От чего зависит электродный потенциал. Электродный потенциал

Простейшая модель строения металла следующая: в узлах кристаллической решетки находятся положительные ионы металла, которые прочно связаны подвижными электронами. При погружении металлической пластины в водный раствор соли этого же металла положительные ионы, находящиеся на поверхности металла, гидратируются и переходят в раствор. В результате этого перехода в кристаллической решетке металла оказывается избыток электронов и пластина приобретает отрицательный заряд. Между отрицательно заряженной пластиной и положительными ионами в растворе возникает электростатическое притяжение, в результате которого раствор у поверхности пластины приобретает положительный заряд. Одновременно развивается противоположный процесс: ионы металла из раствора принимают электроны с поверхности пластины и образуют атомы металла, которые становятся частью кристаллической решетки.

Через промежуток времени между металлической пластиной и раствором устанавливается состояние равновесия, при котором скорость перехода ионов из металла в раствор равна скорости разряжения ионов из раствора на поверхности металла:

Me + mH2O « Men+.mH2O + n

или упрощенно

Таким образом, при контакте металла с раствором его соли поверхности этих фаз приобретают противоположные заряды - образуется двойной электрический слой и возникает разность потенциалов.

Система, состоящая из металлического проводника и раствора электролита, в который погружен проводник, называется электродом , а разность потенциалов на границе металл-электролит - электродным потенциалом .

Электродный потенциал зависит от следующих основных факторов:

Природы металла;

Концентрации ионов металла в растворе;

Температуры.

Зависимость величины потенциала от указанных факторов выражается уравнением Нернста:

(1)

где - стандартный электродный потенциал, В;

R - универсальная газовая постоянная, равная 8,31 Дж/(моль.К);

Т - абсолютная температура, К;

F - постоянная Фарадея, равная 96500 кл/моль;

n - число электронов, участвующих в электродном процессе;

Молярная концентрация ионов металла в растворе, моль/л.

Если в уравнение (1) подставить значения постоянных R и F, стандартную температуру 298 К и перейти от натурального к десятичному логарифму, получим:

(2)

Из уравнения (2) следует, что стандартный потенциал j0 - это потенциал электрода при стандартных условиях: Т=298 К; =1 моль/л.

Измерить абсолютную величину электродного потенциала невозможно, поэтому потенциалы металлов выражают по отношению к стандартному водородному электроду (СВЭ), потенциал которого условно принимается равным нулю:

По отношению к потенциалу стандартного водородного электрода потенциалы различных металлов располагаются в ряд стандартных электродных потенциалов или ряд напряжений (приложение, табл.5).

Чем более отрицательное значение имеет потенциал металла, тем более сильной восстановительной способностью он обладает. И наоборот, чем более положителен потенциал электрода, тем большей окислительной способностью обладают его ионы.

Металлы, стоящие в ряду напряжений левее, вытесняют правее стоящие из растворов их солей.

Металлы, расположенные в ряду напряжений до водорода, вытесняют его из некоторых кислот.

Процессы, протекающие на границе металл-раствор, лежат в основе работы гальванического элемента - устройства для превращения энергии химической окислительно-восстановительной реакции в электрическую.

Гальванический элемент представляет собой электрохимическую систему, состоящую из двух металлических пластин, погруженных в растворы солей собственных ионов. Растворы соединяются солевым мостиком - стеклянной трубкой, заполненной электролитом KCl. Солевой мостик препятствует смешиванию растворов и проводит электрический ток.

Рассмотрим гальванический элемент Даниэля-Якоби, состоящий из медной и цинковой пластин, погруженных в растворы солей CuSO4 и ZnSO4, соответственно. Пока цепь разомкнута, на каждой из пластин устанавливается равновесие:

Потенциал цинкового электрода имеет более отрицательное значение, чем потенциал медного электрода, поэтому при замыкании внешней цепи, т.е. при соединении электродов металлическим проводником, избыточные электроны будут перемещаться с цинкового электрода на медный. В результате перехода электронов равновесие на цинковой пластине сместится вправо и в раствор перейдут новые количества ионов цинка. В то же время равновесие на медной пластине сместится влево и на поверхности пластины произойдет разряд ионов меди.

