Обратное распространение ошибки пример. Метод обратного распространения ошибки

Алгоритм обратного распространения ошибки является одним из методов обучения многослойных нейронных сетей прямого распространения, называемых также многослойными персептронами. Многослойные персептроны успешно применяются для решения многих сложных задач.

Обучение алгоритмом обратного распространения ошибки предполагает два прохода по всем слоям сети: прямого и обратного. При прямом проходе входной вектор подается на входной слой нейронной сети, после чего распространяется по сети от слоя к слою. В результате генерируется набор выходных сигналов, который и является фактической реакцией сети на данный входной образ. Во время прямого прохода все синаптические веса сети фиксированы. Во время обратного прохода все синаптические веса настраиваются в соответствии с правилом коррекции ошибок, а именно: фактический выход сети вычитается из желаемого, в результате чего формируется сигнал ошибки. Этот сигнал впоследствии распространяется по сети в направлении, обратном направлению синаптических связей. Отсюда и название – алгоритм обратного распространения ошибки . Синаптические веса настраиваются с целью максимального приближения выходного сигнала сети к желаемому.

Рассмотрим работу алгоритма подробней. Допустим необходимо обучить следующую нейронную сеть, применив алгоритм обратного распространения ошибки:

На приведенном рисунке использованы следующие условные обозначения:

В качестве активационной функции в многослойных персептронах, как правило, используется сигмоидальная активационная функция, в частности логистическая:

где – параметр наклона сигмоидальной функции. Изменяя этот параметр, можно построить функции с различной крутизной. Оговоримся, что для всех последующих рассуждений будет использоваться именно логистическая функция активации, представленная только, что формулой выше.

Сигмоид сужает диапазон изменения так, что значение лежит между нулем и единицей. Многослойные нейронные сети обладают большей представляющей мощностью, чем однослойные, только в случае присутствия нелинейности. Сжимающая функция обеспечивает требуемую нелинейность. В действительности имеется множество функций, которые могли бы быть использованы. Для алгоритма обратного распространения ошибки требуется лишь, чтобы функция была всюду дифференцируема. Сигмоид удовлетворяет этому требованию. Его дополнительное преимущество состоит в автоматическом контроле усиления. Для слабых сигналов (т.е. когда близко к нулю) кривая вход-выход имеет сильный наклон, дающий большое усиление. Когда величина сигнала становится больше, усиление падает. Таким образом, большие сигналы воспринимаются сетью без насыщения, а слабые сигналы проходят по сети без чрезмерного ослабления.

Целью обучения сети алгоритмом обратного распространения ошибки является такая подстройка ее весов, чтобы приложение некоторого множества входов приводило к требуемому множеству выходов. Для краткости эти множества входов и выходов будут называться векторами. При обучении предполагается, что для каждого входного вектора существует парный ему целевой вектор, задающий требуемый выход. Вместе они называются обучающей парой. Сеть обучается на многих парах.

Следующий:

  1. Инициализировать синаптические веса маленькими случайными значениями.
  2. Выбрать очередную обучающую пару из обучающего множества; подать входной вектор на вход сети.
  3. Вычислить выход сети.
  4. Вычислить разность между выходом сети и требуемым выходом (целевым вектором обучающей пары).
  5. Подкорректировать веса сети для минимизации ошибки (как см. ниже).
  6. Повторять шаги с 2 по 5 для каждого вектора обучающего множества до тех пор, пока ошибка на всем множестве не достигнет приемлемого уровня.

Операции, выполняемые шагами 2 и 3, сходны с теми, которые выполняются при функционировании уже обученной сети, т.е. подается входной вектор и вычисляется получающийся выход. Вычисления выполняются послойно. На рис. 1 сначала вычисляются выходы нейронов слоя (слой входной, а значит никаких вычислений в нем не происходит), затем они используются в качестве входов слоя , вычисляются выходы нейронов слоя , которые и образуют выходной вектор сети . Шаги 2 и 3 образуют так называемый «проход вперед», так как сигнал распространяется по сети от входа к выходу.

Шаги 4 и 5 составляют «обратный проход», здесь вычисляемый сигнал ошибки распространяется обратно по сети и используется для подстройки весов.

Рассмотрим подробней 5 шаг – корректировка весов сети. Здесь следует выделить два нижеописанных случая.

Случай 1. Корректировка синаптических весов выходного слоя

Например, для модели нейронной сети на рис. 1, это будут веса имеющие следующие обозначения: и . Определимся, что индексом будем обозначать нейрон, из которого выходит синаптический вес, а – нейрон в который входит:

Введем величину , которая равна разности между требуемым и реальным выходами, умноженной на производную логистической функции активации (формулу логистической функции активации см. выше):

Тогда, веса выходного слоя после коррекции будут равны:

Приведем пример вычислений для синаптического веса :

Случай 2. Корректировка синаптических весов скрытого слоя

Для модели нейронной сети на рис. 1, это будут веса соответствующие слоям и . Определимся, что индексом будем обозначать нейрон из которого выходит синаптический вес, а – нейрон в который входит (обратите внимание на появление новой переменной ).

