Что такое сила гравитационного взаимодействия. Сила гравитации

На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами - физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы - мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот - более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с 2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с 2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых "Началах натуральной философии". Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Онираспространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m 1 и m 2 , находящимися на расстоянии r, такова:

  • F=Gm 1 m 2 /r 2 ,
    где G — константа пропорциональности, гравитационная постоянная.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35"" за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43"". (Наблюдаемая прецессия равна действительно 570""/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43"".)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором - гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы - это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация - это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы - это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.

6.7 Потенциальная энергия гравитационного притяжения.

Все тела, обладающие массой, притягиваются друг к другу с силой, подчиняющейся закону всемирного тяготения И.Ньютона. Следовательно, притягивающиеся тела обладают энергией взаимодействия.

Покажем, что работа гравитационных сил не зависит от формы траектории, то есть гравитационные силы также являются потенциальными. Для этого рассмотрим движение небольшого тела массой m , взаимодействующего с другим массивным телом массы M , которое будем полагать неподвижным (рис. 90). Как следует из закона Ньютона сила \(~\vec F\) , действующая между телами, направлена вдоль линии, соединяющей эти тела. Поэтому при движении тела m по дуге окружности с центром в точке, где находится тело M , работа гравитационной силы равна нулю, так как векторы сил и перемещения все время остаются взаимно перпендикулярными. При движении вдоль отрезка, направленного к центру тела M , векторы перемещения и силы параллельны, поэтому в этом случае при сближении тел работа гравитационной силы положительна, а при удалении тел – отрицательна. Далее заметим, что при радиальном движении работа силы притяжения зависит только от начального и конечного расстояния между телами. Так при движении по отрезкам (см. рис.91) DE и D 1 E 1 совершенные работы равны, так как законы изменения сил от расстояния на обоих отрезках одинаковы. Наконец, произвольную траекторию тела m можно разбить на набор дуговых и радиальных участков (например, ломаная ABCDE ). При движении по дугам работа равна нулю, при движении по радиальным отрезкам работа не зависит от положения этого отрезка – следовательно, работа гравитационной силы зависит только от начального и конечного расстояния между телами, что и требовалось доказать.

Заметьте, что при доказательстве потенциальности мы воспользовались только тем фактом, что гравитационные силы являются центральными, то есть направленными вдоль прямой, соединяющей тела, и не упоминали о конкретном виде зависимости силы от расстояния. Следовательно, все центральные силы являются потенциальными .

Мы доказали потенциальность силы гравитационного взаимодействия между двумя точечными телами. Но для гравитационных взаимодействий справедлив принцип суперпозиции – сила, действующая на тело со стороны системы точечных тел, равна сумме сил парных взаимодействий, каждая из которых является потенциальной, следовательно, и их сумма также потенциальна. Действительно, если работа каждой силы парного взаимодействия не зависит от траектории, то и их сумма также не зависит от формы траектории. Таким образом, все гравитационные силы потенциальны .

Нам осталось получить конкретное выражение для потенциальной энергии гравитационного взаимодействия.

Для вычисления работы силы притяжения между двумя точечными телами достаточно подсчитать эту работу при движении вдоль радиального отрезка при изменении расстояния от r 1 до r 2 (рис. 92).

Очередной раз воспользуемся графическим методом, для чего построим зависимость силы притяжения \(~F = G \frac{mM}{r^2}\) от расстояния r между телами, тогда площадь под графиком этой зависимости в указанных пределах и будет равна искомой работе (рис. 93). Вычисление этой площади представляет собой не слишком сложную задачу, требующее, однако, определенных математических знаний и навыков. Не вдаваясь в детали этого расчета, приведем конечный результат, для данной зависимости силы от расстояния площадь под графиком, или работа силы притяжения определяется формулой

\(~A_{12} = GmM \left(\frac{1}{r_2} - \frac{1}{r_1} \right)\) .