Таким образом, при замыкании цепи возникают самопроизвольные процессы растворения цинка на цинковом электроде и осаждение меди на медном электроде.

Движение анионов (SO42-) через солевой мостик замыкает электрическую цепь гальванического элемента.

В гальваническом элементе электрод, на котором идут процессы окисления, называют анодом , ему присваивают отрицательный заряд (-). Электрод, на поверхности которого идут процессы восстановления катионов металла из раствора, называют катодом и ему присваивают положительный заряд (+).

Гальванический элемент принято изображать в виде схемы:

(-) Zn | Zn2+ || Cu2+ | Cu (+)

анод катод

Анодный процесс: А(-): Zn0 - 2 = Zn2+

Катодный процесс: К(+): Cu2+ + 2 = Cu0

Суммарная

токообразующая Zn0 + Cu2+ = Zn2+ + Cu0

реакция: Zn + CuSO4 = ZnSO4 + Cu

Главной характеристикой гальванического элемента является электродвижущая сила (э.д.с.) Е, равная разности электродных потенциалов катода и анода:

Если э.д.с. измеряют при стандартных условиях, то ее рассчитывают по стандартным электродным потенциалам. Так, для гальванического элемента Даниэля-Якоби

E0 = j0Cu - j0Zn = 0,34 -(-0,76) = 1,1 В

Если условия отличны от стандартных, то величины электродных потенциалов рассчитывают по уравнениям Нернста.

Гальванический элемент из двух электродов, изготовленных из одного металла, но погруженных в растворы солей этого металла с различной концентрацией называют концентрационным.

Анодом в таком элементе будет пластина в растворе с меньшей концентрацией (С1), катодом - пластина в растворе с более высокой концентрацией (С2). Электродвижущую силу такого элемента рассчитывают по формуле:

Таким образом, концентрация первого раствора С1 будет постепенно увеличиваться, а второго раствора С2 - уменьшаться. Через некоторое время концентрации С1 и С2 станут одинаковыми, а э.д.с. - равной нулю.

Пример 1. Определите электродный потенциал цинка, опущенного в раствор его соли с концентрацией ионов Zn2+ 0,001 моль/л.

Решение. Зависимость электродного потенциала металла от концентрации его ионов выражается уравнением Нернста

Стандартный потенциал цинка равен -0,76 В. Отсюда

Ответ: -0,85 В.

Пример 2. Составьте схему, анодный и катодный процессы и вычислите э.д.с. гальванического элемента, образованного серебряной и кадмиевой пластинами, погруженными в растворы с концентрацией ионов =0,1 моль/л и =0,005 моль/л.

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.


Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: низкий отрицательный потенциал означает, что данная форма является сильным восстановителем. Например, F 2 имеет 2,87 В, а Li + имеет −3,05 В, фтор - окислитель, литий - восстановитель. Таким образом, Zn 2+ , стандартный восстановительный потенциал которого равен −0,76 В, может быть окислен любым другим электродом, стандартный потенциал которого больше −0,76 В. (напр., H + (0 В), Cu 2+ (0,16 В), F 2 (2,87 В)) и может быть восстановлен любым электродом, стандартный потенциал которого меньше −0,76 В (напр., H − (−2,23 В), Na + (−2,71 В), Li + (−3,05 В)).

В гальванической ячейке, где самопроизвольная окислительно-восстановительная реакция заставляет ячейку производить электрический потенциал, Энергия Гиббса ΔG o должна быть отрицательной в соответствии со следующим уравнением:

ΔG o яч = -nFE o яч

Нестандартные условия

Стандартные электродные потенциалы даны при стандартных условиях. Однако реальные ячейки могут действовать и при нестандартных условиях. При данном стандартном потенциале потенциал при нестандартных эффективных концентрациях может быть вычислен с использованием

Возможность активного электрохимического взаимодействия металла с электролитом обусловлена наличием ионов металла в электролите и свободных электронов в самом металле.