Метод обратного распространения ошибки

Метод обратного распространения ошибки - метод обучения многослойного персептрона, один из вариантов обучения с учителем. Впервые метод был описан Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного перцептрона и получения желаемого выхода.

Основная идея этого метода состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Барцев и Охонин предложили сразу общий метод («принцип двойственности»), приложимый к более широкому классу систем, включая системы с запаздыванием, распределённые системы, и т.п.

Метод является модификацией классического метода градиентного спуска.

Алгоритм метода обратного распространения ошибки

Пусть у нас имеется многослойная сеть прямого распространения со случайными весовыми коэффициентами. Есть некоторое обучающее множество, состоящее из пар вход сети - желаемый выход. Через Y обозначим реальное выходное значение нашей сети, которое в начале практически случайно из-за случайности весовых коэффициентов.

Обучение состоит в том, чтобы подобрать весовые коэффициенты таким образом, чтобы минимизировать некоторую целевую функцию. В качестве целевой функции рассмотрим сумму квадратов ошибок сети на примерах из обучающего множества.

где реальный выход N-го выходного слоя сети для p-го нейрона на j-м обучающем примере, желаемый выход. То есть, минимизировав такой функционал, мы получим решение по методу наименьших квадратов.

Поскольку весовые коэффициенты в зависимость входят нелинейно, воспользуемся для нахождения минимума методом наискорейшего спуска. То есть на каждом шаге обучения будем изменять весовые коэффициенты по формуле

где весовой коэффициент j-го нейрона n-го слоя для связи с i-м нейроном (n-1)-го слоя.

Параметр называется параметром скорости обучения.

Таким образом, требуется определить частные производные целевой функции E по всем весовым коэффициентам сети. Согласно правилам дифференцирования сложной функции

где - выход, а - взвешенная сума входов j-го нейрона n-го слоя. Заметим, что, зная функцию активации, мы можем вычислить. Например, для сигмоида эта величина будет равняться

Третий сомножитель / есть ни что иное, как выход i-го нейрона (n-1)-го слоя, то есть

Частные производные целевой функции по весам нейронов выходного слоя теперь можно легко вычислить. Производя дифференцирование (1) по и учитывая (3) и (5) будем иметь

Введем обозначение

Тогда для нейронов выходного слоя

Для весовых коэффициентов нейронов внутренних слоев мы не можем сразу записать, чему равен первый сомножитель из (4), однако его можно представить следующим образом:

Заметим, что в этой формуле первые два сомножителя есть не что иное, как. Таким образом, с помощью (9) можно выражать величины для нейронов n-го слоя черездля нейронов (n+1)-го. Поскольку для последнего слоя легко вычисляется по (8), то можно с помощью рекурсивной формулы

получить значения для вех нейронов всех слоев.

Окончательно формулу (2) для модификации весовых коэффициентов можно записать в виде

Таким образом, полный алгоритм обучения нейронной сети с помощью алгоритма обратного распространения строиться следующим образом.

Присваиваем всем весовым коэффициентам сети случайные начальные значения. При этом сеть будет осуществлять какое-то случайное преобразование входных сигналов и значения целевой функции (1) будут велики.

Подать на вход сети один из входных векторов из обучающего множества. Вычислить выходные значения сети, запоминая при этом выходные значения каждого из нейронов.

Скорректировать веса сети:

Оценка работы сети

В тех случаях, когда удается оценить работу сети, обучение нейронных сетей можно представить как задачу оптимизации. Оценить - означает указать количественно, хорошо или плохо сеть решает поставленные ей задачи. Для этого строится функция оценки. Она, как правило, явно зависит от выходных сигналов сети и неявно (через функционирование) - от всех её параметров. Простейший и самый распространенный пример оценки - сумма квадратов расстояний от выходных сигналов сети до их требуемых значений:

где - требуемое значение выходного сигнала.

Метод наименьших квадратов далеко не всегда является лучшим выбором оценки. Тщательное конструирование функции оценки позволяет на порядок повысить эффективность обучения сети, а также получать дополнительную информацию - «уровень уверенности» сети в даваемом ответе.

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является панацеей. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага з, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы

Обратное распространение использует разновидность градиентного спуска, то есть осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Основную трудность при обучении нейронных сетей составляют как раз методы выхода из локальных минимумов: каждый раз выходя из локального минимума, снова ищется следующий локальный минимум тем же методом обратного распространения ошибки до тех пор, пока найти из него выход уже не удаётся.