Так как мы доказали, что гравитационные силы являются потенциальными, эту работу равна уменьшению потенциальной энергии взаимодействия, то есть

\(~A_{12} = GmM \left(\frac{1}{r_2} - \frac{1}{r_1} \right) = -\Delta U = -(U_2 - U_1)\) .

Из этого выражения можно определить выражение для потенциальной энергии гравитационного взаимодействия

\(~U(r) = - G \frac{mM}{r}\) . (1)

При таком определении потенциальная энергия отрицательна и стремится к нулю при бесконечном расстоянии между телами \(~U(\infty) = 0\) . Формула (1) определяет работу, которую совершит сила гравитационного притяжения при увеличении расстояния от r до бесконечности, так как при таком движении векторы силы и перемещения направлены в противоположные стороны, то эта работа отрицательна. При противоположном движении, при сближении тел от бесконечного расстояния до расстояния, работа силы притяжения будет положительна. Эту работу можно подсчитать по определению потенциальной энергии \(~A_{\infty \to r}U(r) = - (U(\infty)- U(r)) = G \frac{mM}{r}\) .

Подчеркнем, что потенциальная энергия является характеристикой взаимодействия, по меньшей мере, двух тел. Нельзя говорить о том, что энергия взаимодействия «принадлежит» одному из тел, или каким образом «разделить эту энергию между телами». Поэтому, когда мы говорим об изменении потенциальной энергии, мы подразумеваем изменение энергии системы взаимодействующих тел. Однако в некоторых случаях допустимо все же говорить об изменении потенциальной энергии одного тела. Так, при описании движения небольшого, по сравнению с Землей, тела в поле тяжести Земли, говорим о силе действующей на тело со стороны Земли, как правило, не упоминая и не учитывая равную силу, действующую со стороны тела на Землю. Дело в том, что при громадной массе Земли, изменение ее скорости исчезающее мало. Поэтому изменение потенциальной энергии взаимодействия приводит к заметному изменению кинетической энергии тела и бесконечно малому изменению кинетической энергии Земли. В такой ситуации допустимо говорить о потенциальной энергии тела вблизи поверхности Земли, то есть всю энергию гравитационного взаимодействия «приписать» небольшому телу. В общем случае можно говорить о потенциальной энергии отдельного тела, если остальные взаимодействующие тела неподвижны.

Мы неоднократно подчеркивали, что точка, в которой потенциальная энергия принимается равной нулю, выбирается произвольно. В данном случае такой точкой оказалась бесконечно удаленная точка. В некотором смысле этот непривычный вывод, может быть признан разумным: действительно, на бесконечном расстоянии исчезает взаимодействие – исчезает и потенциальная энергия. С этой точки зрения логичным выглядит и знак потенциальной энергии. Действительно, чтобы разнести два притягивающиеся тела внешние силы должны совершить положительную работу, поэтому в таком процессе потенциальная энергия системы должна возрастать: вот она возрастает, возрастает и … становится равной нулю! Если притягивающиеся тела соприкасаются, то сила притяжения не может совершать положительную работу, если же тела разнесены, то такая работа может быть совершена при сближении тел. Поэтому часто говорят, о том, что притягивающиеся тела обладают отрицательной энергией, а энергия отталкивающихся тел положительна . Это утверждение справедливо, только в том случае, если нулевой уровень потенциальной энергии выбирается на бесконечности.

Так если два тела связаны пружиной, то при увеличении расстояния между телами, между ними будет действовать сила притяжения, тем не менее, энергия их взаимодействия является положительной. Не забывайте, что нулевому уровню потенциальной энергии соответствует состояние недеформированной пружины (а не бесконечность).

