Какие бывают виды галактик. Виды галактик во вселенной

Основываясь на результатах своих подсчётов, Гершель предпринял попытку определить размеры Галактики. Он заключил, что наша звёздная система имеет конечные размеры и образует своего рода толстый диск: в плоскости Млечного Пути она простирается на расстояние не более 850 единиц, а в перпендикулярном направлении - на 200 единиц, если принять за единицу расстояние до Сириуса. По современной шкале расстояний это соответствует 7300 х 1700 световых лет.

Эта оценка в целом, верно, отражает структуру Млечного Пути, хотя она весьма неточна. Дело в том, что кроме звёзд в состав диска Галактики входят также многочисленные газопылевые облака, которые ослабляют свет удалённых звёзд. Первые исследователи Галактики не знали об этом поглощающем веществе и считали, что они видят все её звёзды.

Истинные размеры Галактики были установлены только в XX в. Оказалось, что она является значительно более плоским образованием, чем предполагали ранее. Диаметр галактического диска превышает 100 тыс. световых лет, а толщина - около 1000 световых лет. По внешнему виду Галактика напоминает чечевичное зерно с утолщением посередине.

Из-за того, что Солнечная система находится практически в плоскости Галактики, заполненной поглощающей материей, очень многие детали строения Млечного Пути скрыты от взгляда земного наблюдателя. Однако их можно изучать на примере других галактик, сходных с нашей. Так, в 40-е гг. XX столетия, наблюдая галактику М 31, больше известную как туманность Андромеды, немецкий астроном Вальтер Бааде (в те годы он работал в США) заметил, что плоский линза образный диск этой огромной галактики погружён в более разреженное звёздное облако сферической формы - гало. Поскольку туманность Андромеды очень похожа на нашу Галактику, Бааде предположил, что подобная структура имеется и у Млечного Пути. Звёзды галактического диска были названы населением I типа, а звёзды гало (или сферической составляющей) - населением II типа.

Как показывают современные исследования, два вида звёздного населения отличаются не только пространственным положением, но и характером движения, а также химическим составом. Эти особенности связаны в первую очередь с различным происхождением диска и сферической составляющей.

ГАЛО. Границы нашей Галактики определяются размерами гало. Радиус гало значительно больше размеров диска и по некоторым данным достигает нескольких сот тысяч световых лет. Центр симметрии гало Млечного Пути совпадает с центром галактического диска. Состоит гало в основном из очень старых, неярких мало массивных звёзд. Они встречаются как поодиночке, так и в виде шаровых скоплений, которые могут включать в себя более миллиона звёзд. Возраст населения сферической составляющей Галактики превышает 12 млрд. лет. Его обычно принимают за возраст самой Галактики.

Характерной особенностью звёзд гало является чрезвычайно малая доля в них тяжёлых химических элементов. Звёзды, образующие шаровые скопления, содержат металлов в сотни раз меньше, чем Солнце.

Звёзды сферической составляющей концентрируются к центру Галактики. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж (в переводе с английского "утолщение").

Звёзды и звёздные скопления гало движутся вокруг центра Галактики по очень вытянутым орбитам. Из-за того, что вращение отдельных звёзд происходит почти беспорядочно (т. е. скорости соседних звёзд могут иметь самые различные направления), гало в целом вращается очень медленно.

ДИСК. По сравнению с гало диск вращается заметно быстрее. Скорость его вращения не одинакова на различных расстояниях от центра. Она быстро возрастает от нуля в центре до 200-240 км/с на расстоянии 2 тыс. световых лет от него, затем несколько уменьшается, снова возрастает примерно до того же значения и далее остаётся почти постоянной. Изучение особенностей вращения диска позволило оценить его массу. Оказалось, что она в 150 млрд. раз больше массы Солнца.

Население диска очень сильно отличается от населения гало. Вблизи плоскости диска концентрируются молодые звёзды и звёздные скопления, возраст которых не превышает нескольких миллиардов лет. Они образуют так называемую плоскую составляющую. Среди них очень много ярких и горячих звёзд.