Размер шага

Внимательный разбор доказательства сходимости показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведёт к бесконечному времени обучения. Размер шага должен браться конечным. Если размер шага фиксирован и очень мал, то сходимость слишком медленная, если же он фиксирован и слишком велик, то может возникнуть паралич или постоянная неустойчивость. Эффективно увеличивать шаг до тех пор, пока не прекратится улучшение оценки в данном направлении антиградиента и уменьшать, если такого улучшения не происходит. П. Д. Вассерман описал адаптивный алгоритм выбора шага, автоматически корректирующий размер шага в процессе обучения. В книге А. Н. Горбаня предложена разветвлённая технология оптимизации обучения.

Следует также отметить возможность переобучения сети, что является скорее результатом ошибочного проектирования её топологии. При слишком большом количестве нейронов теряется свойство сети обобщать информацию. Весь набор образов, предоставленных к обучению, будет выучен сетью, но любые другие образы, даже очень похожие, могут быть классифицированы неверно.

Среда разработки и причины ее выбора

Разработка приложения будет осуществляться на языке программирования C# с фреймворком.NETFramework4.0 в среде разработки MicrosoftVisualStudio 2010. Фрагменты кода, требующие массивных вычислений, разработаны на языке C++. MSVisualStudio 2010 включает в себя полный набор новых и улучшенных функций, упрощающих все этапы процесса разработки от проектирования до развертывания.

MicrosoftVisualStudio 2010 Ultimate - интегрированная среда инструментальных средств и серверная инфраструктура, упрощающая процесс разработки приложения в целом. Для создания бизнес-приложений используются эффективные, предсказуемые, настраиваемые процессы. Детальная аналитика повышает прозрачность и прослеживаемость всего жизненного цикла приложения. Как при создании новых решений, так и при доработке существующих, доступна разработка с помощью мощных инструментов создания прототипов, проектирования архитектуры и разработки, которые позволяют разрабатывать приложения для всевозможных платформ и технологий, таких как обработка данных в облаке и параллельная обработка данных. Расширенные возможности координирования совместной деятельности наряду с интегрированными инновационными инструментами тестирования и отладки обеспечат повышение производительности группы и создание высококачественных и недорогих решений.

Разработка приложений в MicrosoftVisualStudio2010 Ultimate на языке C# с фреймворком.NETFramework4.0 осуществляется с применением объектно-ориентированного программирования и визуального программирования.

Цели обратного распространения просты: отрегулировать каждый вес пропорционально тому, насколько он способствует общей ошибке. Если мы будем итеративно уменьшать ошибку каждого веса, в конце концов у нас будет ряд весов, которые дают хорошие прогнозы.

Обновление правила цепочки

Можно рассматривать как длинный ряд вложенных уравнений. Если вы так думаете о прямом распространении, то обратное распространение — это просто приложение правила цепочки (дифференцирования сложной функции) для поиска производных потерь по любой переменной во вложенном уравнении. С учётом функции прямого распространения:

F(x)=A(B(C(x)))

A, B, и C — на различных слоях. Пользуясь правилом цепочки, мы легко вычисляем производную f(x) по x:

F′(x)=f′(A)⋅A′(B)⋅B′(C)⋅C′(x)

Что насчёт производной относительно B ? Чтобы найти производную по B , вы можете сделать вид, что B (C(x)) является константой, заменить ее переменной-заполнителем B , и продолжить поиск производной по B стандартно.

F′(B)=f′(A)⋅A′(B)

Этот простой метод распространяется на любую переменную внутри функции, и позволяет нам в точности определить влияние каждой переменной на общий результат.

Применение правила цепочки

Давайте используем правило цепочки для вычисления производной потерь по любому весу в сети. Правило цепочки поможет нам определить, какой вклад каждый вес вносит в нашу общую ошибку и направление обновления каждого веса, чтобы уменьшить ошибку. Вот уравнения, которые нужны, чтобы сделать прогноз и рассчитать общую ошибку или потерю:

Учитывая сеть, состоящую из одного нейрона, общая потеря нейросети может быть рассчитана как:

Cost=C(R(Z(XW)))

Используя правило цепочки, мы легко можем найти производную потери относительно веса W.

C′(W)=C′(R)⋅R′(Z)⋅Z′(W)=(y^−y)⋅R′(Z)⋅X

Теперь, когда у нас есть уравнение для вычисления производной потери по любому весу, давайте обратимся к примеру с нейронной сетью:

Какова производная от потери по Wo ?

