Математические науки. Период математики переменных величин

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом , либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук , и как часть математических наук; механика - и физика , и математика; информатика , компьютерные технологии и алгоритмика относятся как к инженерии , так и к математическим наукам и т. д. В литературе было предложено много различных определений математики (см. ).

Этимология

Слово «математика» произошло от др.-греч. μάθημα (máthēma ), что означает изучение , знание , наука , и др.-греч. μαθηματικός (mathēmatikós ), первоначально означающего восприимчивый, успевающий , позднее относящийся к изучению , впоследствии относящийся к математике . В частности, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē ), на латыни ars mathematica , означает искусство математики .

Определения

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ , данное А. Н. Колмогоровым :

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств,- именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм - математических структур.

Приведём ещё несколько современных определений.

Современная теоретическая («чистая») математика - это наука о математических структурах, математических инвариантах различных систем и процессов .

Математика - наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований .

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику , изучаемую в средней школе и образованную дисциплинами:

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification . Этот стандарт периодически обновляется. Текущая версия - это MSC 2010 . Предыдущая версия - MSC 2000 .

Обозначения

Вследствие того, что математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также математического анализа (понятия функции, производной и т. д.). Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов .

Краткая история

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки , не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу . Существовало множество различных систем счисления . Первые известные записи чисел были найдены в папирусе Ахмеса , созданном египтянами Среднего царства . Индская цивилизация разработала современную десятичную систему счисления , включающую концепцию нуля .

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур , пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики - создать математическую модель , достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика - обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, - то можно абстрагироваться и от формы, оставив у модели только одну характеристику - количество. Абстракция и установление связей между объектами в самом общем виде - одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием - обобщение . Например, обобщая понятие «пространство » до пространства n-измерений. «Пространство , при является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях ».

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода : сначала для исследуемых объектов формулируются список основных понятий и аксиом , а затем из аксиом с помощью правил вывода получают содержательные теоремы , в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона . Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством , однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем , которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело - Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики .

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику , более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного , многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств - бессмысленными (неформализуемыми).

Конструктивная математика

Конструктивная математика - близкое к интуиционизму течение в математике, изучающее конструктивные построения [прояснить ] . Согласно критерию конструктивности - «существовать - значит быть построенным ». Критерий конструктивности - более сильное требование, чем критерий непротиворечивости.

Основные темы

Числа

Понятие «число» первоначально относилось к натуральным числам . В дальнейшем оно было постепенно распространено на целые , рациональные , действительные , комплексные и другие числа.

Целые числа Рациональные числа Вещественные числа Комплексные числа Кватернионы

Преобразования

Арифметика Дифференциальное и интегральное исчисление Векторный анализ Анализ
Дифференциальные уравнения Динамические системы Теория хаоса

Дискретная математика

Коды в системах классификации знаний

Онлайновые сервисы

Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них англоязычные. Из русскоязычных можно отметить сервис математических запросов поисковой системы Nigma .

См. также

Популяризаторы науки

Примечания

  1. Энциклопедия Britannica
  2. Webster’s Online Dictionary
  3. Глава 2. Математика как язык науки . Сибирский открытый университет. Архивировано из первоисточника 2 февраля 2012. Проверено 5 октября 2010.
  4. Большой древнегреческий словарь (αω)
  5. Словарь русского языка XI-XVII вв. Выпуск 9 / Гл. ред. Ф. П. Филин . - М .: Наука , 1982. - С. 41.
  6. Декарт Р. Правила для руководства ума. М.-Л.: Соцэкгиз, 1936.
  7. См.: Математика БСЭ
  8. Маркс К., Энгельс Ф. Сочинения. 2-е изд. Т. 20. С. 37.
  9. Бурбаки Н. Архитектура математики. Очерки по истории математики / Перевод И. Г. Башмаковой под ред. К. А. Рыбникова. М.: ИЛ, 1963. С. 32, 258.
  10. Казиев В. М. Введение в математику
  11. Мухин О. И. Моделирование систем Учебное пособие. Пермь: РЦИ ПГТУ.
  12. Герман Вейль // Клайн М. . - М .: Мир, 1984. - С. 16.
  13. Государственный образовательный стандарт высшего профессионального образования. Специальность 01.01.00. «Математика». Квалификация - Математик. Москва, 2000 (Составлено под руководством О. Б. Лупанова)
  14. Номенклатура специальностей научных работников , утверждённая приказом Минобрнауки России от 25.02.2009 № 59
  15. УДК 51 Математика
  16. Я. С. Бугров, С. М. Никольский. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1988. С. 44.
  17. Н. И. Кондаков. Логический словарь-справочник. М.: Наука, 1975. С. 259.
  18. Г. И. Рузавин. О природе математического знания. М.: 1968.
  19. http://www.gsnti-norms.ru/norms/common/doc.asp?0&/norms/grnti/gr27.htm
  20. Например: http://mathworld.wolfram.com

