Математические методы в исследованиях. Математические методы исследования

Математические методы

Формализация и моделирование процессов сбора, движения и преобразования информации связаны с использованием математических методов, реализующих необходимые вычислительные и логические операции, в том числе и в автоматизированных информационных системах. Поэтому правовая информатика тесно связана с математикой и использует методы различных математических наук.

В последнее время при изучении информационных процессов в области права используется теория вероятностей, математическая статистика, математическая логика, исследование операций и многие другие математические науки и дисциплины. Математические методы, специфически преломляясь в теории права, обогащают и усиливают метод правовой науки, но, естественно, не заменяют его.

Сегодня можно говорить, что усилия специалистов, применяющих точные методы математики в правовой области, сосредоточены в двух направлениях: первое - это математическая обработка результатов правовых исследований; второе - исследование структуры права математическими методами. Эти направления составляют основу для создания и применения в правовой области различных автоматизированных систем обработки социально-правовой информации.

Первое направление разрабатывалось еще в 1775 г. Пьером Симоном Лапласом, предложившим использовать методы теории вероятностей для оценки свидетельских показаний, для анализа выборов и решений собраний и для определения вероятностей ошибок в судебных приговорах.

Его последователи Симеон Пуассон и Огюст Курно соответственно в 1837 г. и в 1877 г. опубликовали трактат «Исследование вероятности по материалам уголовных и гражданских судебных решений на основе общих правил исчисления вероятностей» и монографию «Основы теории шансов и вероятностей», в которой глава 15 была названа: «Теория вероятностей судебных решений. Применение ее к статистике гражданских дел». В США эстафету правометрических исследований принял профессор из Мичигана Дж. Шуберт, который в 1959 г. опубликовал работу «Количественный анализ судейского поведения». В 1961 г. Стюарт Нагель опубликовал ряд работ, среди которых «Ожидание вердикта» содержит количественный показатель возможности выиграть или проиграть иски, вытекающие из причинения вреда, в зависимости от наличия в деле целого ряда переменных, которые обрабатываются методом статистических обобщений.

В настоящее время в рамках этого направления успешно применяются различные математические методы для решения следующих задач: количественное описание правовых явлений; обеспечение учета и отчетности в правовой деятельности путем численной обработки различных статистических показателей.

Второе направление основано на идее сведения рассуждений к вычислениям и имеет глубокие исторические корни, восходящие к Р. Декарту. Он подразумевал возможность создания искусственного языка науки, дал его развернутую характеристику и тех громадных выгод, которые связаны с применением последнего. Декарт предполагал наличие некоторого природного порядка в наших мыслях, который сравнивал с порядком в мире чисел. При всем бесконечном множестве чисел каждое из них имеет единственное знаковое представление, следовательно, каждому из них можно дать собственное имя, что позволит действия с ними записывать особым компактным языком. Поскольку для чисел такой универсальный язык разработан, то, по мнению Декарта, со временем будет сконструирован еще более универсальный язык, охватывающий не только числа, но и любые объекты, которые могут стать предметом исследования. Такой язык позволит обозначать любые идеи путем выделения простых представлений и фиксации элементов, из которых состоит каждая мысль. Тем самым будет исключена любая возможность заблуждения. Такой язык противопоставит словам, имеющим неконкретное значение, четко определенные искусственные элементы. Вместо «давайте поспорим» ученые будут говорить «давайте вычислим».

Развитию идеи универсального языка науки большое внимание уделено в работах Г. Лейбница, который заложил фундамент математической логики. По Лейбницу, идеал общего метода, благодаря которому возможно будет систематизировать вечные истины, доказывать их, даже открывать новые, состоит в следующем:

1) необходимо разложить все понятия на простейшие, подобно тому, как в математике составные числа разлагаются на произведение простых множителей. Число простейших понятий в таком языке не может быть велико;

2) обозначив каждое из понятий особым символом, мы получим «алфавит человеческой мысли»;

3) всевозможные комбинации простых понятий дадут нам совокупность сложных. И хотя число первых невелико, однако, как показывают формулы комбинаторики, число их комбинаций может быть почти неисчерпаемым;

4) необходимо ввести особые символы для основных соотношений между понятиями и установить правила употребления и комбинации этих символов.

Таким образом, предполагалось процесс мышления свести к особого рода механическим исчислениям, чем, по существу, и занимается современная символическая логика.

Современная логика создала множество систем, описывающих отдельные фрагменты содержательных рассуждений. Для моделирования структуры правовых норм специально разработана «нормативная логика», предметом исследования которой являются логическая структура и логические связи нормативных высказываний.

Так, оценивая принципы логического моделирования структуры правовых норм, правоотношений и нормативных умозаключений, В. Кнапп и А. Герлох указывают, что лежащая в их основе классификация правовых норм является упрощенной абстракцией действительных правовых норм, носящих сложный характер. Например, исследуя сравнимость и совместимость правовых понятий, эти авторы приходят к выводу, что несравнимость понятий «наследственное право» и «избирательное право» нельзя доказать логическим рассуждением в рамках любой из логических теорий, поскольку наличие общего признака «право» делает формально сравнимыми эти понятия. Для доказательства несравнимости этих понятий, по мнению авторов, нельзя обойтись без аппарата теории права.

Другой вид формализации правовых норм основан на использовании математической логики для моделирования логической структуры правовой нормы.

Математическая логика - современный вид формальной логики, т.е. науки, изучающей умозаключения с точки зрения их формального строения.

Любая мысль в форме понятий, суждений или умозаключений не существует вне языка. Выявить и исследовать логические структуры можно лишь путем анализа языковых выражений.



Под высказыванием принято понимать некоторое предположение, о котором имеет смысл говорить, что оно истинно или ложно. Над высказываниями определены следующие операции:

· конъюнкция (логическое «и»);

· дизъюнкция (логическое «или»);

· отрицание (логическое «не»);

· импликация («если.., то…»).

Так, А.О. Гаврилов предложил, используя логические операции, провести моделирование логической структуры правовой нормы. Цель моделирования - выявить логические (включая латентные) связи правовой нормы. Логическая структура правовой нормы может быть представлена в следующем виде:

((p d ) → ˥ s ) → (˥ d s )

где p - гипотеза нормы;

d - диспозиция;

s - санкция.

Приведенная формализация языка права позволяет промоделировать и проанализировать некоторые правовые нормы с помощью такого нового класса автоматизированных систем правовой информации, как экспертные системы.

Однако необходимо отметить, что применение языка математики для формализации права существенно ограничено. Это определяется во многом тем, что, как признает А.Г. Ольшанецкий, «среди юристов не сложилось еще единого мнения о логической природе, логической специфике юридических понятий, их конструктивной роли в развитии науки правоведения, в образовании нормативно-правового детерминанта, его логического движения в регулятивном механизме общественных систем. Мнения ученых в этом отношении неоднозначны, имеют спорный, порой противоречивый характер. В частности, высказывается мнение, что определенной логической спецификой обладают лишь некоторые понятия уголовного права. В понятиях других отраслей права специфически юридического либо незначительно, либо его вообще нет... Им присущи лишь особенности внелогического характера. В структуре... их содержания, в характере признаков, образующих его, нет каких-либо особенностей, которые давали бы возможность выделить эти понятия в особый класс научных понятий».

По мнению О.А. Гаврилова, существует пять основных причин, по которым математика не может стать универсальным инструментом исследований в области права:

1. С ростом сложности и целостности социально-правового объекта значительно уменьшается возможность его расчленения на формализуемые элементы.

2. Основные категории общественных наук - это сложные, многогранные и многоплановые понятия, связанные множеством неформализуемых связей, таких как базис, надстройка, производительные силы, производственные отношения, государство, право, экономика, политика, демократия.

3. Государство и право, как явления классового общества, представляют собой целостные социально-политические системы. Они характеризуются большим числом качественных признаков и связей, которые не являются ни количественными, ни вероятностными, ни функциональными (в математическом смысле слова) и поэтому не поддаются математической формализации.

4. Проводя сравнительный анализ математических методов и традиционных средств юридической науки, нельзя не видеть их взаимодополняющей противоположности.

5. Отличительная особенность исследований, выполненных на базе традиционных качественных методов, - их всесторонность и многообразность, гибкость охвата явлений. Отличительная черта математических исследований - это их высокая точность. Применяя традиционные приемы юридической науки, исследователь-юрист получает выигрыш в полноте картины, но зато теряет все точности. И наоборот, применяя количественные методы исследования, он выигрывает в точности научного описания, зато теряет в его гибкости и всесторонности.

Следует отметить, что не все юристы придерживаются такой точки зрения. Так, В.П. Павлов, исследуя возможность математизации правовых исследований, не соглашается с высказанной выше точкой зрения О.А. Гаврилова.

