Метод лазерной локации. Применение лазеров в военном деле

Перспективность лазерных систем локации определяется большой шириной оптического диапазона (10 13 -10 15 Гц), в десятки раз превышающей ширину всего освоенного радиодиапазона, и высоким значением частоты оптической несущей. Благодаря этому можно формировать весьма узкие диаграммы излучения и использовать широкие спектры модулированных сигналов.

Поскольку в оптическом диапазоне частота колебаний примерно на 4 порядка выше, чем в СВЧ диапазоне, плотность потока электромагнитной энергии, пропорциональная телесному углу излучения, на заданном расстоянии и при заданных размерах «антенны» и мощности передатчика оказывается примерно в 10 раз выше, чем на СВЧ (при отсутствии поглощения на трассе). Поэтому, несмотря на принципиально худшую чувствительность оптических приемников (мощность порогового сигнала примерно пропорциональна частоте), мощность передатчика, необходимая для ведения разведки примерно на одинаковых расстояниях, может оказаться намного меньшей, чем на СВЧ. Однако указанные преимущества реализуются при локации в свободном пространстве (например, космическом). Наличие поглощения и рассеяния оптических волн в атмосфере при определенных условиях может резко уменьшить дальность слежения за целями.

Принципы построения и структурные схемы как аналоговых, так и дискретных приемных устройств оптической локации такие же, как и в радиодиапазоне.

Высокое значение несущей частоты позволяет использовать широкополосные зондирующие сигналы и, следовательно, обеспечить точное измерение дальности до цели и высокую разрешающую способность по дальности. Обеспечивается также высокая угловая разрешающая способность и хорошая точность определения угловых координат даже при малых размерах антенных устройств. Путем регистрации доплеровского сдвига частоты можно измерять не только большие и средние, но и малые значения скоростей сближения.

Как уже отмечалось выше, приемные устройства оптического диапазона имеют худшую пороговую чувствительность (энергия фотона в оптическом диапазоне велика и при приеме сигналов проявляются квантовые эффекты), а передающие устройства – более низкий к.п.д. (из-за рассеяния и поглощения в атмосфере). Эти особенности определили рациональные области использования оптической локации. Локационные системы оптического диапазона целесообразны в тех случаях, когда требования высокой разрешающей способности и точности определения координат доминируют и за счет априорной информации о местоположении цели путем высокой пространственной концентрации энергии зондирующего сигнала имеется возможность компенсировать худшие показатели приемных и передающих устройств. Так же отмечалось выше, что характеристики локационных систем оптического диапазона зависят от метеоусловий.



В качестве примера целесообразного использования систем оптического диапазона указывают на измерение дальности до различных объектов, обнаруживаемых визуально либо с помощью телевизионных или инфракрасных устройств разведки.

Вследствие высокой аппаратурной разрешающей способности оптических локаторов (обусловленной узкими диаграммами направленности антенн и малой длительностью зондирующих импульсов), как правило, определение координат производят с точностью до размеров объема разрешения, не измеряя положение цели внутри него. В этом случае энергетический потенциал системы определяет режим обнаружения.

Энергия излучения Е и при обнаружении «точечной цели» с эффективной отражающей поверхностью σ на расстоянии r в секторе обзора, ограниченном телесным углом Ω , находят из соотношения:

где Α площадь раскрыва приемной оптики; η к - к.п.д. приемной оптики, учитывающий потери в оптической системе; Ε п - энергия порогового сигнала; е - коэффициент ослабления излучения в атмосфере.

Если размеры цели больше размеров сечения пучка излучения в районе цели (такой случай является типичным при измерении дальности до визуально наблюдаемых объектов), энергию излучения определяют по формуле:

где ρ – коэффициент отражения (альбедо) от цели.

Площадь раскрыва А приемной оптики выбирают из конструктивных соображений. Коэффициент полезного действия приемной оптики с учетом потерь в интерференционном фильтре, стоящем на входе приемника, обычно лежит в пределах η к =30…50%.

Значение эффективной отражающей поверхности σ зависит от размеров, характера цели и используемой длины волны. Для большинства целей по порядку величины она совпадает со значением σ в радиодиапазоне. Коэффициент отражения ρ , как и σ , связан с характером цели. Значение ρ для длин волн используемых в настоящее время лазеров лежит в пределах 0,2…0,9.

Энергия порогового сигнала Ε п зависит от заданной надежности обнаружения (заданных значений вероятности правильного обнаружения и вероятности ложной тревоги), типа используемого приемника, рабочей длины волны, характера и интенсивности шумов.