Литература

Энциклопедии
  • //
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Математическая энциклопедия (в 5-ти томах), 1980-е гг. // Общие и специальные справочники по математике на EqWorld
  • Кондаков Н. И. Логический словарь-справочник. М.: Наука, 1975.
  • Энциклопедия математических наук и их приложений (нем.) 1899-1934 гг. (крупнейший обзор литературы XIX века)
Справочники
  • Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров М., 1973 г.
Книги
  • Клайн М. Математика. Утрата определённости . - М .: Мир, 1984.
  • Клайн М. Математика. Поиск истины. М.: Мир, 1988.
  • Клейн Ф. Элементарная математика с точки зрения высшей.
  • Том I. Арифметика. Алгебра. Анализ М.: Наука, 1987. 432 с.
  • Том II. Геометрия М.: Наука, 1987. 416 с.
  • Курант Р. , Г. Роббинс. Что такое математика? 3-e изд., испр. и доп. - М.: 2001. 568 с.
  • Писаревский Б. М., Харин В. Т. О математике, математиках и не только. - М .: Бином. Лаборатория знаний, 2012. - 302 с.
  • Пуанкаре А. Наука и метод (рус.) (фр.)

Однозначного ответа на вопрос о том, что такое математика, даже сегодня еще не существует, несмотря на то, что данная наука зародилась достаточно давно, практически на заре цивилизации. На протяжении всего времени она обогащалась, все больше при этом утверждаясь и обновляясь в качестве закономерностей окружающего мира.

Благодаря расширению и изменению многогранных связей математики с практикой, человечеству предоставляется уникальная возможность открывать и использовать те или иные законы природы. В нынешнее время она является поистине могучим и мощным двигателем техники и науки.

Интересует это многих, но ответить на данный вопрос непросто. Безусловно, каждый способен дать свой собственный ответ, который будет зависеть от уровня его математических знаний. Для ученика средней школы это обобщенное название арифметики, алгебры, геометрии и начал анализа. Для студента технического ВУЗа это - наука, состоящая из нескольких десятков отдельных разделов.

Следует отметить, что число таких разделов со временем неустанно увеличивается, так как по мере своего развития современная математика постоянно обогащается новыми сведениями. Ну, а для маленького ребенка эта наука заключается в умении считать. Тем не менее, вся наша жизнь неразрывно связана с решением разнообразных математических задач.

Аналогично определению, что такое математика, не существует и общепринятого четкого определения предмета данной науки. В прошлом считалось, что решение таких задач заключается в измерении величин либо чисел. Но спустя некоторое время возникло определение математики как учения о бесконечных величинах.

Современный мир рассматривает математику как науку о математических структурах. Данный термин был введен группой французских математиков, известных миру под псевдонимом Бурбаки.

Данная наука не является произвольным творением мысли. Она отображает объективный мир в несколько абстрактном виде. Ее изучения основаны на понятиях, полученных путем абстрагирования от явлений непосредственно реального мира и, кроме того, от предыдущих абстракций.

Возникновение таких абстракций тесно связано с реальной действительностью. Более того, после решения той или иной математической задачи ее результат фиксируется, а затем применяется к различным явлениям, физическая природа которых существенно отличается друг от друга.

К примеру, изучение математики нередко сводится к решению конкретных задач: размножения бактерий, как изменяется атмосферное давление, или как определить скорость радиоактивного распада. При этом решение всех этих задач сводится к одному и тому же дифференциальному уравнению.

Подобную абстрактность довольно сложно не только понять, но и прочувствовать взрослому, а тем более ученику. Именно поэтому так важно сделать изучение математики доступным каждому. А для этого требуется соблюсти баланс конкретики и абстракции, интуитивности и строгости, не утратив легкости объяснений сложных понятий.