По его мнению, история любой науки свидетельствует о том, что на начальном уровне познания, на котором производится накопление научных фактов о наблюдаемых свойствах изучаемых явлений и эмпирических закономерностях (в виде тенденций развития интересующего нас явления в практической жизни), используют приемы наблюдения, эксперимента, измерения, описания, способы обобщения, сравнения анализа и синтеза, классификацию и систематизацию. Для реализации этих способов в правоведении широко используют традиционные общенаучные методы, такие как философский, метод сравнительного правоведения, метод комплексного исследования. Однако подлинно теоретический уровень достигается в том случае, когда выдвигаются научные гипотезы, формулируются законы и создаются теории. Этому уровню соответствуют различные методы объяснения конкретных явлений, среди которых можно выделить гипотетические, структурные, функциональные, метод абстрагирования, включающий в себя идеализацию и обобщение некоторых понятий, и метод обоснования гипотез и построения теорий. Этот уровень достижим только путем привлечения математики как наиболее универсального инструмента анализа материального мира. Диалектическая связь этих двух уровней заключается в том, что установление эмпирических фактов как первоначальный этап познания всегда осуществляется на базе определенных теоретических знаний предшествующего уровня, а сами эмпирические факты являются базой для повышения уровня теоретического знания в исследуемой области. Поэтому взаимодополняющая связь традиционных и математических методов заключается не в их противоположности, а как раз в том, что их универсальность позволяет обеспечить наглядность, точность и полноту исследуемого явления. Благодаря этому расширяется поле для осмысления при помощи традиционных средств тех областей исследуемого явления, которые были скрыты от наблюдателя фрагментарностью эмпирической картины явления.

Таким образом, основным препятствием на пути математического описания правовых норм является неоднозначность понятийного аппарата юридической науки, которая многократно возрастает при некритичном использовании математических средств для его анализа. Противоречие состоит в том, что без применения математического аппарата невозможно обеспечить полноту и точность правовых исследований, а применение математического аппарата невозможно в условиях существующей неоднозначности понятийного аппарата права.

Содержание статьи

МАТЕМАТИЧЕСКИЙ АНАЛИЗ, раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.

Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571–1630), Ф.Кавальери (1598–1647), П.Ферма (1601–1665), Дж.Валлис (1616–1703) и И.Барроу (1630–1677).

Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ , прежде чем приступать к чтению данной статьи.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Касательные.

На рис. 1 показан фрагмент кривой y = 2x x 2 , заключенный между x = –1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р – произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р , причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р . Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р – вершина такого излома, то можно построить аппроксимирующую прямую PT 1 – справа от точки Р и другую аппроксимирующую прямую РТ 2 – слева от точки Р . Но не существует единственной прямой, проходящей через точку Р , которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.

На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y – координаты произвольной точки на ОТ , то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y /x = 2, или y = 2x . Это уравнение касательной ОТ к кривой y = 2x x 2 в точке О .

Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О , выбрана именно прямая ОТ . Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О , пересекает кривую дважды. В этом можно убедиться следующим образом.

Поскольку выражение y = 2x x 2 можно получить вычитанием х 2 из y = 2x (уравнения прямой ОТ ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О , расположен ниже ОТ , и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx – уравнение какой-нибудь другой прямой, проходящей через точку О , то обязательно найдутся две точки пересечения. Действительно, mx = 2x x 2 не только при x = 0, но и при x = 2 – m . И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.

То, что ОТ – единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x 3 хорошо аппроксимируется прямой РТ , имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р . Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.

Предположим, что через точку О и произвольную точку Q = (h ,k ) на графике кривой y = 2x x 2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k , получаем, что k = 2h h 2 , следовательно, угловой коэффициент секущей равен

При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m «стремится к пределу», равному 2, когда h стремится к нулю, или что предел m равен 2 при h , стремящемся к нулю. Символически это записывается так:

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О , с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае.

Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2x x 2 в произвольной точке P = (x ,y ), не ограничиваясь простейшим случаем, когда P = (0,0).

Пусть Q = (x + h , y + k ) – вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k /h секущей PQ . Точка Q находится на расстоянии

над осью х .

Раскрывая скобки, находим:

Вычитая из этого уравнения y = 2x x 2 , находим расстояние по вертикали от точки Р до точки Q :

Следовательно, угловой коэффициент m секущей PQ равен

Теперь, когда h стремится к нулю, m стремится к 2 – 2x ; последнюю величину мы и примем за угловой коэффициент касательной PT . (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P .) Заметим, что при x = 0 полученный результат совпадает с предыдущим.

Выражение 2 – 2x называется производной от 2x x 2 . В старину производную также называли «дифференциальным отношением» и «дифференциальным коэффициентом». Если выражением 2x x 2 обозначить f (x ), т.е.

то производную можно обозначить

Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f (x ) в какой-нибудь точке, необходимо подставить в f ў (x ) соответствующее этой точке значение х . Таким образом, угловой коэффициент f ў (0) = 2 при х = 0, f ў (0) = 0 при х = 1 и f ў (2) = –2 при х = 2.

Производную также обозначают у ў , dy /dx , D х y и .

Тот факт, что кривая y = 2x x 2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об «угловом коэффициенте кривой» в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен –2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2x x 2 имеет в этой точке стационарное значение.

Максимумы и минимумы.

Мы только что показали, что кривая f (x ) = 2x x 2 стационарна в точке (1,1). Так как f ў (x ) = 2 – 2x = 2(1 – x ), ясно, что при x , меньших 1, f ў (x ) положительна, и, следовательно, y возрастает; при x , больших 1, f ў (x ) отрицательна, и поэтому y убывает. Таким образом, в окрестности точки (1,1), обозначенной на рис. 6 буквой М , значение у растет до точки М , стационарно в точке М и убывает после точки М . Такая точка называется «максимумом», поскольку значение у в этой точке превосходит любые его значения в достаточно малой ее окрестности. Аналогично, «минимум» определяется как точка, в окрестности которой все значения y превосходят значение у в самой этой точке. Может также случиться, что хотя производная от f (x ) в некоторой точке и обращается в нуль, ее знак в окрестности этой точки не меняется. Такая точка, не являющаяся ни максимумом, ни минимумом, называется точкой перегиба.

В качестве примера найдем стационарную точку кривой

Производная этой функции равна

и обращается в нуль при x = 0, х = 1 и х = –1; т.е. в точках (0,0), (1, –2/15) и (–1, 2/15). Если х чуть меньше –1, то f ў (x ) отрицательна; если х чуть больше –1, то f ў (x ) положительна. Следовательно, точка (–1, 2/15) – максимум. Аналогично, можно показать, что точка (1, –2/15) – минимум. Но производная f ў (x ) отрицательна как до точки (0,0), так и после нее. Следовательно, (0,0) – точка перегиба.

Проведенное исследование формы кривой, а также то обстоятельство, что кривая пересекает ось х при f (x ) = 0 (т.е. при х = 0 или ) позволяют представить ее график примерно так, как показано на рис. 7.

В общем, если исключить необычные случаи (кривые, содержащие прямолинейные отрезки или бесконечное число изгибов), существуют четыре варианта взаимного расположения кривой и касательной в окрестности точки касания Р . (См . рис. 8, на котором касательная имеет положительный угловой коэффициент.)

1) По обе стороны от точки Р кривая лежит выше касательной (рис. 8,а ). В этом случае говорят, что кривая в точке Р выпукла вниз или вогнута.

2) По обе стороны от точки Р кривая расположена ниже касательной (рис. 8,б ). В этом случае говорят, что кривая выпукла вверх или просто выпукла.

3) и 4) Кривая располагается выше касательной по одну сторону от точки Р и ниже – по другую. В этом случае Р – точка перегиба.

Сравнивая значения f ў (x ) по обе стороны от Р с ее значением в точке Р , можно определить, с каким из этих четырех случаев приходится иметь дело в конкретной задаче.

Приложения.

Все изложенное выше находит важные приложения в различных областях. Например, если тело брошено вертикально вверх с начальной скоростью 200 футов в секунду, то высота s , на которой они будут находиться через t секунд по сравнению с начальной точкой составит

Действуя так же, как в рассмотренных нами примерах, находим

эта величина обращается в нуль при с. Производная f ў (x ) положительна до значения с и отрицательна по истечении этого времени. Следовательно, s возрастает до , затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела. Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t ), мы получаем 625 футов, максимальную высоту подъема. В данной задаче f ў (t ) имеет физический смысл. Эта производная показывает скорость, с которой тело движется в момент времени t .

Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см 2 требуется изготовить коробку с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х – сторона основания коробки и h – ее высота, то объем коробки равен V = x 2 h , а площадь поверхности равна 75 = x 2 + 4xh . Преобразуя уравнение, получаем:

Производная от V оказывается равной

и обращается в нуль при х = 5. Тогда

и V = 125/2. График функции V = (75x x 3)/4 показан на рис. 10 (отрицательные значения х опущены как не имеющие физического смысла в данной задаче).

Производные.

Важная задача дифференциального исчисления – создание методов, позволяющих быстро и удобно находить производные. Например, несложно посчитать, что

(Производная от постоянной, разумеется, равна нулю.) Нетрудно вывести общее правило:

где n – любое целое число или дробь. Например,

(На этом примере видно, как полезны дробные показатели степени.)

Приведем некоторые важнейшие формулы:

Существуют также следующие правила: 1) если каждая из двух функций g (x ) и f (x ) имеет производные, то производная их суммы равна сумме производных этих функций, а производная разности равна разности производных, т.е.

2) производная произведения двух функций вычисляется по формуле:

3) производная отношения двух функций имеет вид

4) производная функции, умноженной на константу, равна константе, умноженной на производную этой функции, т.е.

Часто бывает, что значения функции приходится вычислять поэтапно. Например, чтобы вычислить sin x 2 , нам необходимо сначала найти u = x 2 , а затем уже вычислить синус числа u . Производную таких сложных функций мы находим с помощью так называемого «цепного правила»:

В нашем примере f (u ) = sin u , f ў (u ) = cos u , следовательно,

Эти и другие, аналогичные им, правила позволяют сразу же выписывать производные многих функций.

Линейные аппроксимации.

То обстоятельство, что, зная производную, мы можем во многих случаях заменить график функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче работать.

Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например, довольно трудно вычислить значение при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и что . Вблизи x = 1 мы можем заменить график кривой касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x 1/3)ў = (1/3)x –2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид

На этой прямой при х = 1,033

Полученное значение y должно быть очень близко к истинному значению y ; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений.

Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P – точка, соответствующая на графике функции f переменной х , и пусть функция f (x ) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h , то ордината касательной изменится на величину h Ч f ў (x ). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy , то получим dy = f ў (x )dx , или dy /dx = f ў (x ) (см . рис. 11). Поэтому вместо Dy или f ў (x ) для обозначения производной часто используется символ dy /dx . Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:

где подразумевается, что у зависит от u , а u в свою очередь зависит от х .

Величина dy называется дифференциалом у ; в действительности она зависит от двух переменных, а именно: от х и приращения dx . Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y . Но предполагать, что приращение dx мало, нет необходимости.

Производную функции y = f (x ) мы обозначили f ў (x ) или dy /dx . Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x ) и обозначается f ўў (x ) или d 2 y /dx 2 . Например, если f (x ) = x 3 – 3x 2 , то f ў (x ) = 3x 2 – 6x и f ўў (x ) = 6x – 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4) (x ), а производную n -го порядка как f (n ) (x ).

Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна.

Если функция имеет вторую производную, то изменение величины y , соответствующее приращению dx переменной х , можно приближенно вычислить по формуле

Это приближение, как правило, лучше, чем то, которое дает дифференциал f ў (x )dx . Оно соответствует замене части кривой уже не прямой, а параболой.

Если у функции f (x ) существуют производные более высоких порядков, то

Остаточный член имеет вид

где x – некоторое число между x и x + dx . Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f (x ) имеет производные всех порядков, то обычно R n ® 0 при n ® Ґ .

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Площади.

При изучении площадей криволинейных плоских фигур открываются новые аспекты математического анализа. Такого рода задачи пытались решать еще древние греки, для которых определение, например, площади круга было одной из труднейших задач. Больших успехов в решении этой проблемы добился Архимед, которому также удалось найти площадь параболического сегмента (рис. 12). С помощью весьма сложных рассуждений Архимед доказал, что площадь параболического сегмента составляет 2/3 от площади описанного прямоугольника и, следовательно, в данном случае равна (2/3)(16) = 32/3. Как мы увидим в дальнейшем, этот результат можно легко получить методами математического анализа.

Предшественники Ньютона и Лейбница, главным образом Кеплер и Кавальери, решали задачи о вычислении площадей криволинейных фигур с помощью метода, который трудно назвать логически обоснованным, но который оказался чрезвычайно плодотворным. Когда же Валлис в 1655 соединил методы Кеплера и Кавальери с методами Декарта (аналитической геометрией) и воспользовался только что зародившейся алгеброй, сцена для появления Ньютона была полностью подготовлена.

Валлис разбивал фигуру, площадь которой требовалось вычислить, на очень узкие полоски, каждую из которых приближенно считал прямоугольником. Затем он складывал площади аппроксимирующих прямоугольников и в простейших случаях получал величину, к которой стремилась сумма площадей прямоугольников, когда число полосок стремилось к бесконечности. На рис. 13 показаны прямоугольники, соответствующие некоторому разбиению на полоски площади под кривой y = x 2 .

Основная теорема.

Великое открытие Ньютона и Лейбница позволило исключить трудоемкий процесс перехода к пределу суммы площадей. Это было сделано благодаря новому взгляду на понятие площади. Суть в том, что мы должны представить площадь под кривой как порожденную ординатой, движущейся слева направо и спросить, с какой скоростью изменяется заметаемая ординатами площадь. Ключ к ответу на этот вопрос мы получим, если рассмотрим два частных случая, в которых площадь заранее известна.

Начнем с площади под графиком линейной функции y = 1 + x , поскольку в этом случае площадь можно вычислить с помощью элементарной геометрии.

Пусть A (x ) – часть плоскости, заключенная между прямой y = 1 + x и отрезком OQ (рис. 14). При движении QP вправо площадь A (x ) возрастает. С какой скоростью? Ответить на этот вопрос нетрудно, так как мы знаем, что площадь трапеции равна произведению ее высоты на полусумму оснований. Следовательно,

Скорость изменения площади A (x ) определяется ее производной

Мы видим, что A ў (x ) совпадает с ординатой у точки Р . Случайно ли это? Попробуем проверить на параболе, изображенной на рис. 15. Площадь A (x ) под параболой у = х 2 в интервале от 0 до х равна A (x ) = (1 / 3)(x )(x 2) = x 3 /3. Скорость изменения этой площади определяется выражением

которое в точности совпадает с ординатой у движущейся точки Р .

Если предположить, что это правило выполняется в общем случае так, что

есть скорость изменения площади под графиком функции y = f (x ), то этим можно воспользоваться для вычислений и других площадей. На самом деле, соотношение A ў (x ) = f (x ) выражает фундаментальную теорему, которую можно было бы сформулировать следующим образом: производная, или скорость изменения площади как функции от х , равна значению функции f (x ) в точке х .

Например, чтобы найти площадь под графиком функции y = x 3 от 0 до х (рис. 16), положим

Возможный ответ гласит:

так как производная от х 4 /4 действительно равна х 3 . Кроме того, A (x ) равна нулю при х = 0, как и должно быть, если A (x ) действительно является площадью.

В математическом анализе доказывается, что другого ответа, кроме приведенного выше выражения для A (x ), не существует. Покажем, что это утверждение правдоподобно с помощью следующего эвристического (нестрогого) рассуждения. Предположим, что существует какое-либо второе решение В (x ). Если A (x ) и В (x ) «стартуют» одновременно с нулевого значения при х = 0 и все время изменяются с одинаковой скоростью, то их значения ни при каком х не могут стать различными. Они должны всюду совпадать; следовательно, существует единственное решение.

Как можно обосновать соотношение A ў (x ) = f (x ) в общем случае? На этот вопрос можно ответить, лишь изучая скорость изменения площади как функции от х в общем случае. Пусть m – наименьшее значение функции f (x ) в интервале от х до (x + h ), а M – наибольшее значение этой функции в том же интервале. Тогда приращение площади при переходе от х к (x + h ) должно быть заключено между площадями двух прямоугольников (рис. 17). Основания обоих прямоугольников равны h . Меньший прямоугольник имеет высоту m и площадь mh , больший, соответственно, М и Mh . На графике зависимости площади от х (рис. 18) видно, что при изменении абсциссы на h , значение ординаты (т.е. площадь) увеличивается на величину, заключенную между mh и Mh . Угловой коэффициент секущей на этом графике находится между m и M . Что происходит, когда h стремится к нулю? Если график функции y = f (x ) непрерывен (т.е. не содержит разрывов), то и М , и m стремятся к f (x ). Следовательно, угловой коэффициент A ў (x ) графика площади как функции от х равен f (x ). Именно к такому заключению и требовалось придти.

