Порядок возрастания электроотрицательности. Относительная электроотрицательность элементов

Выяснить активность простых веществ можно с помощью таблицы электроотрицательности химических элементов. Обозначается как χ. Подробнее о понятии активности читайте в нашей статье.

Что такое электроотрицательность

Свойство атома химического элемента притягивать к себе электроны других атомов называется электроотрицательностью. Впервые понятие ввёл Лайнус Полинг в первой половине ХХ века.

Все активные простые вещества можно разделить на две группы в соответствии с физическими и химическими свойствами:

  • металлы;
  • неметаллы.

Все металлы являются восстановителями. В реакциях они отдают электроны и обладают положительной степенью окисления. Неметаллы могут проявлять свойства восстановителей и окислителей в зависимости от значения электроотрицательности. Чем выше электроотрицательность, тем сильнее свойства окислителя.

Рис. 1. Действия окислителя и восстановителя в реакциях.

Полинг составил шкалу электроотрицательности. В соответствии со шкалой Полинга наибольшей электроотрицательностью обладает фтор (4), наименьшей - франций (0,7). Это значит, что фтор является самым сильным окислителем и способен притягивать электроны большинства элементов. Напротив, франций, как и другие металлы, является восстановителем. Он стремится отдать, а не принять электроны.

Электроотрицательность является одним из главных факторов, определяющих тип и свойства образованной между атомами химической связи.

Как определить

Свойства элементов притягивать или отдавать электроны можно определить по ряду электроотрицательности химических элементов. В соответствии со шкалой элементы со значением более двух являются окислителями и проявляют свойства типичного неметалла.

Номер элемента

Элемент

Символ

Электроотрицательность

Стронций

Иттербий

Празеодим

Прометей

Америций

Гадолиний

Диспрозий

Плутоний

Калифорний

Эйнштейний

Менделевий

Цирконий

Нептуний

Протактиний

Марганец

Бериллий

Алюминий

Технеций

Молибден

Палладий

Вольфрам

Кислород

Вещества с электроотрицательностью два и меньше являются восстановителями и проявляют металлические свойства. Переходные металлы, обладающие переменной степенью окисления и относящиеся к побочным подгруппам таблицы Менделеева, имеют значения электроотрицательности в пределах 1,5-2. Ярко выраженными свойствами восстановителя обладают элементы с электроотрицательностью равной или меньше одного. Это типичные металлы.

В ряде электроотрицательности металлические и восстановительные свойства увеличиваются справа налево, а окислительные и неметаллические свойства - слева направо.

Рис. 2. Ряд электроотрицательности.

Помимо шкалы Полинга узнать, насколько выражены окислительные или восстановительные свойства элемента можно с помощью периодической таблицы Менделеева. Электроотрицательность увеличивается в периодах слева направо с увеличением порядкового номера. В группах значение электроотрицательности уменьшается сверху вниз.

Рис. 3. Таблица Менделеева.

Что мы узнали?

Электроотрицательность показывает способность элементов отдавать или принимать электроны. Эта характеристика помогает понять, насколько выражены свойства окислителя (неметалла) или восстановителя (металла) у конкретного элемента. Для удобства Полингом была разработана шкала электроотрицательности. Согласно шкале максимальными окислительными свойствами обладает фтор, минимальными - франций. В периодической таблице свойства металлов увеличиваются справа налево и сверху вниз.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 180.

Электроотрицательность (ЭО) — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s 2 2p 5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX ) позволит судить о типе химической связи. Если величина Δ X = 0 – связь ковалентная неполярная .

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными . Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.


При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды. При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl). Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.


На этом рисунке изображены степени окисления, характерные для первых 20 элементов.
Обратите внимание. Высшая СО как правило равна номеру группы в таблице Менделеева. У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО. Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.


Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») - способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей . Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m . При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 — и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах N 2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.



Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.

Электроотрицательность (э.о.)- это способность атома смещать к себе электронные пары.
Мерой э.о. является энергия равняя арифметически ½ сумме энергии ионизации I и энергии сходства к электронц Е
Э.О. = ½ (I+E)

Относительная электроотрицательность. (ОЭО)

Фтору как самому сильному э.о элементу присваивается значение 4.00 относительно которого рассматриваются остальные элементы.