1. Введение

Все весомые тела взаимно испытывают тяготение, эта сила обуславливает движение планет вокруг солнца и спутников вокруг планет. Теория гравитации - теория созданная Ньютоном, стояла у колыбели современной науки. Другая теория гравитации, разработанная Эйнштейном, является величайшим достижением теоретической физики 20 века. В течении столетий развития человечества люди наблюдали явление взаимного притяжения тел и измеряли его величину; они пытались поставить это явление себе на службу, превзойти его влияние, и наконец, уже в самое последнее время рассчитывать его с чрезвычайной точностью во время первых шагов вглубь Вселенной.

Необозримая сложность окружающих нас тел обусловлена прежде всего такой многоступенчатой структурой, конечные элементы которой - элементарные частицы - обладают сравнительно небольшим числом видов взаимодействия. Но эти виды взаимодействия резко отличаются по своей силе. Частицы, образующие атомные ядра, связаны между собой самыми могучими из всех известных нам сил; для того чтобы отделить эти частицы друг от друга, необходимо затратить колоссальное количество энергии. Электроны в атоме связаны с ядром электромагнитными силами; достаточно сообщить им весьма скромную энергию, (как правило, достаточно энергии химической реакции) как электроны уже отделяются от ядра. Если говорить об элементарных частицах и атомах, то для них самым слабым взаимодействием является гравитационное взаимодействие.

При сопоставлении с взаимодействием элементарных частиц гравитационные силы настолько слабы, что это трудно себе представить. Тем не менее они и только они полностью регулируют движение небесных тел. Это происходит потому, что тяготение сочетает в себе две особенности, из-за которых его действие усиливается, когда мы переходим к крупным телам. В отличие от атомного взаимодействия, силы гравитационного притяжения ощутимы и на больших удаленьях от созидающих их тел. Кроме того гравитационные силы - это всегда силы притяжения, то есть тела всегда притягиваются друг к другу.

Развитие теории гравитации произошло в самом начале `становления современной науки на примере взаимодействия небесных тел. Задачу облегчило то, что небесные тела движутся в вакууме мирового пространства без побочного влияния других сил. Блестящие астрономы - Галилей и Кеплер - подготовили своими трудами почву для дальнейших открытий в этой области. В дальнейшем великий Ньютон сумел придумать целостную теорию и придать ей математическую форму.

2. Ньютон и его предшественники

Среди всех сил, которые существуют в природе, сила тяготения отличается прежде всего тем, что проявляется повсюду. Все тела обладают массой, которая определяется как отношение силы, приложенной к телу, к ускорению, которое приобретает под действием этой силы тело. Сила притяжения, действующая между любыми двумя телами, зависит от масс обоих тел; она пропорциональна произведению масс рассматриваемых тел. Кроме того, сила тяготения характеризуется тем, что она подчиняется закону обратной пропорциональности квадрату расстояния. Другие силы могут зависеть от расстояния совсем иначе; известно немало таких сил.

Один аспект всемирного тяготения - удивительная двойственная роль, которую играет масса, - послужила краеугольным камнем для построения общей теории относительности. Согласно второму закону Ньютона масса является характеристикой всякого тела, которая показывает, как будет вести себя тело, когда к нему прикладывается сила, независимо от того, будет ли это сила тяжести или какая - то другая сила. Так как все тела, по Ньютону, в качестве отклика на внешнюю силу ускоряются (изменяют свою скорость) , масса тела определяет, какое ускорение испытывает тело, когда к нему приложена заданная сила. Если одна и та же сила прикладывается к велосипеду и автомобилю, каждый из них достигнет определенной скорости в разное время.

Но по отношению к тяготению масса играет еще и другую роль, совсем не похожую на ту, какую она играла как отношение силы к ускорению: масса является источником взаимного притяжения тел; если взять два тела и посмотреть, с какой силой они действуют на третье тело, расположенного на одном и том же расстоянии сначала от одного, а затем от другого тела, мы обнаружим, что отношение этих сил равно отношению первых двух масс. Фактически оказывается, что эта сила пропорциональна массе источника. Сходным образом, согласно третьему закону Ньютона, силы притяжения, которые испытывают два различных тела под действием одного и того же источника притяжения (на одном и том же расстоянии от него) , пропорциональны отношению масс этих тел. В инженерных науках и повседневной жизни про силу, с которой тело притягивается к земле, говорят как о весе тела.