Лейбниц предложил для площади под кривой y = f (x ) от 0 до а обозначение

При строгом подходе этот так называемый определенный интеграл должен быть определен как предел некоторых сумм на манер Валлиса. Учитывая полученный выше результат, ясно, что этот интеграл вычисляется при условии, что мы можем найти такую функцию A (x ), которая обращается в нуль при х = 0 и имеет производную A ў (x ), равную f (x ). Нахождение такой функции принято называть интегрированием, хотя уместнее эту операцию было бы называть антидифференцированием, имея в виду, что она является в некотором смысле обратной дифференцированию. В случае многочлена интегрирование выполняется просто. Например, если

в чем нетрудно убедиться, продифференцировав A (x ).

Чтобы вычислить площадь А 1 под кривой y = 1 + x + x 2 /2, заключенную между ординатами 0 и 1, мы просто записываем

и, подставляя х = 1, получаем A 1 = 1 + 1 / 2 + 1 / 6 = 5 / 3 . Площадь A (x ) от 0 до 2 равна A 2 = 2 + 4 / 2 + 8 / 6 = 16 / 3 . Как видно из рис. 19, площадь, заключенная между ординатами 1 и 2, равна A 2 – A 1 = 11 / 3 . Обычно она записывается в виде определенного интеграла

Объемы.

Аналогичные рассуждения позволяют удивительно просто вычислять объемы тел вращения. Продемонстрируем это на примере вычисления объема шара, еще одной классической задачи, которую древним грекам, с помощью известных им методов, удалось решить с великим трудом.

Повернем часть плоскости, заключенной внутри четверти круга радиуса r , на угол 360° вокруг оси х . В результате мы получим полушарие (рис. 20), объем которого обозначим V (x ). Требуется определить, с какой скоростью возрастает V (x ) с увеличением x . Переходя от х к х + h , нетрудно убедиться в том, что приращение объема меньше, чем объем p (r 2 – x 2)h кругового цилиндра радиуса и высотой h , и больше, чем объем p [r 2 – (x + h ) 2 ]h цилиндра радиуса и высотой h . Следовательно, на графике функции V (x ) угловой коэффициент секущей заключен между p (r 2 – x 2) и p [r 2 – (x + h ) 2 ]. Когда h стремится к нулю, угловой коэффициент стремится к

При x = r мы получаем

для объема полушария, и, следовательно, 4p r 3 /3 для объема всего шара.

Аналогичный метод позволяет находить длины кривых и площади искривленных поверхностей. Например, если a (x ) – длина дуги PR на рис. 21, то наша задача состоит в вычислении a ў(x ). Воспользуемся на эвристическом уровне приемом, который позволяет не прибегать к обычному предельному переходу, необходимому при строгом доказательстве результата. Предположим, что скорость изменения функции а (x ) в точке Р такая же, какой она была бы при замене кривой ее касательной PT в точке P . Но из рис. 21 непосредственно видно, при шаге h вправо или влево от точки х вдоль РТ значение а (x ) меняется на

Следовательно, скорость изменения функции a (x ) составляет

Чтобы найти саму функцию a (x ), необходимо лишь проинтегрировать выражение, стоящее в правой части равенства. Оказывается, что для большинства функций выполнить интегрирование довольно трудно. Поэтому разработка методов интегрального исчисления составляет большую часть математического анализа.

Первообразные.

Каждую функцию, производная которой равна данной функции f (x ), называют первообразной (или примитивной) для f (x ). Например, х 3 /3 – первообразная для функции х 2 , так как (x 3 /3)ў = x 2 . Разумеется, х 3 /3 – не единственная первообразная функции х 2 , так как x 3 /3 + C также является производной для х 2 при любой константе С . Однако мы в дальнейшем условимся опускать такие аддитивные постоянные. В общем случае

где n – положительное целое число, так как (x n + 1/(n + 1))ў = x n . Соотношение (1) выполняется в еще более общем смысле, если n заменить любым рациональным числом k , кроме –1.

Произвольную первообразную функцию для заданной функции f (x ) принято называть неопределенным интегралом от f (x ) и обозначать его в виде

Например, так как (sin x )ў = cos x , справедлива формула

Во многих случаях, когда существует формула для неопределенного интеграла от заданной функции, ее можно найти в многочисленных широко публикуемых таблицах неопределенных интегралов. Табличными являются интегралы от элементарных функций (в их число входят степени, логарифмы, показательная функция, тригонометрические функции, обратные тригонометрические функции, а также их конечные комбинации, получаемые с помощью операций сложения, вычитания, умножения и деления). С помощью табличных интегралов можно вычислить интегралы и от более сложных функций. Существует много способов вычисления неопределенных интегралов; наиболее распространенный из них метод подстановки или замены переменной. Он состоит в том, что если мы хотим в неопределенном интеграле (2) заменить x на некоторую дифференцируемую функцию x = g (u ), то, чтобы интеграл не изменился, надо x заменить на g ў (u )du . Иначе говоря, справедливо равенство

(подстановка 2x = u , откуда 2dx = du ).

Приведем еще один метод интегрирования – метод интегрирования по частям. Он основан на известной уже формуле

Проинтегрировав левую и правую части, и учитывая, что

Эта формула называется формулой интегрирования по частям.

Пример 2. Требуется найти . Так как cos x = (sin x )ў , мы можем записать, что

Из (5), полагая u = x и v = sin x , получаем

А поскольку (–cos x )ў = sin x мы находим, что и

Следует подчеркнуть, что мы ограничились лишь весьма кратким введением в весьма обширный предмет, в котором накоплены многочисленные остроумные приемы.

Функции двух переменных.

В связи с кривой y = f (x ) мы рассмотрели две задачи.

1) Найти угловой коэффициент касательной к кривой в данной точке. Эта задача решается вычислением значения производной f ў (x ) в указанной точке.

2) Найти площадь под кривой над отрезком оси х , ограниченную вертикальными линиями х = а и х = b . Эта задача решается вычислением определенного интеграла .

Каждая из этих задач имеет аналог в случае поверхности z = f (x ,y ).

1) Найти касательную плоскость к поверхности в данной точке.

2) Найти объем под поверхностью над частью плоскости ху , ограниченной кривой С , а сбоку – перпендикулярами к плоскости xy , проходящими через точки граничной кривой С (см . рис. 22).

Следующие примеры показывают, как решаются эти задачи.

Пример 4. Найти касательную плоскость к поверхности

в точке (0,0,2).

Плоскость определена, если заданы две лежащие в ней пересекающиеся прямые. Одну из таких прямых (l 1) мы получим в плоскости xz (у = 0), вторую (l 2) – в плоскости yz (x = 0) (см . рис. 23).

Прежде всего, если у = 0, то z = f (x ,0) = 2 – 2x – 3x 2 . Производная по х , обозначаемая f ў x (x ,0) = –2 – 6x , при х = 0 имеет значение –2. Прямая l 1 , задаваемая уравнениями z = 2 – 2x , у = 0 – касательная к С 1 , линии пересечения поверхности с плоскостью у = 0. Аналогично, если х = 0, то f (0,y ) = 2 – y y 2 , и производная по у имеет вид

Так как f ў y (0,0) = –1, кривая С 2 – линия пересечения поверхности с плоскостью yz – имеет касательную l 2 , задаваемую уравнениями z = 2 – y , х = 0. Искомая касательная плоскость содержит обе прямые l 1 и l 2 и записывается уравнением

Это – уравнение плоскости. Кроме того, мы получаем прямые l 1 и l 2 , полагая, соответственно, у = 0 и х = 0.

В том, что уравнение (7) действительно задает касательную плоскость, на эвристическом уровне можно убедиться, если заметить, что это уравнение содержит члены первого порядка, входящие в уравнение (6), и что члены второго порядка можно представить в виде –. Так как это выражение отрицательно при всех значениях х и у , кроме х = у = 0, поверхность (6) всюду лежит ниже плоскости (7), кроме точки Р = (0,0,0). Можно сказать, что поверхность (6) выпукла вверх в точке Р .

Пример 5. Найти касательную плоскость к поверхности z = f (x ,y ) = x 2 – y 2 в начале координат 0.

На плоскости у = 0 имеем: z = f (x ,0) = x 2 и f ў x (x ,0) = 2x . На С 1 , линии пересечения, z = x 2 . В точке O угловой коэффициент равен f ў x (0,0) = 0. На плоскости х = 0 имеем: z = f (0,y ) = –y 2 и f ў y (0,y ) = –2y . На С 2 , линии пересечения, z = –y 2 . В точке O угловой коэффициент кривой С 2 равен f ў y (0,0) = 0. Так как касательные к С 1 и С 2 являются осями х и у , касательная плоскость, содержащая их, есть плоскость z = 0.