В большинстве случаев (за исключением тех, когда необходимо измерять доплеровский сдвиг частоты) в локационных устройствах применяют приемники с непосредственным фотодетектированием. Для длин волн, лежащих в видимом и ближнем ИК диапазонах, основным физическим эффектом, используемым для регистрации сигнала, является внешний фотоэффект. При этом первичным наблюдаемым сигналом является последовательность эмиттированных с поверхности фотокатода фотоэлектронов. В средней ИК области используется внутренний фотоэффект и наблюдаемым сигналом являются переходы электронов из валентной области в зону проводимости.

Эмиттированным фотоэлектронам или актам переходов на выходе фотоприемников соответствуют последовательности одноэлектронных импульсов, имеющих тот же закон распределения.

Низкая частота повторения, характерная для большинства лазеров, привела к преимущественному развитию цифровых методов измерения.

На рисунке приведен один из возможных вариантов структурной схемы цифрового дальномерного канала.




Регистром сдвига в момент излучения зондирующего импульса записывается единица. Импульсом синхронизации включается также генератор тактовых импульсов, импульсы которого используются для перемещения единицы вдоль регистра через интервал дискретизации по времени, который соответствует интервалу разрешения. Число разрядов регистра равно числу элементов разрешения по дальности. Выход каждого разряда регистра подключен к одному из входов вентиля совпадения. К другому входу вентиля поступает сигнал с выхода приемного устройства. При срабатывании схемы совпадения сигнал в цифровой форме подается на индикаторное устройство или в систему вторичной обработки.


4. АКУСТИЧЕСКАЯ РАЗВЕДКА

4.1 Общие сведения

Акустическая (вибро-акустическая) разведка ведется путем приема и анализа акустических волн инфразвукового, звукового и ультразвукового диапазонов, распространяющихся в воздушной среде и звукопроводящих материалах, вызванных шумами работающих двигателей машин, агрегатов и различного оборудования, взрывами, выстрелами, речью и т.п.

Для перехвата и регистрации разговоров, ведущихся как на открытой местности, так и в помещениях, автомобилях и т.п. используются средства акустической разведки: микрофоны, направленные микрофоны, контактные микрофоны (стетоскопы), акустические закладки, лазерные системы акустической разведки и т.д.

Те или иные средства акустической разведки выбираются в зависимости от возможности доступа в контролируемое помещение или к лицам, ведущим разговоры на интересующую тему.

Современные микрофоны динамического, конденсаторного или электретного типов имеют чувствительность 20-30 мВ/Па и способны регистрировать голос человека нормальной громкости на расстоянии до 10-15 м, а некоторые образцы на расстоянии до 20 метров. Применение направленных микрофонов и специальных методов шумовой очистки сигналов позволяет вести разведку в городских условиях на расстояниях до 50 м, в прочих условиях (при малых акустических шумах) на расстояниях до 200 м. Использование лазерных микрофонов позволяет вести акустическую разведку помещений с расстояний до 1000 м. Стетоскопы способны улавливать звуковые колебания через бетонные стены толщиной 0,3-0,5 м., а также через двери и оконные рамы.

В случае если имеется доступ в контролируемое помещение, в нем могут быть установлены миниатюрные микрофоны, соединительные линии которых выводятся в специальные помещения, где находится агент и установлена регистрирующая или передающая аппаратура. Длина соединительного кабеля может достигать 5000 м. Такие системы перехвата акустической информации называют проводными системами.

Микрофоны, устанавливаемые в контролируемых помещениях, выпускаются в сверхминиатюрном исполнении (диаметр менее 2 мм). Для улучшения чувствительности некоторые микрофоны комплексируются с предусилителями.

Наиболее широко используются акустические закладки, передающие информацию по радиоканалу. Такие устройства называют радиозакладками (радиомикрофонами и радиостетоскопами). Могут использоваться микрофоны с передачей информации по ИК каналу.

В качестве регистрирующей аппаратуры используются, как правило, магнитофоны и диктофоны с длительным временем записи. Для повышения качества и обеспечения возможности коррекции записанного разговора используются различные фильтры, микрофоны с узкой диаграммой направленности, специальные программно-аппаратные комплексы.

Для повышения скрытности при передаче перехваченного сигнала, например по радиоканалу, используются сложные сигналы (например, шумоподобные или с псевдослучайной перестройкой несущей частоты и т.п.) и различные способы кодирования информации (скремблирование, шифрование и т.д.). Для обеспечения более долговечной работы и энергетической скрытности используются управляемые средства съема. Включение таких закладок производится дистанционно, или, например, только в момент ведения разговоров при наличии акустического сигнала.