Итак, масса входит в связь, которая существует между силой и ускорением; с другой стороны, масса определяет величину силы притяжения. Такая двойственная роль массы приводит к тому, что ускорение различных тел в одном и том же гравитационном поле оказывается одинаковым. Действительно, возьмем два различных тела с массами m и M соответственно. Пусть оба они свободно падают на Землю. Отношение сил притяжения, испытываемых этими телами, равно отношению масс этих тел m/M. Однако ускорение, приобретаемое ими, оказывается одинаковым. Таким образом, ускорение, приобретаемое телами в поле тяготения, оказывается для всех тел в одном и том же поле тяготения одинаковым и совсем не зависит от конкретных свойств падающих тел. Это ускорение зависит только от масс тел, создающих поле тяготения, и от расположения этих тел в пространстве. Двойственная роль массы и вытекающее из нее равенство ускорения всех тел в одном и том же гравитационном поле известно под названием принципа эквивалентности. Это название имеет историческое происхождение, подчеркивающее то обстоятельство, что эффекты тяготения и инерции до известной степени эквивалентны.

На поверхности Земли ускорение силы тяжести, грубо говоря, равно 10 м/сек2. Скорость свободно падающего тела, если не учитывать сопротивление воздуха при падении, возрастает на 10 м/сек. Каждую секунду. Например, если тело начнет свободно падать из состояния покоя, то к концу третьей секунды его скорость будет равна 30 м/сек. Обычно ускорение свободного падения обозначается буквой g. Из-за того, что форма Земли не строго совпадает с шаром, величина g на Земле не везде одинакова; она больше у полюсов, чем на экваторе, и меньше на вершинах больших гор, чем в долинах. Если величина g определяется с достаточной точностью, то на ней сказывается даже геологическая структура. Этим объясняется то, что в геологические методы поисков нефти и других полезных ископаемых входит также точное определение величины g.

То, что в данном месте все тела испытывают одинаковое ускорение, - характерная особенность тяготения; такими свойствами никакие другие силы не обладают. И хотя Ньютону не оставалось ничего лучшего, как описать этот факт, он понимал всеобщность и единство ускорения тяготения. На долю немецкого физика - теоретика Альберта Эйнштейна (1870 - 1955) выпала честь выяснить принцип, на основе которого можно было объяснить это свойство тяготения, принцип эквивалентности. Эйнштейну также принадлежат основы современного понимания природы пространства и времени.

3. Специальная теория относительности

Уже со времен Ньютона считалось, что все системы отсчета представляют собой набор жестких стержней или каких - - то других предметов, позволяющих устанавливать положение тел в пространстве. Конечно, в каждой системе отсчета такие тела выбирались по - своему. Вместе с тем принималось, что у всех наблюдателей одно и то же время. Это предположение казалось интуитивно настолько очевидным, что специально не оговаривалось. В повседневной практике на Земле это предположение подтверждается всем нашим опытом.

Но Эйнштейну удалось показать, что сравнения показаний часов, если принимать во внимание их относительное движение, не требует особого внимания лишь в том случае, когда относительные скорости часов значительно меньше, чем скорость распространения света в вакууме. Итак, первым результатом анализа Эйнштейна явилось установление относительности одновременности: два события, происходящие на достаточном удаления друг от друга, могут оказаться для одного наблюдателя одновременными, а для наблюдателя, движущегося относительно него, происходящими в разные моменты времени. Поэтому предположение о едином времени не может быть оправданно: невозможно указать определенную процедуру, позволяющую любому наблюдателю установить такое универсальное время независимо от того движения, в котором он участвует. В системе отсчета должны присутствовать еще и часы, движущиеся вместе с наблюдателем и синхронизированные с часами наблюдателя.