C′(WO)=C′(y^)⋅y^′(ZO)⋅Z′O(WO)=(y^−y)⋅R′(ZO)⋅H

А что насчет Wh ? Чтобы узнать это, мы просто продолжаем возвращаться в нашу функцию, рекурсивно применяя правило цепочки, пока не доберемся до функции, которая имеет элемент Wh .

C′(Wh)=C′(y^)⋅O′(Zo)⋅Z′o(H)⋅H′(Zh)⋅Z′h(Wh)=(y^−y)⋅R′(Zo)⋅Wo⋅R′(Zh)⋅X

И просто забавы ради, что, если в нашей сети было бы 10 скрытых слоев. Что такое производная потери для первого веса w1?

C(w1)=(dC/dy^)⋅(dy^/dZ11)⋅(dZ11/dH10)⋅(dH10/dZ10)⋅(dZ10/dH9)⋅(dH9/dZ9)⋅(dZ9/dH8)⋅(dH8/dZ8)⋅(dZ8/dH7)⋅(dH7/dZ7)⋅(dZ7/dH6)⋅(dH6/dZ6)⋅(dZ6/dH5)⋅(dH5/dZ5)⋅(dZ5/dH4)⋅(dH4/dZ4)⋅(dZ4/dH3)⋅(dH3/dZ3)⋅(dZ3/dH2)⋅(dH2/dZ2)⋅(dZ2/dH1)⋅(dH1/dZ1)⋅(dZ1/dW1)

Заметили закономерность? Количество вычислений, необходимых для расчёта производных потерь, увеличивается по мере углубления нашей сети. Также обратите внимание на избыточность в наших расчетах производных . Производная потерь каждого слоя добавляет два новых элемента к элементам, которые уже были вычислены слоями над ним. Что, если бы был какой-то способ сохранить нашу работу и избежать этих повторяющихся вычислений?

Сохранение работы с мемоизацией

Мемоизация — это термин в информатике, имеющий простое значение: не пересчитывать одно и то же снова и снова . В мемоизации мы сохраняем ранее вычисленные результаты, чтобы избежать пересчета одной и той же функции. Это удобно для ускорения рекурсивных функций, одной из которых является обратное распространение. Обратите внимание на закономерность в уравнениях производных приведённых ниже.

Каждый из этих слоев пересчитывает одни и те же производные! Вместо того, чтобы выписывать длинные уравнения производных для каждого веса, можно использовать мемоизацию, чтобы сохранить нашу работу, так как мы возвращаем ошибку через сеть. Для этого мы определяем 3 уравнения (ниже), которые вместе выражают в краткой форме все вычисления, необходимые для обратного распространения. Математика та же, но уравнения дают хорошее сокращение, которое мы можем использовать, чтобы отслеживать те вычисления, которые мы уже выполнили, и сохранять нашу работу по мере продвижения назад по сети.

Для начала мы вычисляем ошибку выходного слоя и передаем результат на скрытый слой перед ним. После вычисления ошибки скрытого слоя мы передаем ее значение обратно на предыдущий скрытый слой. И так далее и тому подобное. Возвращаясь назад по сети, мы применяем 3-ю формулу на каждом слое, чтобы вычислить производную потерь по весам этого слоя. Эта производная говорит нам, в каком направлении регулировать наши веса , чтобы уменьшить общие потери.

Примечание: термин ошибка слоя относится к производной потерь по входу в слой. Он отвечает на вопрос: как изменяется выход функции потерь при изменении входа в этот слой?

Ошибка выходного слоя

Для расчета ошибки выходного слоя необходимо найти производную потерь по входу выходному слою, Zo . Это отвечает на вопрос: как веса последнего слоя влияют на общую ошибку в сети? Тогда производная такова:

C′(Zo)=(y^−y)⋅R′(Zo)

Чтобы упростить запись, практикующие МО обычно заменяют последовательность (y^−y)∗R"(Zo) термином Eo . Итак, наша формула для ошибки выходного слоя равна:

Eo=(y^−y)⋅R′(Zo)

Ошибка скрытого слоя

Для вычисления ошибки скрытого слоя нужно найти производную потерь по входу скрытого слоя, Zh .

Eh=Eo⋅Wo⋅R′(Zh)

Эта формула лежит в основе обратного распространения . Мы вычисляем ошибку текущего слоя и передаем взвешенную ошибку обратно на предыдущий слой, продолжая процесс, пока не достигнем нашего первого скрытого слоя. Попутно мы обновляем веса, используя производную потерь по каждому весу.

Производная потерь по любому весу

Вернемся к нашей формуле для производной потерь по весу выходного слоя Wo .

C′(WO)=(y^−y)⋅R′(ZO)⋅H

Мы знаем, что можем заменить первую часть уравнением для ошибки выходного слоя Eh . H представляет собой активацию скрытого слоя.