Говоря о направленных микрофонах, подразумевают, прежде всего, ситуации акустического контроля источников звука на открытом воздухе, когда эффектами так называемой реверберации акустических полей можно пренебречь. Для таких ситуаций решающим фактором оказывается удаленность источника звука от направленного микрофона, что приводит к значительному ослаблению уровня звукового поля. Кроме того, при большой дистанции становится заметным ослабление звука из-за разрушения пространственной когерентности поля вследствие наличия естественных рассеивателей энергии, например, средне- и крупномасштабных турбулентностей атмосферы, создающих помехи при ветре. Так на дистанции 100 м давление звука ослабляется на величину не менее 40 дБ (по сравнению с дистанцией 1 м), и тогда степень громкости обычного разговора в 60 дБ окажется в точке приема не более 20 дБ. Такое давление меньше уровня реальных внешних акустических помех и пороговой чувствительности обычных микрофонов.

В отличие от обычных, направленные микрофоны должны иметь:

Высокую пороговую акустическую чувствительность как гарантию того, что ослабленный звуковой сигнал превысит уровень собственных (в основном тепловых) шумов приемника. Даже при отсутствии внешних акустических полей это является необходимым условием контроля звука на значительном расстоянии от источника;

Высокую направленность действия как гарантию того, что ослабленный звуковой сигнал превысит уровень остаточных внешних помех. Под высокой направленностью действия понимается способность подавлять внешние акустические помехи с направлений, не совпадающих с направлением на источник звука.

Соблюсти эти требования в полном объеме на практике (для одного микрофона)- задача исключительно сложная. Более реальным стало решение частных задач, например создание слабонаправленного микрофона с высокой чувствительностью или, наоборот, создание высоконаправленного микрофона с малой чувствительностью, что привело к разнообразию видов направленных микрофонов. Рассмотрим некоторые из них.

Параболический микрофон представляет собой отражатель звука параболической формы, в фокусе которого расположен обычный микрофон.



Звуковые волны с осевого направления, отражаясь от параболического зеркала, суммируются в фазе в фокальной точке А. Возникает усиление звукового поля. Чем больше диаметр зеркала, тем большее усиление может обеспечить устройство. Если направление прихода звука не осевое, то сложение отраженных от различных частей параболического зеркала звуковых волн, приходящих в точку А, даст меньший результат, поскольку не все слагаемые будут в фазе. Ослабление тем сильнее, чем больше угол прихода звука по отношению к оси. Создается, таким образом, угловая избирательность по приему.

Отражатель изготавливается как из оптически непрозрачного, так и прозрачного (например, акриловая пластмасса) материала. Величина внешнего диаметра параболического зеркала может быть от 200 до 500 мм.

Параболический микрофон является типичным примером высокочувствительного, но слабонаправленного микрофона.

Плоские фазированные решетки реализуют идею одновременного приема звукового поля в дискретных точках некоторой плоскости, перпендикулярной к направлению на источник звука.


В этих точках (А1, А2 и т.д.) размещаются либо микрофоны, выходные сигналы которых суммируются электрически, либо, и чаще всего, открытые торцы звуководов, например трубки достаточно малого диаметра, которые обеспечивают синфазное сложение звуковых полей от источника в некотором акустическом сумматоре. К выходу сумматора подключен микрофон.

Если звук приходит с осевого направления, то все сигналы, распространяющиеся по звуководам, будут в фазе, и сложение в акустическом сумматоре даст максимальный результат. Если направление на источник звука не осевое, а под некоторым углом к оси, то сигналы от разных точек приемной плоскости будут разными по фазе и результат их сложения будет меньшим. Чем больше угол прихода звука, тем сильнее его ослабление.

Число приемных точек в таких решетках составляет несколько десятков.

Конструктивно плоские фазированные решетки встраиваются либо в переднюю стенку атташе-кейса, либо в майку-жилет, которая надевается под рубашку и т.п. Необходимые электронные блоки могут располагаться также в кейсе, либо под одеждой. Таким образом, плоские фазированные решетки с камуфляжем визуально более конспиративны по сравнению с параболическим микрофоном.