Следующий шаг, сделанный Эйнштейном, состоял в установлении новых взаимоотношений результатов измерений расстояний и времени в двух различных инерциальных системах отсчета. Специальная теория относительности вместо “абсолютных длин” и “абсолютного времени” явила на свет иную “абсолютную величину” , которую принято называть инвариантным пространственно - временным интервалом. Для двух заданных событий, происходящих на некотором удалении друг от друга, пространственное расстояние между ними не является абсолютной (т.е. не зависящим от системы отсчета) величиной даже в Ньютоновской схеме, если между наступлением этих событий есть некоторый интервал времени. Действительно, если два события происходят не одновременно, наблюдатель, движущийся с некоторой системой отсчета в одном направлении и оказавшийся в той точке, где наступило первое событие, может за промежуток времени, разделяющий два эти события, оказаться в том месте, где наступает второе событие; для этого наблюдателя оба события будут происходить в одном и том же месте пространства, хотя для наблюдателя, движущегося в противоположном направлении, они могут показаться происшедшими на значительном удалении друг от друга.

4. Теория относительности и гравитация

Чем глубже уходят научные исследования в конечные составляющие вещества и чем меньше остается число частиц и сил, действующих между ними, тем настойчивее становятся требования исчерпывающего понимания действия и структуры каждой компоненты материи. Именно по этой причине, когда Эйнштейн и другие физики убедились в том, что специальная теория относительности пришла на смену ньютоновской физике, они занялись снова фундаментальными свойствами частиц и силовых полей. Наиболее важным объектом, требующим пересмотра, была гравитация.

Но почему бы несоответствие между относительностью времени и законом тяготения Ньютона не разрешить столь же просто, как в электродинамике? Следовало бы ввести представление о гравитационном поле, которое распространялось бы примерно так же, как электрическое и магнитное поля, и которое оказалось бы посредником при гравитационном взаимодействии тел, в согласии с представлениями теории относительности. Это гравитационное взаимодействие сводилось бы к ньютоновскому закону тяготения, когда относительные скорости рассматриваемых тел были бы малы по сравнению со скоростью света. Эйнштейн попытался построить релятивистскую теорию тяготения на этой основе, но одно обстоятельство не позволило ему осуществить это намерение: никто ничего не знал о распространении гравитационного взаимодействия с большой скоростью, имелась лишь некоторая информация относительно эффектов, связанных с большими скоростями движения источников гравитационного поля - масс.

Влияние больших скоростей на массы непохоже на влияние больших скоростей на заряды. Если электрический заряд тела остается одним и тем же для всех наблюдателей, масса тел зависит от их скорости относительно наблюдателя. Чем выше скорость, тем больше наблюдаемая масса. Для заданного тела наименьшая масса будет определена наблюдателем, относительно которого тело покоится. Это значение массы называется массой покоя тела. Для всех остальных наблюдателей масса окажется больше массы покоя на величину, равную кинетической энергии тела, деленной на c. Значение массы стало бы бесконечным в той системе отсчета, в которой скорость тела стала бы равной скорости света. О такой системе отсчета можно говорить лишь условно. Поскольку величина источника тяготения столь существенно зависит от системы отсчета, в которой определяется ее значение, порождаемое массой поле должно быть более сложным, чем электромагнитное поле. Эйнштейн заключил поэтому, что гравитационное поле, по - видимому, представляет собой так называемое тензорное поле, описываемое большим числом компонент, чем электромагнитное поле.