Однако в окрестности начала координат наша поверхность не находится по одну сторону от касательной плоскости. Действительно, кривая С 1 всюду, за исключением точки 0, лежит выше касательной плоскости, а кривая С 2 – соответственно ниже ее. Поверхность пересекает касательную плоскость z = 0 по прямым у = х и у = –х . Про такую поверхность говорят, что она имеет седловую точку в начале координат (рис. 24).

Частные производные.

В предыдущих примерах мы использовали производные от f (x ,y ) по х и по у . Рассмотрим теперь такие производные в более общем плане. Если у нас имеется функция двух переменных, например, F (x ,y ) = x 2 – xy , то мы можем определить в каждой точке две ее «частные производные», одну – дифференцируя функцию по х и фиксируя у , другую – дифференцируя по у и фиксируя х . Первая из этих производных обозначается как f ў x (x ,y ) или ¶ f x ; вторая – как f f ў y . Если обе смешанные производные (по х и у , по у и х ) непрерывны, то ¶ 2f x y = ¶ 2f y x ; в нашем примере ¶ 2f x y = ¶ 2f y x = –1.

Частная производная f ў x (x ,y ) указывает скорость изменения функции f в точке (x ,y ) в направлении возрастания х , а f ў y (x ,y ) – скорость изменения функции f в направлении возрастания у . Скорость изменения функции f в точке (х ,у ) в направлении прямой, составляющей угол q с положительным направлением оси х , называется производной от функции f по направлению; ее величина представляет собой комбинацию двух частных производных от функции f в касательной плоскости почти равно (при малых dx и dy ) истинному изменению z на поверхности, но вычислить дифференциал обычно бывает легче.

Уже рассмотренная нами формула из метода замены переменной, известная как производная сложной функции или цепное правило, в одномерном случае, когда у зависит от х , а х зависит от t , имеет вид:

Для функций двух переменных аналогичная формула имеет вид:

Понятия и обозначения частного дифференцирования нетрудно обобщить на более высокие размерности. В частности, в случае если поверхность задана неявно уравнением f (x ,y ,z ) = 0, уравнению касательной плоскости к поверхности можно придать более симметричную форму: уравнение касательной плоскости в точке (x (x 2 /4)], затем интегрируется по х от 0 до 1. Окончательный результат равен 3/4.

Формулу (10) можно интерпретировать и как так называемый двойной интеграл, т.е. как предел суммы объемов элементарных «клеток». Каждая такая клетка имеет основание D x D y и высоту, равную высоте поверхности над некоторой точкой прямоугольного основания (см . рис. 26). Можно показать, что обе точки зрения на формулу (10) эквивалентны. Двойные интегралы используются для нахождения центров тяжести и многочисленных моментов, встречающихся в механике.

Более строгое обоснование математического аппарата.

До сих пор мы излагали понятия и методы математического анализа на интуитивном уровне и, не колеблясь, прибегали к геометрическим фигурам. Нам осталось кратко рассмотреть более строгие методы, появившиеся в 19 и 20-м столетиях.

В начале 19 в., когда эпоха штурма и натиска в «создании математического анализа» завершилась, на первый план вышли вопросы его обоснования. В работах Абеля, Коши и ряда других выдающихся математиков были точно определены понятия «предела», «непрерывной функции», «сходящегося ряда». Это было необходимо для того, чтобы внести логический порядок в основание математического анализа с тем, чтобы сделать его надежным инструментом исследования. Потребность в тщательном обосновании стала еще более очевидной после открытия в 1872 Вейерштрассом всюду непрерывных, но нигде не дифференцируемых функций (график таких функций в каждой своей точке имеет излом). Этот результат произвел ошеломляющее впечатление на математиков, поскольку явно противоречил их геометрической интуиции. Еще более поразительным примером ненадежности геометрической интуиции стала построенная Д.Пеано непрерывная кривая, целиком заполняющая некоторый квадрат, т.е. проходящая через все его точки. Эти и другие открытия вызвали к жизни программу «арифметизации» математики, т.е. придания ей большей надежности путем обоснования всех математических понятий с помощью понятия числа. Почти пуританское воздержание от наглядности в работах по основаниям математики имело свое историческое оправдание.

По современным канонам логической строгости недопустимо говорить о площади под кривой y = f (x ) и над отрезком оси х , даже если f – непрерывная функция, не определив предварительно точный смысл термина «площадь» и не установив, что определенная таким образом площадь действительно существует. Эта задача была успешно решена в 1854 Б.Риманом, который дал точное определение понятия определенного интеграла. С тех пор идея суммирования, стоящая за понятием определенного интеграла, была предметом многих глубоких исследований и обобщений. В результате сегодня удается придать смысл определенному интегралу, даже если подынтегральная функция является повсюду разрывной. Новые понятия интегрирования, в создание которых большой вклад внес А.Лебег (1875–1941) и другие математики, приумножили мощь и красоту современного математического анализа.

Вряд ли было бы уместно входить в детали всех этих и других понятий. Ограничимся лишь тем, что приведем строгие определения предела и определенного интеграла.

В заключение скажем, что математический анализ, являясь крайне ценным инструментом в руках ученого и инженера, и сегодня привлекает внимание математиков как источник плодотворных идей. В то же время современное развитие как будто свидетельствует и о том, что математический анализ все более поглощается такими доминирующими в 20 в. разделами математики, как абстрактная алгебра и топология.

Математическое исследование благодаря своей универсальности применяется в областях, весьма далеких от математики. Это объясняется тем, что любое положение, правило или закон, записанные на математическом языке, ста- новятся инструментом предсказания (прогнозирования), являющегося важнейшей задачей каждого научного исследования.

Основой традиционной (классической) математики является система аксиом, из которых методом дедукции получают результаты, представляемые в виде лемм, теорем и т.п. Получаемые на их основе аналитические решения в пределе являются точными. В рамках этих методов исследуются вопросы существования решений, их единственности, а также устойчивости и сходимости к абсолютно точным решениям при неограниченном возрастании их числа.

Разработка таких методов способствует развитию собственно математики (появлению новых ее разделов и направлений). Однако для решения многих прикладных задач они оказываются малоэффективными, так как для их использования необходимо вводить массу допущений, приводящих к тому, что математическая модель исследуемого процесса оказывается существенно отличающейся от реального физического процесса.

В связи с этим в математике возникло ответвление, называемое прикладной математикой. Ее основное отличие от традиционной состоит в том, что здесь находится не точное, а приближенное решение с точностью, достаточной для инженерных приложений, но без учета тех допущений, которые принимаются в рамках классической математики. Оценка точности полученных решений выполняется путем сравнения с точными решениями каких-либо тестовых задач либо с результатами экспериментальных исследований.

К методам прикладной математики относятся вариационные (Ритца, Треффтца, Канторовича и др.), ортогональные методы взвешенных невязок (Бубнова-Галеркина, Канторовича), коллокаций, моментов, наименьших квадратов и др.; вариационно-разностные методы (конечных элементов, граничных элементов; спектральный метод и др.)- Все они относятся к группе так называемых прямых методов - это такие приближенные аналитические методы решения задач математической физики, которые сводят решение дифференциальных и интегральных уравнений к решению систем алгебраических линейных уравнений. Коротко остановимся на хронологии развития этих методов и их физической сути.

В 1662 г. французский математик П. Ферма сформулировал закон преломления света на границе двух сред следующим образом: из всех возможных путей движения света от пункта А к пункту В реализуется тот, на котором время движения достигает минимума. Это была одна из первых формулировок вариационного принципа.

В 1696 г. И. Бернулли сформулировал задачу нахождения длины пути (траектории), по которому материальная точка, двигаясь от точки А под действием только силы тяжести, за наименьшее время достигает точки В. Нахождение такой кривой, называемой брахистохроной (кривой наискорейшего спуска), сводится к определению минимума функционала

при граничных условиях у (0) = 0; у{а) = у а, являющихся координатами точек начала и конца движения.

Здесь Т - время наискорейшего спуска; g - ускорение силы тяжести.

Введением функционала (а) было положено начало появлению вариационного исчисления. Подобные функционалы в общем виде записываются следующим образом:

при граничных условиях у(а) = А = const, y(b) = В = const.

Обычно в задачах математической физики находятся экстремумы некоторых функций у = у(х). Значение вариационного исчисления заключается в том, что здесь определяются экстремумы более сложных, чем функции, величин - экстремумы функционалов J =J от функций у(х). В связи с чем открылись возможности исследования новых физических объектов и развития новых математических направлений.