C′(Wo)=Eo⋅H

Таким образом, чтобы найти производную потерь по любому весу в нашей сети, мы просто умножаем ошибку соответствующего слоя на его вход (выход предыдущего слоя).

C′(w)=CurrentLayerError⋅CurrentLayerInput

Примечание: вход относится к активации с предыдущего слоя, а не к взвешенному входу, Z.

Подводя итог

Вот последние 3 уравнения, которые вместе образуют основу обратного распространения.

Вот процесс, визуализированный с использованием нашего примера нейронной сети выше:

Обратное распространение: пример кода

def relu_prime(z): if z > 0: return 1 return 0 def cost(yHat, y): return 0.5 * (yHat - y)**2 def cost_prime(yHat, y): return yHat - y def backprop(x, y, Wh, Wo, lr): yHat = feed_forward(x, Wh, Wo) # Layer Error Eo = (yHat - y) * relu_prime(Zo) Eh = Eo * Wo * relu_prime(Zh) # Cost derivative for weights dWo = Eo * H dWh = Eh * x # Update weights Wh -= lr * dWh Wo -= lr * dWo

Прудников Иван Алексеевич
МИРЭА(МТУ)

Тема нейронных сетей была уже ни раз освещена во многих журналах, однако сегодня я бы хотел познакомить читателей с алгоритмом обучения многослойной нейронной сети методом обратного распространения ошибки и привести реализацию данного метода.

Сразу хочу оговориться, что не являюсь экспертом в области нейронных сетей, поэтому жду от читателей конструктивной критики, замечаний и дополнений.

Теоретическая часть

Данный материал предполагает знакомство с основами нейронных сетей, однако я считаю возможным ввести читателя в курс темы без излишних мытарств по теории нейронных сетей. Итак, для тех, кто впервые слышит словосочетание «нейронная сеть», предлагаю воспринимать нейронную сеть в качестве взвешенного направленного графа, узлы (нейроны) которого расположены слоями. Кроме того, узел одного слоя имеет связи со всеми узлами предыдущего слоя. В нашем случае у такого графа будут иметься входной и выходной слои, узлы которых выполняют роль входов и выходов соответственно. Каждый узел (нейрон) обладает активационной функцией - функцией, ответственной за вычисление сигнала на выходе узла (нейрона). Также существует понятие смещения, представляющего из себя узел, на выходе которого всегда появляется единица. В данной статье мы будем рассматривать процесс обучения нейронной сети, предполагающий наличие «учителя», то есть процесс обучения, при котором обучение происходит путем предоставления сети последовательности обучающих примеров с правильными откликами.
Как и в случае с большинством нейронных сетей, наша цель состоит в обучении сети таким образом, чтобы достичь баланса между способностью сети давать верный отклик на входные данные, использовавшиеся в процессе обучения (запоминания), и способностью выдавать правильные результаты в ответ на входные данные, схожие, но неидентичные тем, что были использованы при обучении (принцип обобщения). Обучение сети методом обратного распространения ошибки включает в себя три этапа: подачу на вход данных, с последующим распространением данных в направлении выходов, вычисление и обратное распространение соответствующей ошибки и корректировку весов. После обучения предполагается лишь подача на вход сети данных и распространение их в направлении выходов. При этом, если обучение сети может являться довольно длительным процессом, то непосредственное вычисление результатов обученной сетью происходит очень быстро. Кроме того, существуют многочисленные вариации метода обратного распространения ошибки, разработанные с целью увеличения скорости протекания процесса обучения.
Также стоит отметить, что однослойная нейронная сеть существенно ограничена в том, обучению каким шаблонам входных данных она подлежит, в то время, как многослойная сеть (с одним или более скрытым слоем) не имеет такого недостатка. Далее будет дано описание стандартной нейронной сети с обратным распространением ошибки.

Архитектура

На рисунке 1 показана многослойная нейронная сеть с одним слоем скрытых нейронов (элементы Z).

Нейроны, представляющие собой выходы сети (обозначены Y), и скрытые нейроны могут иметь смещение(как показано на изображении). Смещение, соответствующий выходу Y k обозначен w ok , скрытому элементу Z j - V oj . Эти смещения служат в качестве весов на связях, исходящих от нейронов, на выходе которых всегда появляется 1 (на рисунке 1 они показаны, но обычно явно не отображаются, подразумеваясь). Кроме того, на рисунке 1 стрелками показано перемещение информации в ходе фазы распространения данных от входов к выходам. В процессе обучения сигналы распространяются в обратном направлении.