Газ в диске Галактики также сосредоточен в основном вблизи его плоскости. Он распределён неравномерно, образуя многочисленные газовые облака - от гигантских неоднородных по структуре сверх облаков протяжённостью несколько тысяч световых лет до маленьких облачков размерами не больше парсека.

Основным химическим элементом в нашей Галактике является водород. Приблизительно на 1/4 она состоит из гелия. По сравнению с этими двумя элементами остальные присутствуют в очень небольших количествах. В среднем химический состав звёзд и газа в диске почти такой же, как у Солнца.

ЯДРО. Одной из самых интересных областей Галактики считается её центр, или ядро, расположенное в направлении созвездия Стрельца. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи. Поэтому его начали изучать только после создания приёмников инфракрасного и радиоизлучения, которое поглощается в меньшей степени.

Для центральных областей Галактики характерна сильная концентрация звёзд: в каждом кубическом парсеке вблизи центра их содержатся многие тысячи. Расстояния между звёздами в десятки и сотни раз меньше, чем в окрестностях Солнца. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звёзд, по яркости сопоставимых с Луной, и многие тысячи более ярких, чем самые яркие звёзды нашего неба.

Помимо большого количества звёзд в центральной области Галактики наблюдается околоядерный газовый диск, состоящий преимущественно из молекулярного водорода. Его радиус превышает 1000 световых лет. Ближе к центру отмечаются области ионизованного водорода и многочисленные источники инфракрасного излучения, свидетельствующие о происходящем там звездообразовании. В самом центре Галактики предполагается существование массивного компактного объекта - чёрной дыры массой около миллиона масс Солнца. В центре находится также яркий радиоисточник Стрелец А, происхождение которого связывают с активностью ядра.

СПИРАЛЬНЫЕ ВЕТВИ. Одним из наиболее заметных образований в дисках галактик, подобных нашей, являются спиральные ветви (или рукава). Они и дали название этому типу объектов - спиральные галактики. Спиральная структура в нашей Галактике очень хорошо развита. Вдоль рукавов в основном сосредоточены самые молодые звёзды, многие рассеянные звёздные скопления и ассоциации, а также цепочки плотных облаков меж звёздного газа, в которых продолжают образовываться звёзды. В спиральных ветвях находится большое количество переменных и вспыхивающих звёзд, в них чаще всего наблюдаются взрывы некоторых типов сверхновых. В отличие от гало, где какие-либо проявления звёздной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвёздного пространства в звёзды и обратно. Галактическое магнитное поле, пронизывающее весь газовый диск, также сосредоточено главным образом в спиралях.

Спиральные рукава Млечного Пути в значительной степени скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвёздного водорода, концентрирующегося вдоль Длинных спиралей. По современным представлениям, спиральные Рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звёзд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны. Над этой проблемой работают многие астрофизики.

Связанная силами гравитационного взаимодействия. Количество звезд и размеры галактик могут быть различными. Как правило, галактики содержат от нескольких миллионов до нескольких триллионов (1 000 000 000 000) звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные . Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд. галактик.

По классификации, предложенной астрономом Эдвином Хабблом, в 1925 году существуют несколько видов галактик:

  • эллиптические(E),
  • линзообразные(S0),
  • обычные спиральные(S),
  • пересеченные спиральные(SB),
  • неправильные (Ir).


Эллиптические галактики — класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они сравнительно медленно вращаются, заметное вращение наблюдается только у галактик со значительным сжатием. В таких галактиках нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой — большим или меньшим сжатием.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной — около 25 %.

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа (почти сферического утолщения в центре галактики). Спиральные галактики имеют центральное сгущение и несколько спиральных ветвей, или рукавов, которые имеют голубоватый цвет, так как в них присутствует много молодых гигантских звезд. Эти звезды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Диск спиральной галактики обычно окружён большим сфероидальным гало (светящееся кольцо вокруг объекта; оптический феномен), состоящим из старых звёзд второго поколения. Все спиральные галактики вращаются со значительными скоростями, поэтому звезды, пыль и газы сосредоточены у них в узком диске. Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов говорит об активных процессах звездообразования, происходящих в спиральных рукавах этих галактик.