В 1774 г. Л. Эйлер показал, что если функция у(х) доставляет минимум линейному интегралу J = J [у (х), то она должна удовлетворять некоторым дифференциальным уравнениям, названным впоследствии уравнениями Эйлера. Открытие этого факта явилось важным достижением математического моделирования (построения математических моделей). Стало ясно, что одна и та же математическая модель может быть представлена в двух эквивалентных видах: в виде функционала или в виде дифференциального уравнения Эйлера (системы дифференциальных уравнений). В связи с этим замена дифференциального уравнения функционалом получила название обратной задачи вариационного исчисления. Таким образом, решение задачи на экстремум функционала можно рассматривать так же, как и решение соответствующего этому функционалу дифференциального уравнения Эйлера. Следовательно, математическая постановка одной и той же физической задачи может быть представлена либо в виде функционала с соответствующими граничными условиями (экстремум этого функционала доставляет решение физической задачи), либо в виде соответствующего этому функционалу дифференциального уравнения Эйлера с теми же граничными условиями (интегрирование этого уравнения доставляет решение поставленной задачи).

Широкому распространению вариационных методов в прикладных науках способствовало появление в 1908 г. публикации В. Ритца, связанной с методом минимизации функционалов, названным впоследствии методом Ритца. Этот метод считается классическим вариационным методом. Основная его идея заключается в том, что искомая функция у = у(х) у доставляющая функционалу (А) с граничными условиями у (а) = А, у(Ъ ) = В минимальное значение, разыскивается в виде ряда

где Cj (i = 0, гг) - неизвестные коэффициенты; (р/(д) (г = 0, п) - координатные функции (алгебраический или тригонометрический полипом).

Координатные функции находятся в таком виде, чтобы они точно удовлетворяли граничным условиям задачи.

Подставляя (с) в (А), после определения производных от функционалаJ по неизвестным С, (г = 0, гг) относительно последних получается система алгебраических линейных уравнений. После определения коэффициентов С, решение задачи в замкнутом виде находится из (с).

При использовании большого числа членов ряда (с) (п - 5 ? °о) в принципе можно получить решение требуемой точности. Однако, как показыва- ют расчеты конкретных задач, матрица коэффициентов С, (г = 0, п) представляет собой заполненную квадратную матрицу с большим разбросом коэффициентов по абсолютной величине. Такие матрицы близки к вырожденным и, как правило, являются плохо обусловленными. Это связано с тем, что они не удовлетворяют ни одному из условий, при которых матрицы могут быть хорошо обусловленными. Рассмотрим некоторые из этих условий.

  • 1. Положительная определенность матрицы (члены, находящиеся на главной диагонали, должны быть положительными и максимальными).
  • 2. Ленточный вид матрицы относительно главной диагонали при минимальной ширине ленты (коэффициенты матрицы, находящиеся вне ленты, равны нулю).
  • 3. Симметричность матрицы относительно главной диагонали.

В связи с этим при увеличении приближений в методе Ритца число обусловленности матрицы, определяемое отношением ее максимального собственного числа к минимальному, устремляется к бесконечно большой величине. А точность получаемого при этом решения ввиду быстрого накопления ошибок округления при решении больших систем алгебраических линейных уравнений может не улучшаться, а ухудшаться.

Наряду с методом Ритца развивался родственный с ним метод Галерки- на. В 1913 г. И. Г. Бубнов установил, что алгебраические линейные уравнения относительно неизвестных С, (/ = 0, п ) из (с) можно получать, не используя функционал вида (А). Математическая постановка задачи в данном случае включает дифференциальное уравнение с соответствующими граничными условиями. Решение, как и в методе Ритца, принимается в виде (с). Благодаря особой конструкции координатных функций ф,(х) решение (с) точно удовлетворяет граничным условиям задачи. Для определения неизвестных коэффициентов С, (г = 0, п) составляется невязка дифференциального уравнения и требуется ортогональность невязки ко всем координатным функциям ф 7 Сг) (/ = i = 0, п). Определяя получающиеся при этом интегралы, относительно неизвестных коэффициентов С, = 0, гг) получаем систему алгебраических линейных уравнений, которая полностью совпадает с системой аналогичных уравнений метода Ритца. Таким образом, при решении одних и тех же задач с использованием одинаковых систем координатных функций методы Ритца и Бубнова - Галеркина приводят к одинаковым результатам.

Несмотря на идентичность получаемых результатов, важным преимуществом метода Бубнова-Галеркина по сравнению с методом Ритца является то, что он не требует построения вариационного аналога (функционала) дифференциального уравнения. Отметим, что подобный аналог не всегда может быть построен. В связи с этим методом Бубнова-Галеркина могут быть решены задачи, для которых классические вариационные методы неприменимы.

Еще одним методом, относящимся к группе вариационных, является метод Канторовича . Его отличительным признаком является то, что в качестве неизвестных коэффициентов в линейных комбинациях вида (с) принимаются не константы, а функции, зависящие от одной из независимых переменных задачи (например, времени). Здесь, как и в методе Бубнова-Галеркина, составляется невязка дифференциального уравнения и требуется ортогональность невязки ко всем координатным функциям (ру(дг) (j = i = 0, п). После определения интегралов относительно неизвестных функций fj(x) будем иметь систему обыкновенных дифференциальных уравнений первого порядка. Методы решения таких систем хорошо разработаны (имеются стандартные программы для ЭВМ).

Одним из направлений при решении краевых задач является совместное использование точных (Фурье, интегральных преобразований и др.) и приближенных (вариационных, взвешенных невязок, коллокаций и др.) аналитических методов. Такой комплексный подход позволяет наилучшим образом использовать положительные стороны этих двух важнейших аппаратов прикладной математики, так как появляется возможность без проведения тонких и громоздких математических расчетов в простой форме получать выражения, эквивалентные главной части точного решения, состоящего из бесконечного функционального ряда. Для практических расчетов, как правило, используется именно эта час- тичная сумма нескольких слагаемых . При использовании таких методов для получения более точных результатов на начальном участке параболической координаты необходимо выполнять большое число приближений. Однако при большом п координатные функции с соседними индексами приводят к алгебраическим уравнениям, связанным почти линейной зависимостью. Матрица коэффициентов в этом случае, являясь заполненной квадратной матрицей, близка к вырожденной и оказывается, как правило, плохо обусловленной. И при п - 3 ? °° приближенное решение может не сходиться даже к слабо точному решению. Решение систем алгебраических линейных уравнений с плохо обусловленными матрицами представляет существенные технические трудности вследствие быстрого накопления ошибок округления. Поэтому такие системы уравнений необходимо решать с большой точностью промежуточных вычислений .

Особое место среди приближенных аналитических методов, позволяющих получать аналитические решения на начальном участке временной (параболической) координаты занимают методы, в которых используется понятие фронта температурного возмущения. Согласно этим методам, весь процесс нагрева или охлаждения тел формально разделяется на две стадии. Первая из них характеризуется постепенным распространением фронта температурного возмущения от поверхности тела к его центру, а вторая - изменением температуры но всему объему тела вплоть до наступления стационарного состояния. Такое разделение теплового процесса по времени на две стадии позволяет осуществлять поэтапное решение задач нестационарной теплопроводности и для каждой из стадий в отдельности, как правило, уже в первом приближении находить удовлетворительные по точности, достаточно простые и удобные в инженерных приложениях расчетные формулы. Данные методы обладают и существенным недостатком, заключающимся в необходимости априорного выбора координатной зависимости искомой температурной функции. Обычно принимаются квадратичная или кубическая параболы. Эта неоднозначность решения порождает проблему точности, так как, принимая заранее тот или иной профиль температурного поля, всякий раз будем получать различные конечные результаты.

Среди методов, в которых используется идея конечной скорости перемещения фронта температурного возмущения, наибольшее распространение получил интегральный метод теплового баланса . С его помощью уравнение в частных производных удается свести к обыкновенному дифференциальному уравнению с заданными начальными условиями, решение которого довольно часто можно получить в замкнутом аналитическом виде. Интегральный метод, например, можно использовать для приближенного решения задач, когда теплофизические свойства не являются постоянными, а определяются сложной функциональной зависимостью, и задач, в которых совместно с теплопроводностью приходится также учитывать и конвекцию. Интегральному методу также присущ отмеченный выше недостаток - априорный выбор температурного профиля, что порождает проблему однозначности решения и приводит к низкой его точности.

Многочисленные примеры применения интегрального метода к решению задач теплопроводности приведены в работе Т. Гудмена . В этой работе наряду с иллюстрацией больших возможностей показана и его ограниченность. Так, несмотря на то что многие задачи успешно решаются интегральным методом, существует целый класс задач, для которых этот метод практически не применим. Это, например, задачи с импульсным изменением входных функций. Причина обусловлена тем, что температурный профиль в виде квадратичной или кубической параболы не соответствует истинному профилю температур для таких задач. Поэтому если истинное распределение температуры в исследуемом теле принимает вид немонотонной функции, то получить удовлетворительное решение, согласующееся с физическим смыслом задачи, ни при каких условиях не удается.

