, как выглядит атом или какого он цвета. На самом деле, атом не выглядит никак. Просто вообще никак. И не потому, что у нас недостаточно хорошие микроскопы, а потому что размеры атома меньше расстояния, для которого существует само понятие «видимости»…

11. Вдоль окружности земного шара можно плотно разместить 400 триллионов вирусов. Много. Такое расстояние в километрах свет проходит за 40 лет. Но если собрать их всех вместе, то они легко поместятся на кончике пальца.

12. Примерный размер молекулы воды - 3 на 10^(-10) метра. В стакане воды таких молекул 10 септиллионов - примерно столько миллиметров от нас до Галактики Андромеды. А в кубическом сантиметре воздуха молекул 30 квинтиллионов (в основном, азота и кислорода).

13. Диаметр атома углерода (основы всей жизни на Земле) - 3.5 на 10^(-10) метра, то есть даже чуть больше, чем молекулы воды. Атом водорода в 10 раз меньше - 3 на 10^(-11) метра. Это, конечно, мало. Но насколько мало? Поражающий всякое воображение факт состоит в том, что мельчайшая, едва различимая крупинка соли состоит из 1 квинтиллиона атомов.

Давайте обратимся к нашему стандартному масштабу и приблизим атом водорода так, чтобы он удобно лег в руку. Вирусы тогда будут 300-метрового размера, бактерии 3-километрового, а толщина волоса станет равна 150 километрам, и даже в лежащем состоянии он выйдет за границы атмосферы (а в длину может достать и до Луны).

14. Так называемый «классический» диаметр электрона - 5.5 фемтометров или 5.5 на 10^(-15) метра. Размеры протона и нейтрона еще меньше и составляют около 1.5 фемтометров. Протонов в метре примерно столько же, сколько муравьев на планете Земля. Используем уже привычное нам увеличение. Протон удобно лежит у нас в ладони, - и тогда размер среднего вируса окажется равным 7 000 километрам (почти как вся Россия с запада на восток, между прочим), а толщина волоса в 2 раза превысит размеры Солнца.

15. О размерах сложно сказать что-то определенное. Предполагается, что они находятся где-то в пределах 10^(-19) - 10^(-18) метра. Самый маленький - истинный кварк - «диаметром» (давайте для напоминания о вышесказанном будем писать это слово в кавычках) 10^(-22) метра.

16. Есть еще такая штука как нейтрино. Посмотрите на свою ладонь. Через нее ежесекундно пролетает триллион нейтрино, испущенных Солнцем. И можете не прятать руку за спину. Нейтрино с легкостью пройдут и сквозь ваше тело, и сквозь стену, и сквозь всю нашу планету, и даже сквозь слой свинца толщиной в 1 световой год. «Диаметр» нейтрино равен 10^(-24) метра - эта частица в 100 раз меньше истинного кварка, или в миллиард раз меньше протона, или в 10 септиллионов раз меньше тираннозавра. Почти во столько же раз сам тираннозавр меньше всей обозримой Вселенной. Если увеличить нейтрино так, чтобы он был размером с апельсин, то даже протон будет в 10 раз больше Земли.

17. А сейчас я искренне надеюсь, что вас должна поразить одна из двух нижеследующих вещей. Первая - мы можем продвинуться еще дальше (и даже сделать какие-то осмысленные предположения о том, что там будет). Вторая - но при этом двигаться вглубь материи бесконечно все-таки нельзя, и вскоре мы уткнемся в тупик. Вот только для достижения этих самых «тупиковых» размеров нам придется опуститься еще на 11 порядков, если считать от нейтрино. То есть эти размеры меньше нейтрино в 100 миллиардов раз. Во столько же раз песчинка меньше всей нашей планеты, кстати.

18. Итак, на размерах 10^(-35) метра нас ждет такое замечательное понятие, как планковская длина, - минимальное расстояние из возможных в реальном мире (насколько это принято считать в современной науке).