Изменения в периодах и группах Периодической системы.

Внутри периодов с увеличением заряда ядра слева направо увеличивается электроотрицательность.

Наименьшее значение наблюдается у щелочных и щелочноземельных металлов.

Наибольшее - у галогенов.

Чем выше электроотрицательность, тем сильнее у элементов выражены неметаллические свойства.

Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

Самое выское значение э.о. у фтора,а самое низкое –цезий.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA - соответственно энергия ионизации атома и его сродство к электрону.
Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

2)Полярность химической связи, полярность молекул и ионов.

То,что есть в конспекте и в учебнике-Полярность связана с дипольным моментом.Проявляется в результате смещения общей электронной пары к одному из атомов.Полярность так же зависит от разности электроотрицательности связываемых атомов.Чем выше значение э.о. двух атомов,тем более полярной является хим.связь между ними.В зависимости от того,как происходит перераспределение электронной плотности при образовании химической связи,различают несколько ее типов.Предельный случай поляризации хим.связи – полный переход от одного атома к другому.

При этом образуется два иона, между которыми возникает ионная связь.Для того чтобы два атома смогли создать ионную связь,необходимо, чтобы их э.о. очень сильно различались.Если э.о. равны,то образуется неполярная ковалентная связь.Чаще всего встречается полярная ковалентная связь- она образуется между любыми атомами,имеющими разное значение э.о.

Количественной оценкой полярности связи могут служить эффективные заряды атомов.эффективный заряд атома характерезует разность между числом электоронов,принадлежащих данному атому в химическом соединении, и числом электронов свободного атома.атом более электроотрицательного элемента притягивает электроны сильнее,поэтому электроны оказываются ближе к нему,и он получает некоторый отрицательный заряд,который называют эффективным,а у его партнера появляется такой же положительный эффективный заряд.Если электроны,образующие связь между атомами, принадлежат им в равной степени,эффективные заряяды равны нулю.

Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента M=q*r где q-заряд полюса диполя,равный для двухатомной молекулы эффективному заряду, r-межъядерное расстояние.Диполный момент связи является векторной величиной. Он направлен от положительно зарядной части молекулы к ее отрицательной части.Эффектичный заряд на атоме элемента не совпадает со степенью окисления.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Ионы, подобно электрическому полю, оказывают поляризующее действие друг на друга. При встрече двух ионов происходит их взаимная поляризация, т.е. смещение электронов внешних слоев относительно ядер. Взаимная поляризация ионов зависит от зарядов ядра и иона, радиуса иона и других факторов.

Внутри групп э.о. уменьшается.

Металлические свойства элементов возрастают.

Металлические элементы на внешнем энергетическом уровне содержат 1,2,3 электрона и характеризуются низким значением ионизационных потенциалов и э.о. потому что металлы проявляют выраженную тенденцию к отдаче электронов.
Неметаллические элементы отличаются более высоким значением энергии ионизации.
По мере заполнения наружной оболочки у неметаллов внутри периодов уменьшается радиус атомов. На внешней оболочке число электронов равно 4,5,6,7,8.

Полярность химической связи. Полярность молекул и ионов.

Полярность химической с вязи – определяется смещением связей электронной пары к одному из атомов.

Химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа, за счет образования ионов или образования общих электронных пар.
Химическая связь характеризуется энергией и длиной.
Мерой прочности связи служит энергия, затрачиваемая на разрушение связи.
Например. Н – Н = 435 кДжмоль-1

Электроотрицательность атомово элементов
Электроотрицательность - химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Относительная электроотрицательность

Первой и наиболее известной шкалой относительной электроотрицательности является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0.

Элементы VIII группы периодической системы (благородные газы) имеют нулевую электроотрицательность;
Условной границей между металлами и неметаллами считается значение относительной электроотрицательности равное 2.

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь.
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.

Полярность химической связи, полярность молекул и ионов
Полярность химических связей, характеристика химической связи, показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь.

Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны.

Например:
ковалентная неполярная: Cl2, O2, N2, H2,Br2

ковалентная полярная: H2O, SO2, HCl, NH3 и т.д.