Описание алгоритма

Алгоритм, представленный далее, применим к нейронной сети с одним скрытым слоем, что является допустимой и адекватной ситуацией для большинства приложений. Как уже было сказано ранее, обучение сети включает в себя три стадии: подача на входы сети обучающих данных, обратное распространение ошибки и корректировка весов. В ходе первого этапа каждый входной нейрон X i получает сигнал и широковещательно транслирует его каждому из скрытых нейронов Z 1 ,Z 2 ...,Z p . Каждый скрытый нейрон затем вычисляет результат его активационной функции (сетевой функции) и рассылает свой сигнал Z j всем выходным нейронам. Каждый выходной нейрон Y k , в свою очередь, вычисляет результат своей активационной функции Y k , который представляет собой ничто иное, как выходной сигнал данного нейрона для соответствующих входных данных. В процессе обучения, каждый нейрон на выходе сети сравнивает вычисленное значение Y k с предоставленным учителем t k (целевым значением), определяя соответствующее значение ошибки для данного входного шаблона. На основании этой ошибки вычисляется σ k (k = 1,2,...m). σ k используется при распространении ошибки от Y k до всех элементов сети предыдущего слоя (скрытых нейронов, связанных с Y k), а также позже при изменении весов связей между выходными нейронами и скрытыми. Аналогичным образом вычисляется σj (j = 1,2,...p) для каждого скрытого нейрона Z j . Несмотря на то, что распространять ошибку до входного слоя необходимости нет, σj используется для изменения весов связей между нейронами скрытого слоя и входными нейронами. После того как все σ были определены, происходит одновременная корректировка весов всех связей.

Обозначения:

В алгоритме обучения сети используются следующие обозначения:

X Входной вектор обучающих данных X = (X 1 , X 2 ,...,X i ,...,X n).
t Вектор целевых выходных значений, предоставляемых учителем t = (t 1 , t 2 ,...,t k ,...,t m)
σ k Составляющая корректировки весов связей w jk , соответствующая ошибке выходного нейрона Y k ; также, информация об ошибке нейрона Y k , которая распространяется тем нейронам скрытого слоя, которые связаны с Y k .
σ j Составляющая корректировки весов связей v ij , соответствующая распространяемой от выходного слоя к скрытому нейрону Z j информации об ошибке.
a Скорость обучения.
X i Нейрон на входе с индексом i. Для входных нейронов входной и выходной сигналы одинаковы - X i .
v oj Смещение скрытого нейрона j.
Z j Скрытый нейрон j; Суммарное значение подаваемое на вход скрытого элемента Z j обозначается Z_in j: Z_in j = v oj +∑x i *v ij
Сигнал на выходе Z j (результат применения к Z_in j активационной функции) обозначается Z j: Z j = f (Z_in j)
w ok Смещение нейрона на выходе.
Y k Нейрон на выходе под индексом k; Суммарное значение подаваемое на вход выходного элемента Y k обозначается Y_in k: Y_in k = w ok + ∑ Z j *w jk . Сигнал на выходе Y k (результат применения к Y_in k активационной функции) обозначается Y k:

Функция активации

Функция активация в алгоритме обратного распространения ошибки должна обладать несколькими важными характеристиками: непрерывностью, дифференцируемостью и являться монотонно неубывающей. Более того, ради эффективности вычислений, желательно, чтобы ее производная легко находилась. Зачастую, активационная функция также является функцией с насыщением. Одной из наиболее часто используемых активационных функций является бинарная сигмоидальная функция с областью значений в (0, 1) и определенная как:

Другой широко распространенной активационной функцией является биполярный сигмоид с областью значений (-1, 1) и определенный как:


Алгоритм обучения

Алгоритм обучения выглядит следующим образом:

Инициализация весов (веса всех связей инициализируются случайными небольшими значениями).

До тех пор пока условие прекращения работы алгоритма неверно, выполняются шаги 2 - 9.

Для каждой пары { данные, целевое значение } выполняются шаги 3 - 8.

Распространение данных от входов к выходам:

Шаг 3.
Каждый входной нейрон (X i , i = 1,2,...,n) отправляет полученный сигнал X i всем нейронам в следующем слое (скрытом).

Каждый скрытый нейрон (Z j , j = 1,2,...,p) суммирует взвешенные входящие сигналы: z_in j = v oj + ∑ x i *v ij и применяет активационную функцию: z j = f (z_in j) После чего посылает результат всем элементам следующего слоя (выходного).

Каждый выходной нейрон (Y k , k = 1,2,...m) суммирует взвешенные входящие сигналы: Y_in k = w ok + ∑ Z j *w jk и применяет активационную функцию, вычисляя выходной сигнал: Y k = f (Y_in k).

Обратное распространение ошибки:

Каждый выходной нейрон (Y k , k = 1,2,...m) получает целевое значение - то выходное значение, которое является правильным для данного входного сигнала, и вычисляет ошибку: σ k = (t k - y k)*f " (y_in k), так же вычисляет величину, на которую изменится вес связи w jk: Δw jk = a * σ k * z j . Помимо этого, вычисляет величину корректировки смещения: Δw ok = a*σ k и посылает σ k нейронам в предыдущем слое.