19. Еще здесь обитают квантовые струны - объекты весьма примечательные с любой точки зрения (например, они одномерны, - у них нет толщины), но для нашей темы важно, что их длина тоже находится в пределах 10^(-35) метра. Давайте проделаем наш стандартный «увеличительный» эксперимент в последний раз. Квантовая струна становится удобного размера, и мы держим ее в руке как карандаш. При этом нейтрино будет в 7 раз больше Солнца, а атом водорода в 300 раз превысит размеры Млечного Пути.

20. Наконец мы подошли к самой структуре мироздания - масштабу, на котором пространство становится похожим на время, время на пространство, и происходят разные другие причудливые штуки. Дальше уже ничего нет (наверное)…

В эволюции человека нет «недостающего звена»

Термин «недостающее звено» вышел из обращения в научных кругах, так как связан с ошибочным предположением о том, что эволюционный процесс линеен и идёт последовательно, «по цепочке». Вместо этого биологи пользуются термином «последний общий предок».

Интересные факты о Солнечной системе

На данной фотографии вы смотрите на первое прямое изображение орбит электрона вокруг атома — фактически волновую функцию атома!

Для получения фотографии орбитальной структуры атома водорода, исследователи использовали новейший квантовой микроскоп — невероятное устройство, которое позволяет ученым заглянуть в область квантовой физики.

Орбитальная структура пространства в атоме занята электроном. Но при описании этих микроскопических свойств материи, ученые полагаются на волновые функции — математические способы описания квантовых состояний частиц, а именно того, как они ведут себя в пространстве и во времени.

Как правило, в квантовой физике используют формулы типа уравнения Шредингера для описания состояний частиц.

Препятствия на пути исследователей

До сегодняшнего момента, ученые фактически никогда не наблюдали волновую функцию. Попытка уловить точное положение или импульс одинокого электрона было сродни попытке поймать рой мух. Прямые наблюдения искажались весьма неприятным явлением — квантовой когерентностью.

Чтобы измерить все квантовые состояния нужен инструмент, который может проводить множество измерений состояний частицы с течением времени.

Но как увеличить и так микроскопическое состояние квантовой частицы? Ответ нашла группа международных исследователей. С помощью квантового микроскопа — устройства, которое использует фотоионизацию для прямых наблюдений атомных структур.

В своей статье в популярном журнале Physical Review Letters, Aneta Stodolna работающая в институте молекулярной физики (AMOLF) в Нидерландах рассказывает, как она и ее команда получили структуры узловых электронных орбиталей атома водорода помещенных в статическом электрическом поле.

Методика работы

После облучения лазерными импульсами, ионизированные электроны покидали свои орбиты и по измеренной траектории попадали в 2D детектор (двойная микроканальная пластина . Детектор расположен перпендикулярно к самому полю). Существует множество траекторий, по которым могут перемещаться электронов до столкновения с детектором. Это обеспечивает исследователей набором интерференционных картин, — моделей которые отражают узловую структуру волновой функции.
Исследователи использовали электростатическую линзу, которая увеличивает исходящую волну электронов более чем в 20000 раз.

Физикам из США удалось запечатлеть на фото отдельные атомы с рекордным разрешением, передает Day.Az со ссылкой на Vesti.ru

Ученым из Корнеллского университета в США удалось запечатлеть на фото отдельные атомы с рекордным разрешением - меньше половины ангстрема (0,39 Å). Предыдущие фотографии обладали вдвое низким разрешением - 0,98 Å.

Мощные электронные микроскопы, способные увидеть атомы, существуют уже полвека, однако их разрешающая способность ограничена длинной волны видимого света, которая больше диаметра атома средней величины.

Поэтому ученые используют некий аналог линз, фокусирующих и увеличивающих изображение в электронных микроскопах - им выступает магнитное поле. Однако колебания магнитного поля искажают полученный результат. Чтобы убрать искажения, используют дополнительные устройства, которые корректируют магнитное поле, но вместе с тем увеличивают сложность конструкции электронного микроскопа.