Безусловно, сегодня трудно найти кого-то, кто не имел бы представления о том, что такое математика. Но, как правило, многие ошибочно полагают, что это всего лишь арифметика, подразумевающая изучение чисел и определенных действий с их помощью, таких, как умножение или деление.

Но если углубиться в данную науку, можно понять, что на самом деле это понятие намного объемнее. Ведь математика является своеобразным способом описания мира и сочетания одних его частей с другими. В математических символах, описывающих Вселенную, выражаются взаимоотношения чисел.

Но Это уже отдельный вопрос. Подобный процесс требует терпения, желания и внимания. Однако все не так сложно. Каждому свойственно преуспевать в математике, поскольку доказано, что «ощущение числа» является врожденной способностью.

Никакого результата зазубривание аксиом, теорем и заучивание формул, к сожалению, не даст. Главное - это понимать суть математической теории и ее законов. И особого внимания требует умение делать выводы из тех утверждений, которые были поставлены.

Математика возникла очень давно. Человек собирал фрукты, выкапывал плоды, ловил рыбу и запасал все это на зиму. Чтобы понять, сколько запасено пищи человек изобрел счет. Так начала зарождаться математика.

Затем человек стал заниматься земледелием. Надо было измерять участки земли, строить жилища, измерять время.

То есть человеку стало необходимо использовать количественное отношение реального мира. Определить сколько собрали урожая, каковы размеры участка под застройку или как велик участок неба, на котором определенное количество ярких звезд.

Кроме того, человек стал определять формы: солнце круглое, короб квадратный, озеро овальное, и как эти предметы располагаются в пространстве. То есть человек стал интересоваться пространственными формами реального мира.

Таким образом, понятие математика можно определить как науку о количественных отношениях и пространственных формах реального мира.

В настоящее время нет ни одной профессии, где бы можно было бы обойтись без математики. Известный немецкий математик Карл Фридрих Гаусс, которого назвали «королем математики» как-то сказал:

«Математика – царица наук, арифметика – царица математики».

Слово «арифметика» происходит от греческого слова «арифмос» – «число».

Таким образом, арифметика это раздел математики, изучающий числа и действия над ними.

В начальной школе, прежде всего, изучают арифметику.

Как же развивалась эта наука, давайте, исследуем этот вопрос.

Период зарождения математики

Основным периодом накопления математических знаний считается время до V века до нашей эры.

Первым, кто стал доказывать математические положения – древнегреческий мыслитель , живший в VII веке до нашей эры предположительно 625 – 545 года. Этот философ путешествовал по странам востока. Предания говорят, что он учился у египетских жрецов и вавилонских халдеев.

Фалес Милетский принес из Египта в Грецию первые понятия элементарной геометрии: что такое диаметр, чем определяется треугольник и так далее. Он предсказал солнечное затмение, проектировал инженерные сооружения.

В этот период постепенно складывается арифметика, развивается астрономия, геометрия. Зарождается алгебра и тригонометрия.

Период элементарной математики

Это период начинается с VI до нашей эры. Теперь математика возникает как наука с теориями и доказательствами. Появляется теория чисел, учение о величинах, об их измерении.

Наиболее известным математиком этого времени является Евклид. Он жил в III веке до нашей эры. Этот человек является автором первого из дошедших до нас теоретического трактата по математике.

В трудах Евклида даны основы, так называемой евклидовой геометрии – это аксиомы, упирающиеся на основные понятия, такие как .

В период элементарной математики зарождается теория чисел, а также учение о величинах и их измерении. Впервые появляются отрицательные и иррациональные числа.

В конце этого периода наблюдается создание алгебры, как буквенного исчисления. Сама наука «алгебра» появляется у арабов, как наука о решении уравнений. Слово «алгебра» в переводе с арабского означает «восстановление», то есть перенос отрицательных значений в другую часть уравнения.

Период математики переменных величин

Основоположником этого периода считается Рене Декарт, живший в XVII веке нашей эры. В своих трудах Декарт впервые вводит понятие переменной величины.

Благодаря этому ученые переходят от изучения постоянных величин к изучению зависимостей между переменными величинами и к математическому описанию движения.

Наиболее ярко этот период охарактеризовал Фридрих Энгельс, в своих трудах он писал:

«Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика, и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает, и, которое было в общем и целом завершено, а не изобретено Ньютоном и Лейбницем».