Каждый скрытый нейрон (z j , j = 1,2,...p) суммирует входящие ошибки (от нейронов в последующем слое) σ_in j = ∑ σ k * w jk и вычисляет величину ошибки, умножая полученное значение на производную активационной функции: σ j = σ_in j * f " (z_in j), так же вычисляет величину, на которую изменится вес связи vij: Δv ij = a * σ j * x i . Помимо этого, вычисляет величину корректировки смещения: v oj = a * σ j

Шаг 8. Изменение весов.

Каждый выходной нейрон (y k , k = 1,2,...,m) изменяет веса своих связей с элементом смещения и скрытыми нейронами: w jk (new) = w jk (old) + Δw jk
Каждый скрытый нейрон (z j , j = 1,2,...p) изменяет веса своих связей с элементом смещения и выходными нейронами: v ij (new) = v ij (old) + Δv ij

Проверка условия прекращения работы алгоритма.
Условием прекращения работы алгоритма может быть как достижение суммарной квадратичной ошибкой результата на выходе сети предустановленного заранее минимума в ходе процесса обучения, так и выполнения определенного количества итераций алгоритма. В основе алгоритма лежит метод под названием градиентный спуск. В зависимости от знака, градиент функции (в данном случае значение функции - это ошибка, а параметры - это веса связей в сети) дает направление, в котором значения функции возрастают (или убывают) наиболее стремительно.

Ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Барцев и Охонин предложили сразу общий метод («принцип двойственности »), приложимый к более широкому классу систем, включая системы с запаздыванием, распределённые системы , и т. п.

Для возможности применения метода обратного распространения ошибки передаточная функция нейронов должна быть дифференцируема . Метод является модификацией классического метода градиентного спуска .

Сигмоидальные функции активации

Наиболее часто в качестве функций активации используются следующие виды сигмоид :

Функция Ферми (экспоненциальная сигмоида):

Рациональная сигмоида:

Гиперболический тангенс:

,

где s - выход сумматора нейрона, - произвольная константа.

Менее всего, сравнительно с другими сигмоидами, процессорного времени требует расчет рациональной сигмоиды. Для вычисления гиперболического тангенса требуется больше всего тактов работы процессора. Если же сравнивать с пороговыми функциями активации, то сигмоиды рассчитываются очень медленно. Если после суммирования в пороговой функции сразу можно начинать сравнение с определенной величиной (порогом), то в случае сигмоидальной функции активации нужно рассчитать сигмоид (затратить время в лучшем случае на три операции: взятие модуля, сложение и деление), и только потом сравнивать с пороговой величиной (например, нулём). Если считать, что все простейшие операции рассчитываются процессором за примерно одинаковое время, то работа сигмоидальной функции активации после произведённого суммирования (которое займёт одинаковое время) будет медленнее пороговой функции активации как 1:4.

Функция оценки работы сети

В тех случаях, когда удается оценить работу сети, обучение нейронных сетей можно представить как задачу оптимизации. Оценить - означает указать количественно, хорошо или плохо сеть решает поставленные ей задачи. Для этого строится функция оценки. Она, как правило, явно зависит от выходных сигналов сети и неявно (через функционирование) - от всех её параметров. Простейший и самый распространенный пример оценки - сумма квадратов расстояний от выходных сигналов сети до их требуемых значений:

,

где - требуемое значение выходного сигнала.

Описание алгоритма

Архитектура многослойного перцептрона

Алгоритм обратного распространения ошибки применяется для многослойного перцептрона . У сети есть множество входов , множество выходов Outputs и множество внутренних узлов. Перенумеруем все узлы (включая входы и выходы) числами от 1 до N (сквозная нумерация, вне зависимости от топологии слоёв). Обозначим через вес, стоящий на ребре, соединяющем i-й и j-й узлы, а через - выход i-го узла. Если нам известен обучающий пример (правильные ответы сети , ), то функция ошибки, полученная по методу наименьших квадратов , выглядит так:

Как модифицировать веса? Мы будем реализовывать стохастический градиентный спуск , то есть будем подправлять веса после каждого обучающего примера и, таким образом, «двигаться» в многомерном пространстве весов. Чтобы «добраться» до минимума ошибки, нам нужно «двигаться» в сторону, противоположную градиенту , то есть, на основании каждой группы правильных ответов, добавлять к каждому весу

,

где - множитель, задающий скорость «движения».