Многие спиральные галактики имеют в центре перемычку (бар), от концов которой отходят спиральные рукава. Наша Галактика также относится к спиральным галактикам с перемычкой.

Линзообразные галактики — это промежуточный тип между спиральными и эллиптическими. У них есть балдж, гало и диск, но нет спиральных рукавов. Их примерно 20% среди всех звездных систем. В этих галактиках яркое основное тело - линза, окружено слабым ореолом. Иногда линза имеет вокруг себя кольцо.

Неправильные галактики — это галактики, которые не обнаруживают ни спиральной, ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции , происходящий под действием гравитационных сил. Как предполагают ученые, около 14 млрд. лет назад произошел большой взрыв, после которого Вселенная везде была одинаковой. Затем частицы пыли и газа начали группироваться, объединяться, сталкиваться и таким образом появлялись сгустки, которые позднее превращались в галактики. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Скопление газообразного водорода в пределах таких сгустков стало первыми звездами.

С момента зарождении галактика начинает сжиматься. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.

Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.

Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения . К ним относится наше .

Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10-15 млрд. лет назад.

Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик. Очень важным открытием явилось то, что некоторые ядра галактик активны. Это открытие было неожиданным. Раньше считалось, что ядро галактики - это не больше чем скопление сотен миллионов звёзд. Оказалось, что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течение короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы, происходящие в них, «активность».

В 1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали . Сейчас считается, что ядра некоторых галактик представляют собой квазары.


Подумайте о самых крупных объектах ночного неба, изображения которых вы видели. Да, конечно, они бывают совершенно разными – умирающие звёзды, остатки сверхновых, формирующие звёзды туманности и звёздные скопления, как старые, так и новые – но ничто не сравнится с красотой спиральных галактик. Содержащие от миллиардов до триллионов звёзд, эти «островные вселенные» демонстрируют уникальную структуру. Структуру довольно-таки загадочную, если задуматься об этом – как задумался читатель Грег Роджерс:

Что меня всегда удивляло по поводу спиральных галактик, так это их рукава, обёрнутые вокруг них не более чем на половину галактики. Поскольку внешняя часть вращается вокруг ядра медленнее, можно было бы ожидать встретить галактики, рукава которых обёрнуты множество раз вокруг ядра. Неужто Вселенная недостаточно старая для того, чтобы в ней появились так сильно закрученные галактики?

Рассматривайте какие угодно спиральные галактики, но у всех них будет схожая видимая структура.


Из центрального ядра наружу тянутся несколько спиральных рукавов – обычно от двух до четырёх – оборачивающихся вокруг галактики по мере удаления от центра. Одно из фантастических открытий 1970-х, вступившее в противоречие с ожиданиями, заключалось в том, что скорость движения звёзд по орбите вокруг галактики не уменьшается по мере отдаления от ядра – так, как это происходит с планетами в Солнечной системе, которые путешествуют по орбитам тем медленнее, чем дальше они расположены от центра. Скорость вращения звёзд остаётся постоянной – это ещё один из способов сказать, что у кривых вращения галактик плоский профиль.

Мы измеряли это, изучая галактики, расположенные к нам ребром, и подсчитывая, какое красное или синее смещение демонстрируют звёзды по отношению к их расстоянию от центра галактики. И хотя скорости отдельных звёзд практически не меняются, звезда, расположенная в два раза дальше от центра обращается вокруг него в два раза медленнее, а расположенная в десять раз дальше – в десять раз медленнее.

Вооружившись этим, можно подсчитать, что для галактики типа нашего Млечного пути Солнцу требуется 220 млн лет для завершения одного оборота вокруг галактики. Поскольку мы расположены примерно в 26000 световых годах от центра Галактики, наша позиция чуть ближе, чем половина пути от центра до самых окраин. Это значит, что поскольку нашей галактики около 12 млрд лет, внешние звёзды должны были совершить полный оборот всего 25 раз. Звёзды, расположенные так же, как Солнце, сделали 54 оборота. Звёзды внутри круга радиусом 10 000 световых лет совершили уже более 100 оборотов. Иначе говоря, можно ожидать, что галактики со временем закручиваются, как показано на видео ниже.