Микрофон – труба представляет собой трубчатую фазированную приемную акустическую антенну нагруженную на высокочувствительный микрофон или решетку микрофонов, включенных последовательно. В отличие от параболических микрофонов и плоских акустических решеток принимает звук не на плоскости, а вдоль некоторой линии, совпадающей с направлением на источник звука.

Характерным представителем такого типа микрофонов является микрофон «Акустическое ружье».



Микрофон имеет несколько десятков тонких трубок длиной от нескольких сантиметров до метра и более. Длина трубок рассчитывается из условия резонанса на частотах присутствующих в акустических колебаниях создаваемых речью. Трубы собираются в пучок: длинные в центре, короткие по наружной поверхности пучка. Концы трубок с одной стороны образуют плоский срез, входящий в предкапсюльный объем микрофона. Звуковые волны, приходящие к приемнику по осевому направлению, через трубки поступают п предкапсюльный объем в одинаковой фазе, и их амплитуды складываются арифметически. Звуковые волны, приходящие под углом к оси, оказываются сдвинутыми по фазе, так как трубки имеют разную длину. Следовательно, их суммарная амплитуда будет значительно меньше. Дальность приема сигналов может быть увеличена за счет использования большего количества трубчатых элементов.

Трубчатые микрофоны «бегущей волны» также принимают звук вдоль линии, совпадающей с направлением на источник звука.



Основой микрофона является звуковод в виде жесткой полой трубки диаметром 10-30 мм со специальными щелевыми отверстиями, размещенными рядами по всей длине звуковода, с круговой геометрией расположения для каждого из рядов. Очевидно, что при приеме звука с осевого направления будет происходить сложение в фазе сигналов, проникающих в звуковод через все щелевые отверстия, поскольку скорости распространения звука вне трубки и внутри нее одинаковы. Когда же звук приходит под углом к оси микрофона, то это ведет к фазовому рассогласованию, так как скорость звука в трубке будет больше осевой составляющей скорости звука вне ее, вследствие чего снижается чувствительность приема. Обычно длина трубчатого микрофона от 15-200 мм до 1 м. Чем больше его длина, тем сильнее подавляются помехи с боковых и тыльного направлений.

Лазерные микрофоны используют для перехвата информации отраженный и промодулированный зондируемой поверхностью луч лазера.

Зондируемый объект- обычно оконное стекло- представляет собой своеобразную мембрану, которая колеблется со звуковой частотой, создавая фонограмму разговора. Генерируемое лазерным передатчиком излучение, распространяясь в атмосфере, отражается от поверхности оконного стекла и модулируется акустическим сигналом, а затем воспринимается фотоприемником, который и восстанавливает разведываемый сигнал.

В данной технологии принципиальное значение имеет процесс модуляции, который можно описать следующим образом.

Звуковая волна, генерируемая источником звукового сигнала, падает на границу раздела воздух- стекло и создает своего рода вибрацию, то есть отклонения поверхности стекла от исходного положения. Эти отклонения вызывают дифракцию света, отражающегося от границы. Если размеры падающего оптического пучка малы по сравнению с длиной «поверхностной» волны, то в суперпозиции различных компонент отраженного света будет доминировать дифракционный пучок нулевого порядка. В этом случае, во-первых, фаза световой волны оказывается промодулированной по времени с частотой звука и однородной по сечению пучка, а во-вторых, пучок «качается» с частотой звука вокруг направления зеркального отражения.




В качестве источника излучений может применяться, например, гелий-неоновый лазер. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. На сегодняшний день уже появились принципиальные возможности регистрации колебаний стекла на расстоянии до 10ˉ¹ - 10ˉ¹ м. Дальность ведения разведки составляет до 1000м.

В точке расположенной по нормали к оконному остекленению достаточно организация одного контрольного поста (КП). В противном случае необходимо организовывать два КП, место второго выбирается с учетом закона отражения светового луча φ1= φ2.

4.3 Обработка перехваченных речевых сигналов

Человеческому слуху, как известно, присуще свойство маскировки. Слабые звуки маскируются более сильными. Каждый звук, приведенный в таблице, мы услышим только в отсутствие более громких звуков.



Если прослушать записанную на улице магнитофонную запись, то основное, что мы услышим, это гул, в котором сольются множество непонятных звуков, попавших из акустического поля в микрофон. Кроме того, на электронную аппаратуру записи, передачи и воспроизведения речевого сигнала действуют разнообразные электрические и электромагнитные помехи, которые мы тоже слышим в наушниках.