При непосредственном контакте металла с электролитом на поверхности их раздела возникает некоторый скачок потенциала (разность потенциалов). Механизм возникновения скачка потенциала на металле по современным воззрениям представлен на рисунке 1

Каждому металлу при его взаимодействии с электролитом присуща определенная электролитическая упругость растворения, т. е. способность посылать в окружающий раствор свои положительно заряженные ионы.

Величина упругости растворения для различных металлов различна и зависит от химической природы самого металла, свойств электролита, температуры и других внешних условий.

Упругости растворения отвечает обратный процесс, т. е. переход ионов данного металла из раствора и осаждение их на поверхности металла.

Противодействие раствора электролитической упругости растворения носит название осмотического давления на металл.

Если пластинку какого-либо металла, например цинка, поместить в электролит, содержащий ионы Zn-в концентрации, при которой упругость растворения Р будет больше осмотического давления р, то в электролит перейдет некоторое количество ионов

Zn-Zn(в растворе) +2 электрона (в металле).

В результате этого процесса пластинка цинка приобретет отрицательный заряд (фиг. 1, а).

Отделившиеся от пластинки цинка положительно заряженные ионы группируются около ее поверхности под влиянием электростатического притяжения отрицательно заряженного металла.

В равновесном положении на границе металл - электролит образуется двойной электрический слой: поверхность металла заряжена отрицательно, окружающий его слой электролита положительно; между цинком и электролитом возникла некоторая разность потенциалов. Переходя к принятым обозначениям, получим:

где Е - заряд электрода.

При обратном соотношении упругости растворения и осмотического давления, т. е. при Р <С р (рисунок 1,6), возможном при некоторой иной концентрации электролита, ионы цинка начнут осаждаться на поверхности металла, сообщая ему положительный заряд. При этом прилегающий к поверхности металла слой электролита зарядится отрицательно за счет отрицательных зарядов анионов SO 4 , которые сгруппируются около металла.

В результате установившегося равновесия опять образуется двойной электрический слой, причем заряд металла по отношению к заряду раствора будет положительным:

В случае равенства упругости растворения металла и осмотического давления его ионов обмена зарядами между металлом и электролитом не произойдет - в результате не возникнет между ними и разности потенциалов, т. е. при Р = р Е = 0.

Возникающая разность потенциалов называется электродным потенциалом или пограничным скачком потенциала.

Величина равновесного электродного потенциала, т. е. потенциала металла, находящегося в растворе собственной соли, зависит от концентрации ионов в этом электролите.

При погружении металла в раствор, содержащий ионы другого металла, на границе металл - электролит также будет происходить скачок потенциала. Однако потенциал металла в этом случае сильно отличается от его равновесного электродного потенциала и называется неравновесным.

Электродвижущая сила (э. д. с.) любого гальванического элемента, состоящего из двух различных электродов, равна разности скачков потенциалов на границе раздела между электролитом и каждым из электродов в отдельности.

Значение потенциала одиночного электрода относительно раствора может быть определено измерением э. д. с. цепи, состоящей из данного электрода и другого так называемого стандартного электрода, потенциал которого известен. В качестве стандартного принимается потенциал нормального водородного электрода, условно равный нулю.

Потенциал металла, измеренный в нормальном (с концентрацией 1 г - эквивалент на 1 л) растворе собственной соли я отнесенный к нормальному водородному электроду, называется нормальным электродным потенциалом.

Теоретические аспекты электрохимических процессов

Какие процессы называются электрохимическими?

Все электрохимические процессы можно разделить на две противоположные группы: процессы электролиза, при которых под действием внешнего источника электроэнергии происходят химические реакции, и процессы возникновения электродвижущей силы и электрического тока вследствие определенных химических реакций.

В первой группе процессов электрическая энергия превращается в химическую, во второй ‒ наоборот, химическая ‒ в электрическую.

Все электрохимические реакции происходят при протекании электрического тока в цепи. Этот круг обязательно состоит из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках ток переносят электроны, в растворе электролитов ‒ ионы. Непрерывность протекания тока в цепи обеспечивается только тогда, когда происходят процессы на электродах, т.е. на границе металл ‒ электролит. На одном электроде происходит процесс приема электронов ‒ восстановление, на втором электроде - процесс отдачи электронов, т.е. окисления.