Но как показывают фотографии галактик, они не закручиваются многократно. В большинстве случаев рукава не обхватывают галактику даже единожды! Когда это свойство галактик выяснилось впервые, оно означало, по меньшей мере, следующее: эти спиральные рукава были нематериальны, это всего лишь видимость. И это так, вне зависимости от того, изолированы галактики или нет. Но есть ещё кое-что, если присмотреться.

Заметили розовые пятнышки, расположенные вдоль рукавов? Они появляются там, где присутствуют активные регионы формирования новых звёзд. Розовая точка – излишки излучаемого света на вполне определённой длине волны: 656,3 нм. Это излучение происходит, когда новые звёзды горят достаточно ярко для того, чтобы ионизировать газы, и затем, когда электроны воссоединяются с протонами, новообразованные атомы водорода испускают свет на определённой частоте, включая и ту, что делает эти регионы розовыми.

Нам это говорит о том, что эти спиральные рукава состоят из регионов, в которых плотность материала выше, чем в других частях галактики, и что звёзды свободно заходят и выходят из этих рукавов с течением времени.

Идея, объясняющая это, существует с 1964 года, и известна, как теория волн плотности . Теория утверждает, что рукава остаются на тех же самых местах с течением времени, так, как пробки на дороге остаются на тех же местах. Отдельные объекты (звёзды в галактике, автомобили на дороге) могут двигаться сквозь них, но примерно одно и то же количество объектов в любой момент всегда остаётся в «пробке». Из-за этого расположение уплотнённых участков остаётся неизменным.

Физика процесса проста: звёзды в определённых регионах создают привычные нам силы гравитации, и именно они и сохраняют спиральную форму. Иначе говоря, если мы начнём с региона с повышенной плотностью газа, и позволим нашему диску вращаться, то получим изначальный набор регионов, где впервые формируются звёзды: прото-рукава. С эволюцией галактики эти рукава – и регионы повышенной плотности – сохраняются только лишь благодаря эффектам гравитации.

Удивительно, что этот эффект так же хорошо работает как при наличии тёмной материи, окружающей галактику в виде гигантского гало, так и при её отсутствии.


Слева – галактика без тёмной материи, справа – с тёмной материей

И хотя предположения вопроса Грега были неверны, поскольку внешние звёзды галактики двигаются с такой же скоростью, как и внутренние, рукава и правда никогда не заворачиваются, вне зависимости от возраста галактики – просто из-за физики самой галактики. Как и пробки на дорогах, звёзды, газ и пыль, оказывающиеся в спиральных рукавах в любой момент времени, находятся в более плотном окружении, а когда они вырываются оттуда, расстояние от них до других звёзд увеличивается – в таком положении сегодня находится и наше Солнце.

Многие факты, известные сегодня, кажутся такими знакомыми и привычными, что трудно представить, как раньше жили без них. Однако научные истины в большинстве своем возникли не на заре человечества. Во многом это касается познаний о космическом пространстве. Виды туманностей, галактик, звезд сегодня известны почти каждому. Между тем путь к современному пониманию был достаточно длительным. Люди далеко не сразу осознали, что планета — часть Солнечной системы, а она — Галактики. Виды галактик стали изучаться в астрономии еще позже, когда пришло понимание, что Млечный путь не одинок и им Вселенная не ограничивается. как и вообще познания космоса вне «молочной дороги», стал Эдвин Хаббл. Благодаря его исследованиям сегодня мы очень многое знаем о галактиках.

Виды галактик во Вселенной

Хаббл изучал туманности и доказал, что многие из них являются формированиями, схожими с Млечным путем. На основе собранного материала он описал, какой вид имеет галактика и какие типы подобных космических объектов существуют. Хаббл измерил расстояния до некоторых из них и предложил свою классификацию. Ей ученые пользуются и сегодня.

Все множество систем во Вселенной он разделил на 3 вида: галактики эллиптические, спиралевидные и неправильные. Каждый тип активно изучается астрономами всего мира.

Кусочек Вселенной, где расположена Земля, Млечный путь, относится к типу «спиралевидные галактики». Виды галактик выделяются на основе различий их форм, влияющих на определенные свойства объектов.