Способы очистки речевых сигналов от пространственной помехи, источник которой расположен в стороне, заложены в конструкциях направленных микрофонов. Однако существуют акустические помехи расположенные на одной оси с источником речевого сигнала, либо помехи достаточно значительные, чтобы оказывать мешающее действие даже при использовании направленных микрофонов.

Для повышения качества и обеспечения возможности коррекции записанного разговора используются стереомагнитофоны и эквалайзеры. Стереомагнитофоны позволяют за счет стереоэффекта дифференцировать и отделять от информативной разговорной речи такие помехи, как шумы бытовых приборов, внешние уличные шумы и т.д. Эквалайзеры представляют собой устройства с набором различных фильтров: фильтров верхних и нижних частот, полосовых, октавных, чебышевских и других. Эти фильтры включаются по определенной программе в зависимости от характера искажений сигнала и помех. Наряду с эквалайзерами для повышения разборчивости речи используются специальные программно-аппаратные комплексы.

В качестве примера шумовой очистки речевого сигнала рассмотрим использование адаптивного фильтра (АФ).

По способу, различения помехи от сигнала, АФ подразделяются на одноканальные (АФ1) и двухканальные (АФ2). Одноканальный фильтр имеет только основной вход, а двухканальный дополнительно опорный вход.



В АФ1 сигнал помехи «предсказывается» фильтром линейного предсказания (ФЛП) на основании анализа поступающего на вход зашумленного речевого (РС) сигнала и затем вычитается из этого сигнала. Принцип работы такого фильтра основан на том, что РС является случайным процессом и предсказан быть не может, а все что можно предсказать – это помеха. АФ1 используется для подавления периодических и узкополосных помех, например, наводки от сети переменного тока, шума кондиционера, «гудения» механизмов и т.п. АФ1 не может избавиться от широкополосных шумовых помех: музыки, речи, гула большого помещения и т.п.

АФ2 имеет два входа: на основной (ОСН) вход поступает зашумленный РС, на опорный (ОП) – сигнал помехи. Все, что находится «похожего» в этих каналах, вычитается из зашумленного сигнала. АФ2 используется для подавления периодических, узкополосных и широкополосных помех вплоть до разделения двух разговоров.

Работу АФ можно представить как «вычитание» спектра помехи из спектра зашумленного сигнала. АФ1 практически полностью устраняет мощные гармонические составляющие из зашумленного РС. При использовании АФ2 эффективность определяется способом получения опорного сигнала. Отношение сигнал/помеха (SNR) на выходе АФ2 определяется только отношением SNR на опорном входе:

Таким образом, чем больше помеха и меньше сигнал на ОП входе, тем лучше отношение SNR на выходе АФ2. В идеальном случае, когда на ОП входе присутствует только помеха, она подавляется практически полностью. Например, при зашумлении полезного РС «шумом» радиопередачи, следует подключить опорный вход АФ2 к электрическому сигналу радиоприемника, принимающего ту же программу. Если оба канала принимаются с помощью микрофонов из акустического поля, то микрофон ОП входа необходимо расположить вблизи источника помехи.

Точно по такому же принципу осуществляют шумоочистку речевого сигнала при использовании, например, активной виброакустической помехи.

Один датчик стереостетоскопа располагается на стене в непосредственной близости от электроакустического преобразователя системы защиты, где уровень помехи максимален (точка 1), второй – в точке с минимальным соотношением сигнал / помеха (точка 2). В паузах между разговорами рассчитывается коэффициент ослабления шума вибрации при его распространении по защищаемой конструкции. Соответствующая поправка задается в компенсаторе

Далее, в момент беседы, происходит регистрация сигналов, и, с учетом поправки (ослабления сигнала) вносимой компенсатором, на вход сумматора подаются два смешанных сигнала, составляющая помехи у которых одинакова, а составляющая разведываемого сигнала различна по амплитуде. После вычитания на выходе сумматора получается, хотя и ослабленный по амплитуде, абсолютно очищенный речевой сигнал.

Уголковый отражатель экспедиции Аполлон-11

измерение расстояний между двумя точками на поверхностях Земли до Луны соответственно посредством лазерной локации с использованием уголковых отражателей, находящихся на поверхности Луны, или без них. Научное значение таких экспериментов состоит в уточнении гравитационной постоянной и проверки теории относительности; уточнении ряда параметров движения динамической системы Земля-Луна; получении новых данных о физических свойствах и внутреннем строении Земли и Луны, и т. п.