Ранее физики из Корнеллского университета разработали устройство Electron Microscope Pixel Array Detector (EMPAD), заменяющее сложную систему генераторов, фокусирующих входящие электроны одной небольшой матрицей с разрешением 128х128 пикселей, чувствительных к отдельным электронам. Каждый пиксель регистрирует угол отражения электрона; зная его, ученые при помощи техники птайкографии реконструируют характеристики электронов, включая координаты точки, откуда он был выпущен.

Атомы в самом большом разрешении

David A. Muller et al. Nature, 2018.

Летом 2018 года физики решили улучшить качество получаемых снимков до рекордного до сегодняшнего дня разрешения. Ученые закрепили на подвижной балке лист 2D материала - сульфида молибдена MoS2, и выпустили пучки электронов, поворачивая балку под разными углами к источнику электронов. С помощью EMPAD и птайкографии ученые определили расстояния между отдельными атомами молибдена и получили изображение с рекордным разрешением - 0,39 Å.

"Практически мы создали самую маленькую в мире линейку", - объясняет Сол Грюнер (Sol Gruner), один из авторов эксперимента. На полученном снимке удалось разглядеть атомы серы с рекордным разрешением 0,39 Å. Причем удалось даже разглядеть место, где одного такого атома не хватает (указано стрелочкой).

Атомы серы в рекордном разрешении

Давайте попробуем. Не думаю, что все написанное ниже полностью справедливо, и я вполне мог что-то упустить, но анализ существующих ответов на подобные вопросы и собственные размышления выстроились вот во что:

Возьмем атом водорода: один протон и один электрон на его орбите.

Радиус атома водорода - это как раз радиус орбиты его электрона. В природе он равен 53 пикометрам, то есть 53×10^-12 метра, мы же хотим увеличить его до 30×10^-2 метра - где-то в 5 миллиардов раз.

Диаметр протона (то есть, нашего атомного ядра) - 1.75×10^−15 м. Если увеличить его до желаемых размеров, он окажется размером 1×10^−5 метра, то есть одна сотая миллиметра. Это неразличимо неворуженным взглядом.

Давайте лучше увеличим протон сразу до размеров горошины. Орбита электрона окажется тогда радиусом с футбольное поле.

Протон будет представлять собой область положительного заряда. Он состоит из трех кварков, которые меньше его примерно в тысячу раз - их мы точно не увидим. Существует мнение, что если посыпать этот гипотетический объект магнитной стружкой, она соберется вокруг центра в сферическое облачко.

Электрон увидеть не выйдет. Никакой шарик вокруг атомного ядра летать не будет, «орбита» электрона представляет собой лишь область, в разных точках которой электрон может находиться с разной вероятностью. Можно представить это себе как сферу диаметром со стадион вокруг нашей горошины. В случайных точках внутри этой сферы возникает и моментально пропадает отрицательный электрический заряд. Причем, делает это настолько быстро, что даже в любой отдельно взятый момент времени говорить о его конкретном расположении не имеет смысла... да, это непостижимо. Проще говоря, это никак не «выглядит».

Интересно, кстати, что, увеличив атом до макроскопических размеров, мы надеемся его «увидеть» - то есть, засечь отраженный от него свет. На самом же деле атомы обыкновенных размеров свет не отражают, речь в атомных масштабах идет о взаимодействиях между электронами и фотонами. Электрон может поглотить фотон и перейти на следующий энергетический уровень, он может испустить фотон и так далее. При гипотетическом увеличении этой системы до размеров футбольного поля понадобится слишком много допущений, чтобы предсказать поведение этой невозможной конструкции: будет ли фотон так же воздействовать на гигантский атом? Нужно ли «смотреть» на него, бомбардируя его специальными гигантскими фотонами? Будет ли он излучать гиганские фотоны? Все эти вопросы, строго говоря, не имеют смысла. Думаю, впрочем, можно с уверенностью сказать, что атом не станет отражать свет так, как делал бы это металлический шарик.



Понравилась статья? Поделитесь с друзьями!