Производная считается следующим образом. Пусть сначала , то есть интересующий нас вес входит в нейрон последнего уровня. Сначала отметим, что влияет на выход сети только как часть суммы , где сумма берется по входам j-го узла. Поэтому

Аналогично, влияет на общую ошибку только в рамках выхода j-го узла (напоминаем, что это выход всей сети). Поэтому

Если же j-й узел - не на последнем уровне, то у него есть выходы; обозначим их через Children(j). В этом случае

, .

Ну а - это в точности аналогичная поправка, но вычисленная для узла следующего уровня будем обозначать ее через - от она отличается отсутствием множителя . Поскольку мы научились вычислять поправку для узлов последнего уровня и выражать поправку для узла более низкого уровня через поправки более высокого, можно уже писать алгоритм. Именно из-за этой особенности вычисления поправок алгоритм называется алгоритмом обратного распространения ошибки (backpropagation). Краткое резюме проделанной работы:

  • для узла последнего уровня
  • для внутреннего узла сети
  • для всех узлов

Получающийся алгоритм представлен ниже. На вход алгоритму, кроме указанных параметров, нужно также подавать в каком-нибудь формате структуру сети. На практике очень хорошие результаты показывают сети достаточно простой структуры, состоящие из двух уровней нейронов - скрытого уровня (hidden units) и нейронов-выходов (output units); каждый вход сети соединен со всеми скрытыми нейронами, а результат работы каждого скрытого нейрона подается на вход каждому из нейронов-выходов. В таком случае достаточно подавать на вход количество нейронов скрытого уровня.

Алгоритм

Алгоритм: BackPropagation

где - коэффициент инерциальнности для сглаживания резких скачков при перемещении по поверхности целевой функции

Математическая интерпретация обучения нейронной сети

На каждой итерации алгоритма обратного распространения весовые коэффициенты нейронной сети модифицируются так, чтобы улучшить решение одного примера. Таким образом, в процессе обучения циклически решаются однокритериальные задачи оптимизации.

Обучение нейронной сети характеризуется четырьмя специфическими ограничениями, выделяющими обучение нейросетей из общих задач оптимизации: астрономическое число параметров, необходимость высокого параллелизма при обучении, многокритериальность решаемых задач, необходимость найти достаточно широкую область, в которой значения всех минимизируемых функций близки к минимальным. В остальном проблему обучения можно, как правило, сформулировать как задачу минимизации оценки. Осторожность предыдущей фразы («как правило») связана с тем, что на самом деле нам неизвестны и никогда не будут известны все возможные задачи для нейронных сетей, и, быть может, где-то в неизвестности есть задачи, которые несводимы к минимизации оценки. Минимизация оценки - сложная проблема: параметров астрономически много (для стандартных примеров, реализуемых на РС - от 100 до 1000000), адаптивный рельеф (график оценки как функции от подстраиваемых параметров) сложен, может содержать много локальных минимумов.

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является панацеей. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага η, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы

Обратное распространение использует разновидность градиентного спуска , то есть осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Основную трудность при обучении нейронных сетей составляют как раз методы выхода из локальных минимумов: каждый раз выходя из локального минимума снова ищется следующий локальный минимум тем же методом обратного распространения ошибки до тех пор, пока найти из него выход уже не удаётся.

Размер шага

Внимательный разбор доказательства сходимости показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведёт к бесконечному времени обучения. Размер шага должен браться конечным. Если размер шага фиксирован и очень мал, то сходимость слишком медленная, если же он фиксирован и слишком велик, то может возникнуть паралич или постоянная неустойчивость. Эффективно увеличивать шаг до тех пор, пока не прекратится улучшение оценки в данном направлении антиградиента и уменьшать, если такого улучшения не происходит. П. Д. Вассерман описал адаптивный алгоритм выбора шага, автоматически корректирующий размер шага в процессе обучения. В книге А. Н. Горбаня предложена разветвлённая технология оптимизации обучения.

Следует также отметить возможность переобучения сети, что является скорее результатом ошибочного проектирования её топологии. При слишком большом количестве нейронов теряется свойство сети обобщать информацию. Весь набор образов, предоставленных к обучению, будет выучен сетью, но любые другие образы, даже очень похожие, могут быть классифицированы неверно.

См. также

  • Алгоритм скоростного градиента

Литература

  1. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика . - М .: «Мир», 1992.
  2. Хайкин С. Нейронные сети: Полный курс. Пер. с англ. Н. Н. Куссуль, А. Ю. Шелестова. 2-е изд., испр. - М.: Издательский дом Вильямс, 2008, 1103 с.

Ссылки

  1. Копосов А. И., Щербаков И. Б., Кисленко Н. А., Кисленко О. П., Варивода Ю. В. и др. . - М .: ВНИИГАЗ, 1995.


Понравилась статья? Поделитесь с друзьями!