История

Открытая «шкатулка» слева - уголковый отражатель Лунохода-1, предназначенный для определения расстояния от Луны

Эксперименты по лазерной локации Луны, ещё без использования уголковых отражателей, велись уже с начала 1960-х годов в США и СССР. В США с 9 по 11 мая 1962 года для этой цели использовались два телескопа системы Кассегрена MIT, первый диаметром 30,5 см направлял луч рубинового лазера на Луну, второй диаметром 122 см принимал отраженный сигнал. Лоцировались кратеры Альбатегний, Тихо, Коперник, Лонгомонтан. В СССР в 1963 году лоцировался квадрат внутри лунного кратера Альбатегний, и как для посылки луча рубинового лазера, так и для приёма его использовался один телескоп диаметром 260 см Крымской астрофизической обсерватории, у которого после посылки сигнала специальное зеркало изменяло своё положение, направляя отраженный от поверхности Луны сигнал в фотоприёмник. В этой обсерватории были произведены первые измерения расстояния до Луны посредством лазерной локации, когда в 1965 году оно с помощью новой установки, изготовленной в ФИАН было определено с точностью 200 метров. Причём точность тогда была ограничена сильным искажением лазерного луча лунной поверхностью.

21 июля 1969 года астронавты программы Аполлон-11 установили на Луне первый уголковый отражатель. Позднее подобные же отражатели были установлены астронавтами программ Аполлон-14 и Аполлон-15. Отражатель Аполлона-15 является наиболее крупным, представляет собой панель из трехсот призм, два других отражателя «Аполлонов» имели по 100 призм, термоизоляция представляла собой тяжёлую коробку из сплава алюминия. Советские луноходы Луноход-1, доставленный на Луну в рамках миссии Луна-17, и Луноход-2, доставленный в ходе миссии Луна-21, также были оснащены уголковыми отражателями. Сами отражатели были изготовлены во Франции, а система защиты их от пыли и система ориентации разработана советскими специалистами. Уголковый отражатель «Лунохода» представлял собой систему из 14 стеклянных четырехгранных пирамид, размещенных в одной термоизолированной коробке так, что наклонные их грани открыты для поступления лазерного луча.

Первые сигналы от «Лунохода-1» были получены 5 и 6 декабря 1970 года упомянутым выше 2,6-метровым телескопом Крымской астрофизической обсерватории, в том же месяце приняты и обсерваторией в Пик-дю-Миди. Отражатель «Лунохода-1» в первые полтора года работы обеспечил порядка 20 наблюдений, но затем его точное положение утерялось, и найти его до апреля 2010 года не удавалось. Предполагалось, что луноход встал в наклонном положении, что ослабевает отражённый от него сигнал и затрудняет его поиск при неточных данных о координатах на поверхности Луны. Отражатель «Лунохода-1» мог быть найден, если бы отражённый им зайчик попал на оптические фотографии поверхности Луны, которые планировалось сделать с помощью спутника Lunar Reconnaissance Orbiter, или в поле зрения наблюдения других окололунных станций. 22 апреля 2010 года «Луноход-1» найден на поверхности Луны Томом Мерфи с группой ученых, отправивших лазерные импульсы с телескопа обсерватории Апаче-Пойнт в Нью-Мексико.

Так же, среди первых кто проводил локацию Луны был телескоп «Скол-1». «Скол-1» был установлен на территории НИП-16 и работал по «Луноходу-1».

С установлением местонахождения остальных четырёх отражателей, включая установленный на «Луноходе-2», проблем не возникало, их постоянное зондирование ведётся в данный момент рядом станций, в том числе Лабораторией реактивного движения НАСА, которая вела наблюдения по лазерной локации отражателей с самого момента их установки. На 2,6 метровом телескопе Крымской астрофизической обсерватории, где в 1978 году была установлена аппаратура, позволяющая измерять расстояние до Луны с точностью 25 см, в общей сложности проведено 1400 определений этой величины, чаще всего - до уголковых отражателей «Лунохода-2» и «Аполлона-15». Однако в 1983 году работы там были прекращены ввиду свёртывания советской лунной программы.

Основные станции, осуществляющие лазерную локацию Луны

  • JPL NASA, Калифорния, США
  • Обсерватория Макдональд, Техас, США
  • OCA, Ницца, Франция
  • Haleakala, Гавайские острова, США
  • Apache Point, Нью-Мексико, США
  • Matera, Матера, Италия
  • филиал OCA, Южная Африка

Принцип измерения

Лазерный пучок, направленный на Луну

Лазер излучает сигнал в телескоп, направленный на отражатель, при этом точно фиксируется время, когда сигнал был излучён. Часть фотонов от первоначального сигнала возвращается обратно на детектор с целью зафиксировать начальную точку данных. Площадь пучка от сигнала на поверхности Луны составляет 25 км?. Отражённый от прибора на Луне свет в течение примерно одной секунды возвращается в телескоп, далее проходит через систему фильтрации для получения фотонов на нужной длине волны и для отсева шумов.