Очевидный путь повышения точности интегрального метода - использование полиномиальных температурных функций более высокого порядка. В этом случае основные граничные условия и условия плавности на фронте температурного возмущения не являются достаточными для определения коэффициентов таких полиномов. В связи с этим возникает необходимость поиска недостающих граничных условий, которые совместно с заданными позволили бы определять коэффициенты оптимального температурного профиля более высокого порядка, учитывающего все физические особенности исследуемой задачи. Такие дополнительные граничные условия могут быть получены из основных граничных условий и исходного дифференциального уравнения их дифференцированием в граничных точках но пространственной координате и но времени .

При исследовании различных задач теплообмена предполагают, что теп- лофизические свойства не зависят от температуры, а в качестве граничных принимают линейные условия. Однако если температура тела изменяется в широких пределах, то ввиду зависимости теплофизических свойств от температуры уравнение теплопроводности становится нелинейным. Его решение значительно усложняется, и известные точные аналитические методы оказываются неэффективными. Интегральный метод теплового баланса позволяет преодолеть некоторые трудности, связанные с нелинейностью задачи. Например, с его помощью уравнение в частных производных с нелинейными граничными условиями приводится к обыкновенному дифференциальному уравнению с заданными начальными условиями, решение которого часто может быть получено в замкнутой аналитической форме.

Известно, что точные аналитические решения в настоящее время получены лишь для задач в упрощенной математической постановке, когда не учитываются многие важные характеристики процессов (нелинейность, переменность свойств и граничных условий и пр.). Все это приводит к существенному отклонению математических моделей от реальных физических процессов, протекающих в конкретных энергетических установках. К тому же точные решения выражаются сложными бесконечными функциональными рядами, которые в окрестностях граничных точек и при малых значениях временной координаты являются медленно сходящимися. Такие решения малопригодны для инженерных приложений, и особенно в случаях, когда решение температурной задачи является промежуточным этапом решения каких-либо других задач (задач термоуиругости, обратных задач, задач управления и др.). В связи с этим большой интерес представляют перечисленные выше методы прикладной математики, позволяющие получать решения, хотя и приближенные, но в аналитической форме, с точностью, во многих случаях достаточной для инженерных приложений. Эти методы позволяют значительно расширить круг задач, для которых могут быть получены аналитические решения по сравнению с классическими методами.

Суть и определение математических методов исследования экономики

Определение 1

Экономико-математическое моделирование - это концентрированное выражение наиболее существенных взаимосвязей и закономерностей поведения управляемой системы в математической форме.

На сегодняшний день существует целый ряд видов и модификаций методов экономико-математического моделирования. В системе управления инновационным развитием промышленного предприятия применяется значительное их количество. Рассмотрим основные классификационные подходы к методам моделирования.

По отрасли и целью использования методы экономико-математического моделирования различают на:

  1. теоретико-аналитические - анализируют общие свойства и закономерности;
  2. прикладные - применяются при решении конкретных экономических задач анализа и управления.

Классификация методов моделирования

По типу подхода к социально-экономическим системам: дескриптивные модели - предназначены для описания и объяснения явлений, которые фактически наблюдаемых или для прогноза этих явлений; нормативные модели - показывает развитие экономической системы в разрезе влияния определенных критериев.

По способу отражения реальных объектов: функциональные модели - субъект моделирования пытается достичь сходства модели и оригинала только в понимании того, что они выполняют те же функции; структурные модели - субъект моделирования пытается воссоздать внутреннюю построение моделируемой, и за счет более точного отображения структуры получить более точное отображение функции.

По учету фактора времени: статические модели - все зависимости относятся к одному моменту времени; динамические модели - описывают экономические системы в развитии. По типу используемой в модели: аналитические модели - задаются на основе априорной информации, строятся с учетом существующих закономерностей, записанных в формально-теоретическом виде; модели, идентифицируются - построены на результатах наблюдений за объектами.

По ступеням использования типовых элементов: модели с фиксированной структурой - процесс моделирования сводится к подбору и настройке значений параметров типовых блоков; модели с переменной структурой - структура модели создается при моделировании и не является типичной.

По характеристике математических объектов, включенных в модели (особенности каждого вида обусловлены типом математического аппарата, используемого в модели): матричные модели; структурные модели; сетевые модели; модели линейного и нелинейного программирования; факторные модели; комбинированные; модели теории игр и т.д.

По способу представления или описания модели: модели, представленные в аналитической форме - модели подаются на языке математики; модели, представленные в виде алгоритма - реализуются численно или с помощью программного обеспечения; имитационные модели - численная реализация соотношений, составляющих модель, осуществляется без предварительных преобразований, в процессе имитации алгоритм расчетов воспроизводит логику функционирования объекта-оригинала.

По ожидаемым результатом: модели, в которых минимизируются затраты - ожидаемый конечный результат опирается на минимизацию затрат; модели, в которых минимизируется конечный результат - модели, в которых целью поставлено уменьшение показателей, характеризующих объект исследования (если эти показатели направлены до максимума) или увеличить значение показателей (если эти показатели направлены в минимизации).

Место математических методов исследования в управлении предприятием

При изучении методов экономико-математического моделирования в разрезе прогнозирования инновационного развития промышленных предприятий возникает необходимость их адаптации к реальным экономическим условиям современности, выдвигает рыночную среду и основы стратегического маркетингового управления. Так, формализованные методы прогнозирования целесообразно сочетать с аналитическими методами, которые могут качественно охватить всю проблематику рыночной среды.

Замечание 1

Экономико-математические модели оптимизации включают одну целевую функцию, формализует критерий оптимальности, по которому среди допустимых планов выбирается наилучший, а ограничения по переменных определяют множество допустимых планов.

Так, составным элементом текущего плана предприятия является план производства или производственная программа, включает систему плановых показателей производства по объему, ассортименту и качеству продукции. Ведь важным этапом разработки производственной программы является формирование оптимальной структуры портфеля продукции предполагает определение такого объема, номенклатуры и ассортимента продукции, которые бы обеспечили предприятию эффективное использование имеющихся ресурсов и получения удовлетворительного финансового результата.

Утверждение портфеля продукции и ресурсов на ее изготовление происходит благодаря применению экономико-математических методов, к которым предъявляются определенные требования. Прежде всего, они должны быть тождественными внешним условиям рынка, а также учитывать разнообразие путей достижения главной цели предприятия - максимизации прибыли.

И геометрией . Основной отличительный признак анализа в сравнении с другими направлениями - наличие функций переменных величин как предмета исследования. При этом, если элементарные разделы анализа в учебных программах и материалах часто объединяют с элементарной алгеброй (например, существуют многочисленные учебники и курсы с наименованием «Алгебра и начала анализа»), то современный анализ в значительной степени использует методы современных геометрических разделов, прежде всего, дифференциальной геометрии и топологии .

История

Отдельные ответвления от «анализа бесконечно малых», такие как теория обыкновенных дифференциальных уравнений (Эйлер , Иоганн Бернулли , Д’Аламбер), вариационное исчисление (Эйлер, Лагранж), теория аналитических функций (Лагранж, Коши , впоследствии - Риман), начали обособляться ещё в XVIII - первой половине XIX века. Однако началом формирования анализа как самостоятельного современного раздела считаются труды середины XIX века по формализации ключевых понятий классического анализа - вещественного числа , функции , предела , интеграла , прежде всего, в трудах Коши и Больцано , и приобретшие законченную форму к 1870-м - 1880-м годам в работах Вейерштрасса , Дедекинда и Кантора . В этой связи сформировались теория функций вещественной переменной и, в развитии методов работы с аналитическими функциями, - теория функций комплексной переменной . Созданная Кантором в конце XIX века наивная теория множеств дала толчок к появлению понятий метрического и топологического пространств, что в значительной мере изменило весь инструментарий анализа, повысив уровень абстракции изучаемых объектов и переместив фокус с вещественных чисел к нечисловым понятиям.