Период современной математики

В 20 годах XIX века Николай Иванович Лобачевский становится основоположником, так называемой неевклидовой геометрии.

С этого момента начинается развитие важнейших разделов современной математики. Такие как теория вероятности, теория множеств, математическая статистика и так далее.

Все эти открытия и исследования находят обширное применение в самых разных областях науки.

И в настоящее время наука математика бурно развивается, расширятся предмет математики, включая новые формы и соотношения, доказываются новые теоремы, углубляются основные понятия.

МАТЕМАТИКА – наука о количественных отношениях и пространственных формах действительного мира; греческое слово (математикэ) происходит от греческого же слова (матема), означающего «знание», «наука».

Математика возникла в глубокой древности из практических потребностей людей. Её содержание и характер изменялись на протяжении всей истории и продолжают изменяться теперь. От первичных предметных представлений о целом положительном числе, а также от представления об отрезке прямой как кратчайшем расстоянии между двумя точками математика прошла длительный путь развития, прежде чем стала абстрактной наукой со специфическими методами исследования.

Современное понимание пространственных форм весьма широко. Оно включает в себя наряду с геометрическими объектами трехмерного пространства (прямая, круг, треугольник, конус, цилиндр, шар и пр.) также многочисленные обобщения – понятия многомерного и бесконечномерного пространства, а также геометрических объектовв них и многое другое. Точно так же количественные отношения выражаются теперь не только целыми положительными или рациональными числами, но и при помощи комплексных чисел, векторов, функций и пр. Развитие науки и техники заставляет математику непрерывно расширять представления о пространственных формах и количественных отношениях.

Понятия математики отвлечены от конкретных явлений и предметов; они получены в результате абстрагирования от качественных особенностей, специфических для данного круга явлений и предметов. Это обстоятельство чрезвычайно существенно для приложений математики. Число 2 не связано неразрывно с каким-либо определенным предметным содержанием. Оно может относиться и к двум яблокам, и к двум книгам, и к двум мыслям. Оно одинаковохорошо относится ко всем этим и бесчисленному множеству других объектов. Точно также геометрические свойства шара не меняются оттого, что он сделан из стекла, стали или стеарина. Конечно, абстрагирования от свойств предмета обедняет наши знания о данном предмете, о его характерных материальных особенностях. В тоже время именно это отвлечение от особых свойств индивидуальных объектов придаёт общность понятиям, делает возможным применение математики к самым разнообразным по материальной природе явлениям. Таким образом, одни и те же закономерности математики, один и тот же математический аппарат могут достаточно удовлетворительно применяться к описанию явлений природы, технического, а так же экономического и социальных процессов.

Абстрактность понятий не является исключительной особенностью математики; любые научные и общие понятия носят в себе элемент отвлечения от свойств конкретных вещей. Но в математике процесс абстрагирования идет дальше, чем в естественных науках; в математике широко используется процесс построения абстракции разных ступеней. Так, понятие группы возникло путем отвлечения от некоторых свойств совокупности чисел и других абстрактных понятий. Для математики является характерным так же способ получения её результатов. Если естествоиспытатель для доказательства своих положений постоянно прибегает к опыту, то математик доказывает свои результаты только посредством логических рассуждений. В математике не один результат не может считаться доказанным, пока ему не надо логическое доказательство, и это даже в том случае, если специальные эксперименты давали подтверждение этого результата. В то же время истинность математических теорий так же проходит проверку практикой, но это проверка носит особый характер: основные понятия математики образуются в результате длительной кристаллизации их из частных запросов практики; сами правила логики выработались лишь после тысячелетий наблюдений за течением процессов в природе; формулировки теорем и постановке задач математики так же возникают из запросов практики. Математика возникла из практических нужд, и её связи с практикой со временем становились всё более и более многообразными и глубокими.