В сложных соединениях, состоящих из атомов разных элементов, электронная плотность всегда будет смещена к одному, самому «сильному» соседу. Например, в молекуле воды (Н 2 О) победителем будет кислород, а в соляной кислоте (HCl) поединок выиграет атом хлора. Как же научиться определять эту силу? Для этого достаточно разобрать, что такое электроотрицательность. Приступим.

Атомы и элементы

Первое, что требуется освоить, это разница между атомом и элементом. Допустим, в молекуле HNO 3 целых пять атомов и только три элемента, коими являются водород (Н), азот (N) и кислород (О). Если название какого-то значка или символа стерлось из памяти, то на помощь придет периодическая система Менделеева.

В ней как раз и перечислены все существующие на сегодняшний день элементы. Итак, первая трудность преодолена. Подойдем поближе к вопросу, что такое электроотрицательность.

Шкала Полинга

В школах и вузах для выявления того самого наиболее сильного атома, который оттянет на себя электронную плотность более слабых «соседей», будет достаточно шкалы Полинга. Пугаться не стоит. Здесь всё предельно просто. Относительная электроотрицательность химических элементов расставлена в порядке возрастания и варьируется в интервале 0,7-4,0. Логика тут ясна: у кого данная величина больше, тот и сильнее.

Значение «0,7» принадлежит самому активному металлу - францию. Здесь он проигрывает абсолютно всем, то есть он наименее электроотрицателен (наиболее электроположителен). Максимальным значением, равным четырем, может похвастаться фтор. А потому ему нет равных по силе.

Даже особо не разбираясь, что такое электроотрицательность, в любом сложном фторсодержащем соединении можно сразу определить победителя. Кто оттянет на себя электронную плотность во фториде лития (LiF)? Конечно, фтор. Какой элемент более электроотрицателен в молекуле тетрафторида кремния (SiF 4)? Конечно же, снова фтор.

Закрепляем пройденное

Итак, разобрав, что такое электроотрицательность, подкрепим теорию примерами. Научимся выявлять самый сильный элемент из присутствующих в соединении. Возьмем молекулу серной кислоты (H 2 SO 4). Воспользовавшись шкалой Полинга, определим относительные электроотрицательности всех трех требуемых элементов. У водорода она составит 2,1. Значение для серы несколько выше - 2,6. Но явным лидером будет кислород, имеющий максимальный показатель, равный 3,5. Значит, наиболее электроотрицательным элементом в молекуле H 2 SO 4 будет именно кислород. Таким образом, возможно определить значение электроотрицательности любого элемента.

Электроотрицательность - это характеристика атома, показывающая, насколько высока его способность притягивать к себе электроны. Когда химическая связь образована двумя разными элементами, электроны у одного из них всегда расположены более плотно, чем у другого. Тот атом, у которого электронная плотность выше, называется электроотрицательным, тот, у кого ниже - соответственно, электроположительным.

Существует несколько шкал, ориентируясь на которые, можно определить электроотрицательность того или иного элемента. Попробуем их перечислить:

  1. Таблица Менделеева.
  2. Шкала Малликена.
  3. Шкала Полинга.
  4. Шкала Олреда-Рохова.

Чтобы определить параметр «электроотрицательность» по таблице Менделеева, нужно всего лишь знать, что наиболее электроотрицательные свойства имеют те элементы, которые располагаются вверху таблицы и в правой ее части. То есть, чем выше и правее э лемент находится в таблице Менделеева, тем выше у него электроотрицательность и наоборот, чем ниже и левее - тем выше у него электроположительность.

Шкала Полинга - наиболее часто используемая таблица электроотрицательности. Названа она в честь американского химика Лайнуса Полинга, который впервые ввел понятие электроотрицательности. Согласно шкале Поллинга, электроотрицательность всех имеющихся в природе элементов лежит в интервале от 0,7 (таковой она является у щелочного металла франция) до 4,0 (у газа-галогена фтора). В таблице приводятся относительные и неточные величины.

Шкала Малликена рассматривает электроотрицательность как величину энергии связи между валентными электронами. Приводятся максимально точные расчеты.