Спиралевидные

Виды галактик распространены по Вселенной не одинаково. По современным данным чаще других встречаются спиралевидные. Кроме Млечного пути к этому типу относится Туманность Андромеды (М31) и галактика в (М33). Подобные объекты имеют легко узнаваемое строение. Если посмотреть со стороны, как выглядит такая галактика, вид сверху будет напоминать расходящиеся по воде концентрические круги. От сферического центрального утолщения, называемого балджем, расходятся спиральные рукава. Число таких ответвлений бывает разным — от 2 до 10. Весь диск со спиральными рукавами находится внутри разреженного облака звезд, которое в астрономии называется «гало». Ядро же галактики представляет собой скопление светил.

Подтипы

В астрономии для обозначения спиралевидных галактик используется буква S. Их делят на типы в зависимости от структурной оформленности рукавов и особенностей общей формы:

    галактика Sa: рукава туго закрученные, гладкие и неоформленные, балдж яркий и протяженный;

    галактика Sb: рукава мощные, четкие, балдж менее выражен;

    галактика Sc: рукава хорошо развиты, представляют собой клочковатую структуру, балдж просматривается плохо.

Кроме того, некоторые спиральные системы обладают центральной практически прямой перемычкой (ее называют «бар»). В обозначение галактики в этом случае добавляется буква B (Sba или Sbc).

Формирование

Образование спиралевидных галактик, судя по всему, схоже с появлением волн от удара камня по поверхности воды. К возникновению рукавов, по мнению ученых, привел некий толчок. Сами спиральные ответвления представляют собой волны повышенной плотности вещества. Природа толчка может быть различной, один из вариантов — перемещения в звезд.

Спиральные ответвления — это молодые звезды и нейтральный газ (основной элемент — водород). Они лежат в плоскости вращения галактики, потому она напоминает сплющенный диск. Образование молодых звезд возможно и в центре таких систем.

Ближайшая соседка

Туманность Андромеды — спиралевидная галактика: вид сверху на нее выявляет несколько рукавов, исходящих из общего центра. С Земли невооруженным глазом ее можно увидеть как размытое туманное пятно. По своим размерам соседка нашей галактики несколько превосходит ее: 130 тысяч световых лет в диаметре.

Туманность Андромеды хотя и самая близкая к Млечному пути галактика, а расстояние до нее огромно. Свету для того, чтобы преодолеть его, требуется два миллиона лет. Этот факт отлично объясняет, почему полеты к соседней галактике пока возможны только в фантастических книгах и фильмах.

Эллиптические системы

Рассмотрим теперь другие виды галактик. Фото эллиптической системы хорошо демонстрирует ее отличие от спиралевидного собрата. У такой галактики нет рукавов. Она похожа на эллипс. Подобные системы могут быть сжатыми в разной степени, представлять собой нечто вроде линзы или же шара. В таких галактиках практически не встречается холодный газ. Наиболее внушительные представители этого типа заполнены разреженным горячим газом, температура которого достигает миллиона градусов и выше.

Отличительная черта многих эллиптических галактик — красноватый оттенок. Долгое время астрономы полагали это признаком древности таких систем. Считалось, что они в основном состоят из старых звезд. Однако исследования последних десятилетий показали ошибочность этого предположения.

Образование

Долгое время бытовала еще одна гипотеза, связанная с эллиптическими галактиками. Они считались самыми первыми из возникших, сформировавшимися вскоре после Большого взрыва. Сегодня эта теория считается устаревшей. Большой вклад в ее опровержение внесли немецкие астрономы Алар и Юрий Тумре, а также американский ученый Франсуа Швайцер. Их исследования и открытия последних лет подтверждают истинность другой гипотезы, иерархической модели развития. Согласно ей более крупные структуры формировались из достаточно небольших, то есть галактики образовались далеко не сразу. Их появлению предшествовало образование звездных скоплений.

Эллиптические системы по современным представлениям сформировались из спиралевидных в результате слияния рукавов. Одно из подтверждений этого — большое количество «закрученных» галактик, наблюдаемое в удаленных участках космоса. Напротив, в наиболее приближенных областях заметно выше концентрация эллиптических систем, достаточно ярких и протяженных.