Точность наблюдений

С 1970-х годов точность измерения расстояния увеличилась с нескольких десятков до нескольких сантиметров. Новая станция Apache Point может достигнуть точности порядка миллиметров.

Точность измерения времени в настоящем — порядка 30 пикосекунд.



Лазерная локация

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение.

Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0.1.5 градуса и при этом без дополнительных оптических систем.

Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты.

Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей.

Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.

Лазерной локацией называют область оптикоэлектроники, занимающегося обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемого лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения. Принципиально лазерная локация осуществляется активным методом. Нам уже известно, что лазерное излучение отличается от температурного тем, что оно является узконаправленным, монохраматичным, имеет большую импульсивную мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентноспособной в сравнении с радиолокаций, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где лоя ряда волн оптического диапазона существуют окна прозрачности).

В основе лазерной локации, так же как и радиолокации, лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон на котором она расположена, по разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем, короче волна, тем она выше. Поэтому-то проявлялась по мере развития радиолокации тенденция перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны, становилось все более трудным делом, а затем и зашло в тупик.

Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым производиться просмотр пространства, позволяет определить направление на объект (пеленг цели).

Это направление находят по расположению оси оптической системы, формирующей лазерное излучение (в радиолокации - по направлению антенны). Чем уже луч, тем с большей точностью может быть определен пеленг. Определим коэффициент направленного действия и диаметр антенны по следующей простой формуле,

G = 4п * S

где G - коэффициент направленного действия, S - площадь антенны, м2, / - длина волны излучения мкм.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1,5 при пользовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с использованием твердотельного активного вещества, как известно, составляет всего 1,0 - 1,5 градуса и при этом без дополнительных оптических фокусирующих систем (антенн). Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогического радиолокатора. Использование же незначительных по габарита м оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так. при импульсном методе дальнометрирования используется следующее соотношение:

L = ct и

где L - расстояние до объекта, км, С - скорость распространения излучения км/с, t и -время прохождения импульса до цели и обратно, с.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем, короче импульс, тем лучше (при наличии хорошей полосы пропускания, как говорят радисты). Но нам уже известно, что самой физикой лазерного излучения заложена возможность получения импульсов с длительностью 10-7 - 10-8 с. А это обеспечивает хорошие данные лазерному локатору.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них,см.рис.

Прежде всего з о н а д е й с т в и я. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальности действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром локатора является в р е м я о б з о р а. Под ним понимается время, в течение которого лазерный луч приводит однократный обзор заданного объема пространства.

Следующим параметром локатора являются о п р е д е л я е м ы е к о о р д и н а т ы. они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и надводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Их рассмотрение выходит за рамки данной книги. Однако будем пользоваться таким понятием, как р а з р е ш а ю щ а я с п о с о б н о с т ь. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как п о м е х о з а щ ищ е н н о с т ь. Это способность лазерного локатора работать в условиях естественных (Солнце, Луна) и искусственных помех.

И весьма важной характеристикой локатора является н а д е ж н н о с т ь. Это свойство локатора сохранять свои характеристики и установленных пределах в заданных условиях эксплуатации.

Схема лазерного локатора, предназначенного для измерения четырех основных параметров объекта (дальности, азимута, угла места и скорости) см. рис. на стр. 17. Хорошо видно, что конструктивно такой локатор состоит из трех блоков: передающего, приемного и индикаторного. Основное назначение передающего лока-тора - генерирование лазерного излучения, формирование его в пространстве, во времени и направлении в район объекта. Передающий блок состоит из лазера с источником возбуждения, модулятора добротности, сканирующего устройства, обеспечивающего посылку энергии в заданной зоне по заданному закону сканирования, а также передающей оптической системы.

Основное назначение приемного блока - прием излучения отраженного объектом, преобразование его в электрический сигнал и обработка для выделения информации об объекте. Оно состоит из приемной оптической системы, интерференционного фильтра, приемника излучения, а также блоков измерения дальности, скорости и угловых координат.

Индикаторный блок служит для указания в цифровой форме информации о параметрах цели.