В принципе математика может быть применена к изучению любого типа движения, самых разнообразных явлений. В действительности же её роль в различных областях научной и практической деятельности не одинакова. Особенно велика роль математики в развитии современной физики, химии, многих областей техники, вообще при изучении тех явлений, где даже значительная отвлечение от специфически качественных их особенностей позволяет достаточно точно уловить количественные и пространственные закономерности, свойственные им. Для примера- математическое изучение движение небесных тел, основанная на значительных отвлечениях от их реальных особенностей (тела, например, считается материальными точками), приводила и приводит к прекрасному совпадению с реальным их движением. На этой базе удается не только заблаговременно предвычислять небесные явления (затмения, положения планет и др.), но и по отклонениям истинных движений от вычисленных предсказывать существование планет, не наблюдавшихся ранее (таким путем были открыты Плутон в 1930, Нептун в 1846). Меньшее, но все же значительное место занимает математика в таких науках, как экономика, биология, медицина. Качественное своеобразие явлений, изучаемых в этих науках, настолько велико и так сильно влияет на характер их течения, что математический анализ пока может играть лишь подчиненную роль. Особое же значение для социальных и биологических наук приобретает математическая статистика. Сама математика так же развивается под влиянием требований естествознания, техники, экономики. Да же за последние годы образовался ряд математических дисциплин, возникших на базе запросов практики: информации теория, игр теория и др.

Понятно, что переход от одной ступени познания явлений к следующей, более точной, предъявляет к математике новые требования и приводит к созданию новых понятий, новых методов исследования. Так, требования астрономии, переходивший от чисто описательного знания к точному, привели к выработке основных понятий тригонометрии : во 2 веке до н.э. древнегреческий ученый Гиппарх составил таблицы хорд, соответствующие современным таблицам синусов; древнегреческие ученые в 1 веке Менелай и во 2 веке Клавдий Птолемей создали основы сферической тригонометрии. Повышенный интерес к изучению движения вызванный к жизни развития мануфактурного производства, мореплавания, артиллерии и др., привёл в 17 веке к созданию понятий математического анализа , развитию новой математики. Широкое внедрение математических методов в изучении явлений природы (прежде всего астрономических и физических) и развитии техники (в особенности машиностроения) привели в 18 и 19 веках к бурному развитию теоретической механики и теории дифференциальных уравнений. Развитие идей молекулярного строения материи вызвало стремительное развитие вероятностей теории . В настоящее время мы можем прослеживать на множестве примеров появление новых направлений математических исследований. Особенно значительными нужно признать успехи вычислительной математики и вычислительной техники и производимой ими преобразования многих разделов математики.

Исторический очерк. В истории математики можно наметить четыре периода с существенно качественными отличиями. Эти периоды трудно точно разделить, так как каждый последующий развивался внутри предыдущего и поэтому имелись довольно значительные переходные этапы, когда новые идеи только зарождались и не стали ещё руководящими ни в самой математике, ни в её приложениях.

1) Период зарождения математики как самостоятельной научной дисциплины; начало этого периода теряется в глубине истории; продолжался он приблизительно до 6-5 веков до н. э.

2) Период элементарной математики, математики постоянных величин; он продолжался приблизительно до конца 17 века, когда довольно далеко зашло развитие новой, «высшей», математики.

3) Период математики переменных величин; характеризуется созданием и развитием математического анализа, изучением процессов в их движении, развитии.

4) Период современной математики; характерен сознательным и систематическим изучением возможных типов количественных отношений и пространственных форм. В геометрии изучаются не только реальное трёхмерное пространство, но и сходныес ним пространственные формы. В математическом анализе рассматриваются переменные величины, зависящие не только от числового аргумента, но и от некоторой линии (функции), что приводит к понятиям функционала и оператора . Алгебра превратилась в теорию алгебраических операций над элементами произвольной природы. Лишь бы над ними можно было производить эти операции. Начало этого периода естественно отнести к 1-й половине 19 века.