Символы

Эллиптические галактики в астрономии также получили свои обозначения. Для них используют символ «Е» и цифры от 0 до 6, которыми указывается степень уплощения системы. Е0 — это галактики практически правильной шаровой формы, а Е6 — самые плоские.

Бушующие ядра

К эллиптическим галактикам относятся системы NGC 5128 из созвездия Кентавра и М87, расположенное в Деве. Их особенностью является мощное радиоизлучение. Астрономов в первую очередь интересует устройство центральной части таких галактик. Наблюдения российских ученых и исследования телескопа Хаббла показывают достаточно высокую активность этой зоны. В 1999 году американские астрономы получили данные о ядре эллиптической галактике NGC 5128 (созвездие Кентавр). Там в постоянном движении находятся огромные массы горячего газа, закручивающегося вокруг центра, возможно, черной дыры. Точных данных о природе таких процессов пока нет.

Системы неправильной формы

Она расположена также в Большом Магеллановом Облаке. Здесь ученые обнаружили область постоянного звездообразования. Некоторым светилам, составляющим туманность, всего два миллиона лет. Кроме того, здесь же расположена самая внушительная из обнаруженных на 2011 год звезд — RMC 136a1. Ее масса составляет 256 солнечных.

Взаимодействие

Основные виды галактик описывают особенности формы и расположения элементов этих космических систем. Однако не менее интересен вопрос об их взаимодействии. Не секрет, что все объекты космоса находятся в постоянном движении. Не исключение и галактики. Виды галактик, по крайней мере, некоторые из их представителей могли образоваться в процессе слияния или столкновения двух систем.

Если вспомнить, что представляют собой такие объекты, становится понятным, насколько масштабные изменения происходят во время их взаимодействия. При столкновении высвобождается колоссальное количество энергии. Интересно, что подобные события даже более вероятны на просторах космоса, чем встреча двух звезд.

Однако не всегда «общение» галактик заканчивается столкновением и взрывом. Небольшая система может пройти сквозь своего крупного собрата, потревожив при этом его структуру. Так образуются формирования, схожие по внешнему виду с вытянутыми коридорами. Они состоят из звезд и газа и часто становятся зонами образования новых светил. Примеры таких систем хорошо известны ученым. Один из них — галактика Колесо телеги в созвездии Скульптор.

В некоторых случаях системы не соударяются, а проходят мимо друг друга или лишь слегка соприкасаются. Однако независимо от степени взаимодействия оно приводит к серьезным изменениям структуры обеих галактик.

Будущее

По предположениям ученых не исключено, что через некоторое, довольно продолжительное, время Млечный путь поглотит ближайшего своего спутника, относительно недавно обнаруженную крохотную по космическим меркам систему, расположенную на расстоянии 50 световых лет от нас. Данные исследований свидетельствуют о внушительной продолжительности жизни этого спутника, которая, вероятно, закончится в процессе слияния со своим более крупным соседом.

Столкновение — возможное будущее для Млечного пути и Туманности Андромеды. Сейчас огромного соседа отделяет от нас примерно 2,9 миллиона световых лет. Две галактики приближаются друг к другу со скоростью 300 км/с. Вероятное столкновение по расчетам ученых случится через три миллиарда лет. Однако произойдет ли оно или галактики лишь слегка заденут друг друга, сегодня точно никто не знает. Для прогнозирования не хватает данных об особенностях движения обоих объектов.

Современная астрономия подробно изучает такие космические структуры, как галактики: виды галактик, особенности взаимодействия, их отличия и сходства, будущее. В этой области еще немало непонятного и требующего дополнительного изучения. Виды строения галактик известны, но нет точного понимания многих деталей, связанных, например, с их образованием. Современные темпы совершенствования знания и техники, однако, позволяют надеяться на значительные прорывы в будущем. В любом случае галактики не перестанут быть центром множества исследований. И связано это не только с любопытством, присущим всем людям. Данные о космических закономерностях и жизни позволяют спрогнозировать будущее нашего кусочка Вселенной, галактики Млечный путь.



Понравилась статья? Поделитесь с друзьями!