В качестве следующего исходного принципа Эйнштейн постулировал, что законы гравитационного поля должны получаться на основе математической процедуры, аналогичной процедуре, приводящей к законам электромагнитной теории; законы гравитационного поля, получаемые таким способом, очевидно, должны быть сходны по форме с законами электромагнетизма. Но даже принимая во внимание все эти соображения, Эйнштейн обнаружил, что он может построить несколько различных теорий, которые в равной степени удовлетворяют всем требованиям. Нужна была иная точка зрения, чтобы однозначно прийти к релятивистской тории тяготения. Эйнштейн нашел такую новую точку зрения в принципе эквивалентности, согласно которому ускорение, приобретаемое телом в поле сил тяготения, не зависит от характеристик этого тела.

5. Относительность свободного падения

В специальной теории относительности, как и в ньютоновской физике, постулируется существование инерциальных систем отсчета т.е. систем относительно которых тела движутся без ускорения, когда на них не действуют внешние силы. Экспериментальное нахождение такой системы зависит от того, сможем ли мы поставить пробные тела в такие условия, когда на них не действуют никакие внешние силы, причем должно быть экспериментальное подтверждение отсутствия таких сил. Но если наличие, например, электрического (или любого другого силового) поля может быть обнаружено по различию в действии, которые эти поля оказывают на различные пробные частицы, то все пробные частицы, помещенные в одно и то же поле тяготения, приобретают одно и то же ускорение.

Однако даже при наличии гравитационного поля существует некоторый класс систем отсчета, который может быть выделен чисто локальными экспериментами. Так как все гравитационные ускорения в данной точке (малой области) у всех тел одинаковы как по величине, так и по направлению, все они окажутся равными нулю по отношению к системе отсчета, которая ускоряется вместе с другими физическими объектами, которые находятся под действием только силы тяготения. Такая система отсчета называется свободно падающая система отсчета. Такую систему нельзя неограниченно продолжить на все пространство и на все моменты времени. Она может быть однозначно определена лишь в окрестности мировой точки, в ограниченной области пространства и для ограниченного промежутка времени. В этом смысле свободно падающие системы отсчета можно назвать локальными системами отсчета. По отношению свободно падающим системам отсчета материальные тела, на которые не действуют никакие силы, кроме сил тяготения, не испытывают ускорения.

Свободно падающие системы отсчета в отсутствие гравитационных полей тождественны с инерциальными системами отсчета; в этом случае они неограниченно продолжимы. Но такое неограниченное распространение систем становится невозможным, когда появляются гравитационные поля. То, что свободно падающие системы вообще существуют хотя бы только как локальные системы отсчета, есть прямое следствие принципа эквивалентности, которому подчиняются все гравитационные эффекты. Но тот же самый принцип ответственен за то, что никакими локальными процедурами невозможно построить инерциальные системы отсчета при наличии гравитационных полей.

Эйнштейн рассматривал принцип эквивалентности как самое фундаментальное свойство тяготения. Он понял, что от представления о неограниченно продолжимых инерциальных системах отсчета следует отказаться пользу локальных свободно падающих систем отсчета; и лишь поступив таким образом, можно принять принцип эквивалентности как основную часть фундамента физики. Такой подход дал возможность физикам глубже заглянуть в природу тяготения. Наличие гравитационных полей оказывается равносильным невозможности распространения в пространстве и времени локальной свободно падающей системы отсчета; таким образом, при изучении гравитационных полей следует фокусировать внимание не столько на локальной величине поля, сколько на неоднородности гравитационных полей. Ценность такого подхода, который в конечном счете отрицает универсальность существования инерциальных систем отсчета, состоит в том, что он ясно показывает следующее: нет никаких оснований принимать без размышлений возможность построения инерциальных систем отсчета, несмотря на то, что такие системы использовались на протяжении нескольких столетий.