В начале XX века в основном силами французской математической школы (Жордан , Борель , Лебег , Бэр) была создана теория меры , благодаря которой обобщено понятие интеграла, а также построена теория функций действительной переменной . Также в начале XX века начал формироваться функциональный анализ как самостоятельный подраздел современного анализа, изучающий топологические векторные пространства и их отображения . Термин «функциональный анализ» ввёл Адамар , обозначая ветвь вариационного исчисления, разрабатываемую на рубеже XIX и XX веков группой итальянских и французских математиков (в их числе - Вольтерра , Арцела). В 1900 году Фредгольм публикует статью об интегральных уравнения, как давшую толчок для развития теории интегральных уравнений , развития общей теории интегрирования (Лебег), так и формирования функционального анализа . В 1906 году в работе Гильберта очерчена спектральная теория , в том же году опубликована работа Фреше , в которой впервые в анализ введены абстрактные метрические пространства . В 1910-е - 1920-е годы уточнены понятия отделимости и впервые применены общетопологические методы к анализу (Хаусдорф), освоены функциональные пространства и начато формирование общей теории нормированных пространств (Гильберт, Рис , Банах , Хан). В период 1929-1932 годов сформирована аксиоматическая теория гильбертовых пространств (Джон фон Нейман , Маршалл Стоун , Рис). В 1936 году Соболевым сформулировано понятие обобщённой функции (позднее в 1940-х годах независимо от него к подобному понятию пришёл Лоран Шварц), получившее широкое распространение во многих разделах анализа и нашедшее широкое применение в приложениях (например, обобщённой является δ {\displaystyle \delta } -функция Дирака). В 1930-е - 1950-е годы в функциональном анализе получены значительные результаты за счёт применения общеалгебраических инструментов (векторные решётки , операторные алгебры , банаховы алгебры).

К середине XX века получили самостоятельное развитие такие направления как теория динамических систем и эргодическая теория (Джордж Биркгоф , Колмогоров , фон Нейман), существенно обобщены результаты гармонического анализа за счёт применения общеалгебраических средств - топологических групп и представлений (Вейль , Петер , Понтрягин). Начиная с 1940-х - 1950-х годов методы функционального анализа нашли применение в прикладных сферах, в частности, в работах Канторовича 1930-х - 1940-х годов инструменты функционального анализа использованы в вычислительной математике и экономике (линейное программирование). В 1950-е годы в трудах Понтрягина и учеников в развитие методов вариационного исчисления создана теория оптимального управления .

Начиная со второй половины XX века с развитием дифференциальной топологии к анализу примкнуло новое направление - анализ на многообразиях , получившее название «глобальный анализ» , фактически начавшее формироваться ранее, в 1920-е годы в рамках теории Морса как обобщение вариационного исчисления (называемое Морсом «вариационное исчисление в целом», англ. variation calculus in large ). К этому направлению относят созданные в развитие теории бифуркаций динамических систем (Андронов) такие направления, как теорию особенностей (Уитни , ) и теорию катастроф (Том , и Мазер , ), получившие в 1970-е годы развитие в работах Зимана и Арнольда .

Классический математический анализ

Классический математический анализ - раздел, фактически полностью соответствующий историческому «анализу бесконечно малых », состоит из двух основных компонентов: дифференциального и интегрального исчислений. Основные понятия - предел функции , дифференциал , производная , интеграл , главные результаты - формула Ньютона - Лейбница , связывающая определённый интеграл и первообразную и ряд Тейлора - разложение в ряд бесконечно дифференцируемой функции в окрестности точки.

Под термином «математический анализ» обычно понимают именно этот классический раздел, при этом он используется в основном в учебных программах и материалах. При этом изучение основ анализа входит в большинство среднеобразовательных программ, а более или менее полное изучение предмета включено в программы первых лет высшего образования для широкого круга специальностей, в том числе многих гуманитарных. В англо-американской образовательной традиции для обозначения классического математического анализа используется термин «исчисление» (англ. calculus ).

Теория функций вещественной переменной (иногда именуется кратко - теория функций ) возникла вследствие формализации понятий вещественного числа и функции : если в классических разделах анализа рассматривались только функции, возникающие в конкретных задачах, естественным образом, то в теории функций сами функции становятся предметом изучения, исследуется их поведение, соотношения их свойств. Один из результатов, иллюстрирующих специфику теории функций вещественной переменной - факт, что непрерывная функция может не иметь производной ни в одной точке (притом согласно более ранним представлениям классического математического анализа дифференцируемость всех непрерывных функций не подвергалась сомнению).

Основные направления теории функций вещественной переменной :

Теория функций комплексной переменной

Предмет изучения теории функций комплексной переменной - числовые функции, определённые на комплексной плоскости C 1 {\displaystyle \mathbb {C} ^{1}} или комплексном евклидовом пространстве C n {\displaystyle \mathbb {C} ^{n}} , при этом наиболее тщательно изучены аналитические функции , играющие важную связующую роль практически для всех ветвей математического анализа. В частности, понятие аналитической функции обобщено для произвольных банаховых пространств , тем самым многие результаты теории функций комплексной переменной нашли обобщение в функциональном анализе.

Функциональный анализ

Функциональный анализ как раздел характеризуется наличием в качестве предмета изучения топологических векторных пространств и их отображений с наложенными на них различными алгебраическими и топологическими условиями . Центральную роль в функциональном анализе играют функциональные пространства, классический пример - пространства всех измеримых функций , чья p {\displaystyle p} -я степень интегрируема; при этом уже L 2 {\displaystyle L^{2}} - бесконечномерное пространство (гильбертово пространство), и пространства бесконечных размерностей присущи функциональному анализу настолько, что иногда весь раздел определяется как часть математики, изучающая бесконечномерные пространства и их отображения . Важнейшей формой пространств в классических разделах функционального анализа являются банаховы пространства - нормированные векторные пространства, полные по метрике, порождённой нормой: значительная доля интересных на практике пространств являются таковыми, среди них - все гильбертовы пространства, пространства L p {\displaystyle L^{p}} , пространства Харди , пространства Соболева . Важную роль играют в функциональном анализе играют алгебраические структуры, являющиеся банаховыми пространствами - банаховы решётки и банаховы алгебры (в том числе - C ∗ {\displaystyle C^{*}} -алгебры , алгебры фон Неймана).

В абстрактном гармоническом анализе классические методы обобщены для абстрактных структур с использованием таких понятий, как мера Хаара и представления групп . Важнейший результат коммутативного гармонического анализа - теорема Понтрягина о двойственности , благодаря которой относительно простыми общеалгебраическими средствами описываются практически все классические результаты гармонического анализа. Дальнейшее развитие теории - некоммутативный гармонический анализ, имеющий важные приложения в квантовой механике .

Дифференциальные и интегральные уравнения

В теории интегральных уравнений , кроме классических методов решения, выделяются такие направления, как теория Фредгольма , оказавшая заметное влияние на формирование функционального анализа как самостоятельного раздела, в частности, способствовавшая формированию понятия гильбертова пространства .

Теория динамических систем и эргодическая теория

Из основных направлений изучения дифференциальных уравнений в качестве самостоятельных разделов выделились теория динамических систем , изучающая эволюцию во времени механических систем, и эргодическая теория , нацеленная на обоснование статистической физики . Несмотря на прикладной характер задач, к этим разделам относится широкий пласт понятий и методов общематемического значения, в частности, таковы понятия устойчивости и эргодичности .

Глобальный анализ

Глобальный анализ - раздел анализа, изучающий функции и дифференциальные уравнения на многообразиях и векторных расслоениях ; иногда это направление обозначается как «анализ на многообразиях».

Одно из первых направлений глобального анализа - теория Морса и её применение к задачам о геодезических на римановых многообразиях ; направление получило название «вариационное исчисление в целом». Основные результаты - лемма Морса , описывающая поведение гладких функций на гладких многообразиях в невырожденных особых точках, и такой гомотопический инвариант, как категория Люстерника - Шнирельмана . Многие из конструкций и утверждений обобщены на случай бесконечномерных многообразий (гильбертовых многообразий * , банаховых многообразий ). Результаты, полученные в рамках глобального анализа особых точек нашли широкое и для решения чисто топологических задач, такова, например, теорема периодичности Ботта , во многом послужившая основанием для самостоятельного раздела математики - K {\displaystyle K} -теории , а также теорема об h {\displaystyle h} -кобордизме , следствием которой является выполнение гипотезы Пуанкаре для размерности, превосходящей 4.

Ещё один крупный блок направлений глобального анализа, получивший широкое применение в физике и экономике - теория особенностей , теория бифуркаций и теория катастроф ; основное направление исследований данного блока - классификация поведений дифференциальных уравнений или функций в окрестностях критических точек и выявление характерных особенностей соответствующих классов.

Нестандартный анализ

Нестандартный анализ - формализация ключевых понятий анализа средствами математической логики , основная идея - формальная актуализация бесконечно больших и бесконечно малых величин, и логическая формализация манипуляций с ними. При этом средства нестандартного анализа оказываются весьма удобными: ими получены результаты, ранее не найденные классическими средствами из-за недостатка наглядности



Понравилась статья? Поделитесь с друзьями!