Особенностью электрохимических процессов, в отличие от обычных химических, является пространственное разделение процессов окисления и восстановления. Из этих процессов, которые не могут происходить друг без друга, и состоит в целом химический процесс в электрохимической системе.

В чем заключается сущность механизма образования электродного потенциала?

Гальванический элемент (химический источник тока) – это устройство, в котором химическая энергия окислительно-восстановительной реакции превращается в электрическую. Гальванический элемент состоит из двух электродов (полуэлементов).

Система, в которой металл погружен в раствор собственной соли, называется электродом или полуэлементом . При погружении металлической пластинки в раствор собственной соли имеют место два основных процесса. Первый процесс – это ионизация металла пластинки, где в узлах кристаллической решетки находятся ионы – атомы:



Ионизация происходит под действием полярных молекул растворителя (воды). Образующиеся при этом электроны концентрируются на пластинке, заряжая ее отрицательно, а образующиеся катионы металла переходят с пластинки в раствор и концентрируются возле пластинки (рис. 1).

Рисунок1 – Схема металлического электрода

Второй процесс – это взаимодействие молекул растворителя с ионами металла, т.е. сольватация образующихся ионов:

При погружении пластинки металла в раствор вначале преобладает процесс ионизации металла, но со временем скорость прямой реакции уменьшается, а растет скорость обратной реакции, пока между этими процессами не установится динамическое равновесие

При этом на границе металл-раствор (твердая фаза - жидкость) устанавливается равновесный двойной электрический слой (ДЭС), состоящий из положительных ионов и электронов. Условное обозначение системы металл-раствор – Ме/Ме n + , где вертикальной чертой отмечена граница раздела твердая фаза-раствор.

Электродный потенциал. Стандартный электродный потенциал. Ряд стандартных электродных потенциалов

Между положительными ионами и электронами возникает скачок потенциала, который называется электродным потенциалом. Потенциал, возникающий в условиях равновесия электродной реакции, называется равновесным электродным потенциалом .

Значение электродного потенциала, возникающего на границе металл-раствор, зависит от природы металла, активности ионов этого металла и от температуры.

Абсолютное значение электродного потенциала в настоящее время измерить или рассчитать невозможно. Но можно определить значение электродного потенциала относительно какого-либо электрода, выбранного в качестве стандарта. Согласно международному соглашению таким стандартом служит стандартный (нормальный) водородный электрод, потенциал которого условно принят за нуль: = 0.0 В.

Стандартный водородный электрод представляет собой платиновую пластинку, покрытую платиновой чернью и опущенную в раствор Н 2 SO 4 или HCI с = 1 моль/л, через который все время пропускается газообразный Н 2 под давлением 101.3 кПа при 298 К (рис. 2).

Рисунок 2 – Водородный электрод

Платина, отличающаяся высокой химической стойкостью, в электродном процессе не участвует. Ее роль сводится к адсорбции на своей поверхности водорода и переносу электронов. На поверхности платины протекает процесс:

H 2 ⇄ 2Н + + 2 .

Если пластинку любого металла соединить со стандартным водородным электродом, то получим значение стандартного электродного потенциала данного металла.

Располагая металлы в порядке увеличения стандартных электродных потенциалов, получают электрохимический ряд напряжений металлов. Металлы, стоящие в ряду напряжений после водорода, не способны вытеснять водород из кислот. Вытеснение металла из солей другим металлом осуществляется только в том случае, если вытесняющий металл расположен в ряду напряжений до вытесняемого. Чем дальше друг от друга удалены металлы в электрохимическом ряду напряжений (т.е. чем больше разница между стандартными потенциалами металлов), тем больше ЭДС гальванического элемента, в котором эти металлы использованы.

Стандартные потенциалы являются количественной мерой окислительно-восстановительной способности системы. Чем выше значение φ 0 , тем большей окислительной способностью обладает окисленная форма данной пары. Восстановительные свойства сильнее выражены у восстановленной формы в паре с меньшим значением φ 0 .

Все металлы в ряду напряжений делятся на: активные (литий – алюминий), средней активности (до водорода), неактивные.



Понравилась статья? Поделитесь с друзьями!