6. Тяготение во времени и пространстве

В теории тяготения Ньютона ускорение тяготения, вызываемое заданной большой массой, пропорционально этой массе и обратно пропорционально квадрату расстояния от этой массы. Тот же самый закон можно сформулировать немного иначе, но при этом мы сможем выйти на релятивистский закон тяготения. Эта иная формулировка опирается на представление о гравитационном поле как о чем - то таком, что впечатано в окрестность большой гравитирующей массы. Поле можно полностью описать, задавая в каждой точке пространства вектор, величина и направление которого соответствуют тому гравитационному ускорению. Которое приобретает любое пробное тело, помещенное в эту точку. Можно описать поле тяготения графически, проводя в нем кривые, касательная к которым в каждой точке пространства совпадает с направлением локального поля тяготения (ускорения) ; эти кривые проводятся с плотностью (определенное число кривых на единицу площади поперечного сечения, рис. 2) , равной величине локального поля. Если рассматривается одна большая масса, такие кривые - их называют силовыми линиями - оказываются прямыми линиями; эти прямые указывают прямо на тело, создающее поле тяготения.

Обратно пропорциональная зависимость от квадрата расстояния выражается графически так: все силовые линии начинаются на бесконечности и заканчиваются на больших массах. Если плотность силовых линий равна величине ускорения, число линий, проходящих через сферическую поверхность, центр которой расположен на большой массе, как раз равно плотности силовых линий, умноженной на площадь сферической поверхности радиуса r; площадь сферической поверхности пропорциональна квадрату его радиуса. В общем случае ньютоновский закон обратной зависимости от квадрата расстояния может быть приведен в такой форме, которая в равной степени пригодна для источника тяготения в виде одной большой массы и для произвольного распределения масс: все силовые линии гравитационного поля начинаются на бесконечности и оканчиваются на самих массах. Полное число силовых линий, оканчивающихся в некоторой области, содержащей массы, пропорционально полной массе, заключенной в этой области. Кроме того, гравитационное поле - поле консервативное: силовые линии не могут принимать форму замкнутых кривых, а перемещение пробного тела вдоль замкнутой кривой не может привести ни к выигрышу, ни к потере энергии.

В релятивистской теории гравитации роль источников отводится комбинациям массы и импульса (импульс выступает связующим звеном между состоянием одного и того же объекта в разных четырехмерных или, лоренцевых, системах отсчета) . Неоднородности релятивистского поля тяготения описываются тензором кривизны. Тензор представляет собой математический объект, полученный обобщением представления о векторах. В многообразии, описываемом с помощью координат, тензорам можно сопоставить компоненты, полностью определяющие тензор. Релятивистская теория связывает тензор кривизны с тензором, описывающим поведение источников тяготения. Эти тензоры пропорциональны друг другу. Коэффициент пропорциональности определяется из требования: закон тяготения в тензорной форме должен сводиться к ньютоновскому закону тяготения для слабых гравитационных полей и при малых скоростях тел; этот коэффициент пропорциональности с точностью до мировых констант равен постоянной тяготения Ньютона. Этим шагом Эйнштейн завершил построение теории тяготения, называемой иначе общей теорией относительности.

7. Заключение

Общая теория относительности дала возможность несколько иначе взглянуть на вопросы, связанные с гравитационными взаимодействиями. Она включила в себя всю ньютонов скую механику только как частный случай при малых скоростях движения тел. При этом открылась широчайшая область для исследования Вселенной, где силы тяготения играют решающую роль.

ЛИТЕРАТУРА:

П. БЕРГМАН “ЗАГАДКА ГРАВИТАЦИИ” ЛОГУНОВ “РЕЛЯТИВИСТСКАЯ ТЕОРИЯ ГРАВИТАЦИИ”

ВЛАДИМИРОВ “ПРОСТРАНСТВО, ВРЕМЯ, ГРАВИТАЦИЯ”

Гравитационное взаимодействие проявляется в притяжении друг к другу тел. Объясняется это взаимодействие наличием гравитационного поля вокруг каждого тела.

Модуль силы гравитационного взаимодействия между двумя материальными точками массойm 1 иm 2 расположенными на расстоянииrдруг от друга

(2.49)

где F 1,2 ,F 2,1 – силы взаимодействия направленные вдоль прямой соединяющей материальные точки,G= 6,67
– гравитационная постоянная.