В Древнем мире математические сведения входили первоначально в виде неотъемлемой составной части в познания жрецов и государственных чиновников. Запас этих сведений, как об этом можно судить по уже расшифрованным глиняным вавилонским табличкам и египетским математическим папирусам, был сравнительно велик. Имеются данные, что за тысячу лет до древнегреческого учёного Пифагора в Двуречье не только была известна теория Пифагора, но и была разрешена задача о разыскании всех прямоугольных треугольников с целочисленными сторонами. Однако подавляющая часть документов того времени представляет собой сборники правил для производства простейших арифметических действий, а также для вычисления площадей фигур и объёмов тел. Сохранились также таблицы разного рода для облегчения этих расчётов. Во всех руководствах правила не формулируются, а поясняются на частых примерах. Превращение математики в формализованную науку с оформившимся дедуктивным методом построения произошло в Древней Греции. Там же математическое творчество перестало быть безымянным. Практическая арифметика и геометрия в Древней Греции имели высокий уровень развития. Начало греческой геометрии связывается с именем Фалеса Милетского (конец 7 века до н.э. -начало 6 века до н.э.) вывезшего первичные знания из Египта. В школе Пифагора Самосского (6 век до н.э.) изучалась делимость чисел, были просуммированы простейшие прогрессии, изучались совершенные числа, введены в рассмотрение различные типы средних (среднее арифметическое, геометрическое, гармоническое), вновь найдены пифагоровы числа (тройки целых чисел, могущих быть сторонами прямоугольного треугольника). В 5-6 веках до н.э. возникли знаменитые задачи древности -квадратура круга, трисекция угла, удвоение куба, были построены первые иррациональные числа. Первый систематический учебник геометрии приписывается Гиппократу Хиосскому (2-я половина 5 века до н.э.). К этому же времени относится значительный успех платоновской школы, связанный с попытками рационального объяснения строения материи Вселенной, -разыскание всех правильных многогранников. На границе 5 и 4 веков до н.э. Демокрит, исходя из атомистических представлений, предложил метод определения объёмов тел. Этот метод можно считать прообразам метода бесконечно малых. В 4 веке до н.э. Евдоксом Книдским была разработана теория пропорций. Наибольшей напряжённостью математического творчества отличается 3 век до н.э. (1 век так называемой Александрийской эпохи). В 3 веке до н.э. работали такие математики, как Евклид, Архимед, Аполлоний Пергский, Эратосфен; позднее – Герон (1 век н.э.) Диофант (3 век). В своих «Началах» Евклид собрал и подверг окончательной логической переработке достижения в области геометрии; вместе с тем он заложил основы теории чисел. Основной заслугой Архимеда в геометрии явилось определение разнообразных площадей и объёмов. Диофант исследовал преимущественно решение уравнений в рациональных положительных числах. С конца 3 века начался упадок греческой математики.

Значительного развития достигла математика в древних Китае и Индии. Китайским математикам свойственны высокая техника производства вычислений и интерес к развитию общих алгебраических методов. Во 2-1 веках до н.э. была написана «Математики в девяти книгах». В ней имеются те самые приёмы извлечения квадратного корня, которые излагаются и в современной школе: методы решения систем линейных алгебраических уравнений, арифметическая формулировка теоремы Пифагора.

Индийской математике, расцвет которой относится к 5-12 векам, принадлежит заслуга употребления современной десятичной нумерации, а также нуля для обозначения отсутствия единиц данного разряда, и заслуга значительно более широкого, чем у Диофанта, развития алгебры, оперирующей не только с положительными рациональными числами, но также с отрицательными и иррациональными числами.

Арабские завоевания привели к тому, что от Средней Азии до Пиренейского полуострова учёные в течение 9-15 веков пользовались арабским языком. В 9 веке среднеазиатский учёный аль- Хорезми впервыеизложил алгебру как самостоятельную науку. В этот период многие геометрические задачи получили алгебраическую формулировку. Сириец аль- Баттани ввёл в рассмотрение тригонометрические функции синус, тангенс и котангенс.Самаркандский учёный аль- Каши (15 век) ввел в рассмотрение десятичные дроби и дал систематическое изложение, сформулировал формулу бинома Ньютона.

Существенно новый период в развитии математики начался в 17 веке, когда в математику ясно вошла идея движения, изменения. Рассмотрение переменных величин и связей между ними привело к понятиям функций, производной и интеграла Дифференциальное исчисление, Интегральное исчисление, к возникновению новой математической дисциплины – математического анализа.

С конца 18 века – начала 19 века в развитии математики наблюдается ряд существенно новых черт. Наиболее характерной из них был интерес к критическому пересмотру ряда вопросов обоснования математики. На смену туманным представлениям о бесконечно малых пришли точные формулировки, связанные с понятием предела.

В алгебре в 19 веке был выяснен вопрос о возможности решения алгебраических уравнений в радикалах (норвежский ученый Н.Абель, французский ученый Э.Галуа).

В 19-20 веках численные методы математики вырастают в самостоятельную ветвь - вычислительную математику. Важные приложения к новой вычислительной технике нашла развивавшаяся в 19-20 веках ветвь математики- математическая логика.

Материал подготовлен Лещенко О.В., учителем математики.



Понравилась статья? Поделитесь с друзьями!