Расположение элементов в каждой из таблиц является идентичным, несмотря на то, что методы определения отличаются друг от друга, и величины тоже.

Самые высокие значения электроотрицательности

Фтор, один из галогенов - это элемент, обладающий наивысшей электроотрицательностью, а точнее - 3,98. Его химическая активность невероятно высока, настолько, что химики называют его не иначе как «все разгрызающий» .

Следом за фтором идет кислород. Электроотрицательность кислорода немного пониже - 3,44, но тоже достаточно высока.

Следом за ними (спускаясь все ниже по правой части таблицы Менделеева) идут:

  • хлор (3,16);
  • азот (3,04);
  • бром (2,96);
  • йод (2,66);
  • ксенон (2,60);
  • и так далее.

Большая часть неметаллов имеет электроотрицательность, колеблющуюся между значениями 2 и 3. У отличающихся наиболее высокой активностью металлов, от франция до бериллия, она колеблется от значения 0,7 до 1,57.

Как определить валентные электроны

Валентностью называют способность атома вступать во взаимодействие с другими атомами, образуя с ними определенные химические связи. Валентными электронами именуются электроны, непосредственно участвующие в образовании химической связи. Основными создателями, внесшими в теорию валентности наибольший вклад, являются русский ученый Бутлеров и немецкий ученый Кекуле. Электроны, которые принимают участие в образовании химической связи, называют валентными.

Атом, как мы все знаем из школьного курса, устроен таким образом, что довольно-таки напоминает по своему устройству Солнечную систему. В центре атома находится огромное ядро, чья масса чуть менее, чем полностью равняется массе всего атома, а вокруг него по орбиталям вращаются мелкие электроны, неодинаковые по своим внутренним характеристикам. Ядро атома окажется не таким уж и большим, если сравнить его размеры с длиной расстояния до орбиталей, по которым вращаются атомы. Чем дальше от ядра и чем ближе к внешней электронной оболочке находится электрон конкретно взятого атома, тем быстрее он вступает во взаимодействие с электронами других атомов.

Итак, перед нами таблица Менделеева. Найти на ней нужно третий период. Последовательно перебираем элементы главных подгрупп в нем. Существует правило, согласно которому валентность элемента определяется по номеру его группы и равняется количеству электронов на внешней оболочке его атома.

  • У щелочного металла натрия на внешней оболочке всего только один электрон, принимающий участие в химической связи между элементами. Исходя из этого, мы определяем, что он одновалентен.
  • У щелочноземельного металла на внешней оболочке уже два электрона. Это означает, что его валентность равна двум.
  • У амфотерного металла алюминия ровно три электрона на внешней оболочке. Его валентность так же, как и у предыдущих элементов, соответствует этому числу.
  • У кремния четыре электрона, он четырехвалентен.
  • Фосфор может образовывать различные связи и иметь разные валентности, но высшая валентность фосфора равна пяти.
  • Сера точно так же, как и фосфор, может иметь разные валентности, но высшая равняется шести.
  • Возьмем хлор. Когда, к примеру, он состоит в молекуле соляной кислоты (HCl), он находится в одновалентном состоянии. А вот в молекуле хлорной кислоты (HClO4) он сразу же становится семивалентным.

Помимо главных, есть еще и побочные подгруппы. Когда дело касается их, учитываются еще и d-электроны на предыдущем подуровне. В таблице Менделеева все эти значения легко можно отыскать. Попробуем определить высшую валентность хрома. На внешнем уровне у хрома находится 1 электрон, на d-подуровне - 5. Следовательно, его высшая валентность равна 6. У марганца на внешнем уровне 2 электрона, на d-подуровне - 5. Значит, его высшая валентность - 7.

Все вышеописанное, за некоторыми исключениями, действительно для элементов всех других побочных подгрупп (помимо тех, в которые включены марганец и хром). Вот исключения:

  • кобальт;
  • платина;
  • палладий;
  • родий;
  • иридий.

Видео

Это видео поможет вам лучше усвоить такое понятие, как электроотрицательность.

Не получили ответ на свой вопрос? Предложите авторам тему.



Понравилась статья? Поделитесь с друзьями!