Соотношение (2.3) носит название закона всемирного тяготения открытого Ньютоном.

Гравитационное взаимодействие справедливо для материальных точек и тел со сферически-симметричным распределением масс, расстояние между которыми отсчитывается от их центров.

Если принять одно из взаимодействующих тел Землю, а второе – тело с массой m, находящееся вблизи или на её поверхности, то между ними действует сила притяжения

, (2.50)

где M 3 ,R 3 – масса и радиус Земли.

Соотношение
- постоянная величина равная 9,8 м/с 2 , обозначаетсяg, имеет размерность ускорения и называетсяускорением свободного падения.

Произведение массы тела mи ускорения свободного падения, называетсясилой тяжести

. (2.51)

В отличие от силы гравитационного взаимодействия модуль силы тяжести
зависит от географической широты места расположения тела на Земле. На полюсах
, а на экваторе уменьшается на 0,36%. Это различие обусловлено тем, что Земля вращается вокруг своей оси.

С удалением тела относительно поверхности Земли на высоту уменьшается сила тяжести

, (2.52)

где
– ускорение свободного падения на высотеhот Земли.

Масса в формулах (2.3-2.6) является мерой гравитационного взаимодействия.

Если подвесить тело или положить его на неподвижную опору, оно будет покоиться относительно Земли, т.к. сила тяжести уравновешивается силой реакции,действующей на тело со стороны опоры или подвеса.

Сила реакции – сила, с которой действуют на данное тело другие тела, ограничивающие его движение.

Сила нормальной реакции опоры приложена к телу и направлена перпендикулярно плоскости опоры.

Сила реакции нити (подвеса)направлена вдоль нити (подвеса)

Вес тела сила, с которой тело давит на опору или растягивает нить подвеса и приложена к опоре или подвесу.

Вес численно равен силе тяжести если тело находится на горизонтальной поверхности опоры в состоянии покоя или равномерного прямолинейного движения. В других случаях вес тела и сила тяжести не равны по модулю.

2.6.3.Силы трения

Силы трения возникают в результате взаимодействия движущихся и покоящихся тел, соприкасающихся друг с другом.

Различают внешнее (сухое) и внутреннее (вязкое) трение.

Внешнее сухое трение делится на:

Перечисленным видам внешнего трения соответствуют силы трения, покоя, скольжения, качения.

С

ила трения покоя
действует между поверхно­стями взаи­мо­действую­щих тел, когда величина внеш­них сил недостаточна, чтобы вызвать их от­носи­тель­ное перемещение.

Если к телу, находящемуся в соприкосновении с другим телом, приложить возрастающую внешнюю силу , параллельную плоскости соприкосновения (рис. 2.2.а), то при измененииот нуля до некоторого значения
движение тела не возникает. Тело начинает движение приFF тр. max .

Максимальная сила трения покоя

, (2.53)

где – коэффициент трения покоя,N– модуль силы нормальной реакции опоры.

Коэффициент трения покоя можно определить экспериментально, нахождением тангенса угла наклона к горизонту поверхности, с которой начинает скатываться тело под действием его силы тяжести.

При F>
происходит скольжение тел относительно друг друга с некоторой скоростью(рис. 2.11 б).

Сила трения скольжения направлена против скорости . Модуль силы трения скольжения при малых скоростях движения вычисляется в соответствии с законом Амонтона

, (2.54)

где – безразмерный коэффициент трения скольжения, зависящий от материала и состояния поверхности соприкасающихся тел, и всегда меньше.

Сила трения качения возникает тогда, когда тело, имеющее форму цилиндра или шара радиусом R, катится по поверхности опоры. Численное значение силы трения качения определяется в соответствии с законом Кулона

, (2.55)

где k[м] – коэффициент трения качения.



Понравилась статья? Поделитесь с друзьями!