В зависимости от того, для какой цели служит локатор, различают: дальномеры, измерители скорости (допплеровские локаторы), собственно локаторы(дальность, азимут, и угол места).

CХЕМА ЛАЗЕРНОГО ЛОКАТОРА

приемник

излучения

оптический фильтр

приемная оптическая система

ИНДИКАТОРНЫЙ БЛОК

ПРИЕМНЫЙ БЛОК

блок измерения дальности

блок измерения скорости

блок измерения угловых координат

Угол места

Скорость

Блок питания

Cтраница 1


Лазерная локация относится к дистанционным методам исследований.  

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диа - пазона, излучаемых лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения.  

Применение лазерной локации для исследований и контроля качества воздушного бассейна дает возможность оперативных измерений загрязнения атмосферы в неограниченно больших объемах, повышения точности и достоверности исходной информации для проектирования.  

В лазерной локации, когда принимаемая информация имеет ярко выраженный статистический характер, подобный подход оказывается особенно оправданным. Действительно, в данном случае отдельные коэффициенты определяются лишь с некоторой точностью, так что увеличение их числа приводит к увеличению информации о регистрируемом сигнале лишь до некоторого предела, после которого прирост информации нивелируется возрастанием флук-туационных ошибок.  

В лазерной локации модель полностью известного сиг-нала нереальна, так как знание отраженного сигнала с точностью до фазы равносильно знанию расстояния до цели с точностью до длины волны.  

В методе лазерной локации используются уголковые отражатели.  

С точки зрения лазерной локации все атмосферные эффекты могут быть (хотя в некоторых случаях и весьма условно) разделены на две группы. В первую группу входят те явления, которые вызывают изменение суммарной интенсивности направляющегося к цели светового потока. Во вторую - те, которые вызывают изменение геометрических параметров подсвечивающего пучка (его расширение и отклонение) и перераспределение энергии в зоне цели.  

Изложена общая теория лазерной локации и принципы построения лазерных локационных средств, предназначенных для решения широкого круга практических задач. С единых позиций теории статистических решений рассмотрены основные вопросы оптимального приема лазерных локационных сигналов. Проанализированы методы обработки траекторных измерений, различные способы получения некоординатной информации, включая голо-графическую, интерферометрическую и адаптивную. На конкретных примерах рассмотрены основные принципы построения экспериментальных лазерных средств.  

Помимо исследований общего характера для лазерной локации оказываются весьма важны исследования, относящиеся к Искажениям конкретных изображений. Это позволит, с одной стороны, приучить оператора к восприятию подобных изображений, а с другой - установить предельные параметры фазовых искажений, при которых качество изображений не выходит за рамки допустимых норм.  

В монографии изложены общая теория лазерной локации и принципы построения лазерных локационных средств, предназначенных для решения широкого круга практических задач. С позиций теории статистических решений рассмотрены основные вопросы оптимального приема лазерных локационных сигналов, измерения параметров. Проанализированы методы обработки траекторных измерений, различные способы получения некоординатиой информации, включая голографическую, интерфе-рометрическую и адаптивную.  

К началу 80 - х годов лазерная локация оформилась в самостоятельное научно-техническое направление.  

Для большинства представляющих интерес с точки зрения лазерной локации длин волн коэффициенты молекулярного и корпускулярного рассеяния увеличиваются обратно пропорционально величине длины волны в четвертой степени. Молекулярное (релеев-ское) рассеяние света неизбежно имеет место и оно почти не меняется во времени, но практически не препятствует прохождению света видимых и инфракрасных длин волн. Например, излучение с длиной волны 0 5 мкм, направленное вертикально с уровня моря в зенит будет ослаблено в толще атмосферы за счет релеевского рассеяния всего на 13 %; в дальнем инфракрасном диапазоне (10 6 мкм) релеевским рассеянием вообще можно пренебречь.  

Рассмотрим предварительно вопрос о нелинейных поправках в уравнении лазерной локации для традиционных схем аэрозольного зондирования.  


Из всего большого класса твердотельных лазеров в современной лазерной локации наиболее широко используются три типа: лазеры на рубине, на стекле с неодимом и на гранате, работающие в импульсно-периодическом режиме. Первый тип дает излучение на длине волны Я-0 69 мкм, второй и третий - на К 1 06 мкм. Импульсные мощности, реализуемые этими лазерами, доходят до 109 Вт при длительности импульса 10 - 8 с и частоте следования импульсов до 10 Гц и выше.  



Понравилась статья? Поделитесь с друзьями!