Решение линейных уравнений с одной переменной. Виды уравнений и способы их решения

Как правило, уравнения появляются в задачах, в которых требуется найти некую величину. Уравнение позволяет сформулировать задачу на языке алгебры. Решив уравнение, мы получим значение нужной величины, которая называется неизвестной. «У Андрея в кошельке несколько рублей. Если умножить это число на 2, а затем вычесть 5, получится 10. Сколько денег у Андрея?» Обозначим неизвестную сумму денег за х и запишем уравнение: 2х-5=10.

Чтобы говорить о способах решения уравнений , сначала нужно определить основные понятия и познакомиться с общепринятыми обозначениями. Для разных типов уравнений существуют различные алгоритмы их решения. Проще всего решаются уравнения первой степени с одной неизвестной. Многим со школы знакома формула для решения квадратных уравнений. Приемы высшей математики помогут решить уравнения более высокого порядка. Множество чисел, на которых определено уравнение, тесно связано с его решениями. Также интересна взаимосвязь между уравнениями и графиками функций, так как представление уравнений в графическом виде великолепно помогает в их .

Описание . Уравнение - это математическое равенство с одной или несколькими неизвестными величинами, например 2х+3у=0.

Выражения по обе стороны знака равенства называются левой и правой частями уравнения . Буквами латинского алфавита обозначаются неизвестные. Хотя число неизвестных может быть любым, далее мы расскажем только об уравнениях с одной неизвестной, которую будем обозначать за х.

Степень уравнения - это максимальная степень, в которую возводится неизвестная. Например,
$3x^4+6x-1=0$ - уравнение четвертой степени, $x-4x^2+6x=8$ - уравнение второй степени.

Числа, на которые умножается неизвестная, называются коэффициентами . В предыдущем примере неизвестная в четвертой степени имеет коэффициент 3. Если при замене х на это число выполняется заданное равенство, то говорят, что это число удовлетворяет уравнению. Оно называется решением уравнения , или его корнем. Например, 3 является корнем, или решением, уравнения 2х+8=14, так как 2*3+8=6+8=14.

Решение уравнений . Допустим, что мы хотим решить уравнение 2х+5=11.

Можно подставить в него какое-нибудь значение х, например х=2. Заменим х на 2 и получим: 2*2+5=4+5=9.

Здесь что-то не так, потому что в правой части уравнения мы должны были получить 11. Попробуем х=3: 2*3+5=6+5=11.

Ответ верный. Получается, что если неизвестная принимает значение 3, то равенство выполняется . Следовательно, мы показали, что число 3 является решением уравнения.

Способ, который мы использовали для решения этого уравнения, называется методом подбора . Очевидно, что он неудобен в использовании. Более того, его даже нельзя назвать методом. Чтобы убедиться в этом, достаточно попробовать применить его к уравнению вида $x^4-5x^2+16=2365$.

Методы решения . При существуют так называемые «правила игры», с которыми будет полезно ознакомиться. Наша цель - определить значение неизвестной, которое удовлетворяет уравнению. Поэтому нужно каким-либо способом выделить неизвестную. Для этого необходимо перенести члены уравнения из одной его части в другую. Первое правило решения уравнений таково…

1. При переносе члена уравнения из одной части в другую его знак меняется на противоположный: плюс меняется на минус и наоборот. Рассмотрим в качестве примера уравнение 2х+5=11. Перенесем 5 из левой части в правую: 2х=11-5. Уравнение примет вид 2х=6.

Перейдем ко второму правилу.
2. Обе части уравнения можно умножать и делить на число, не равное нулю. Применим это правило к нашему уравнению: $x=\frac62=3$. В левой части равенства осталась только неизвестная х, следовательно, мы нашли ее значение и решили уравнение.

Мы только что рассмотрели простейшую задачку - линейное уравнение с одной неизвестной . Уравнения этого типа всегда имеют решение, более того, их всегда можно решить с помощью простейших операций: сложения, вычитания, умножения и деления. Увы, не все уравнения столь же просты. Более того, степень их сложности возрастает очень быстро. Например, уравнения второй степени легко решит любой ученик средней школы, но способы решения систем линейных уравнений или уравнений высших степеней изучаются только в старших классах.

Министерство общего и профессионального образования РФ

Муниципальное образовательное учреждение

Гимназия № 12

сочинение

на тему: Уравнения и способы их решения

Выполнил: ученик 10 "А" класса

Крутько Евгений

Проверила: учитель математики Исхакова Гульсум Акрамовна

Тюмень 2001

План................................................................................................................................... 1

Введение........................................................................................................................... 2

Основная часть................................................................................................................. 3

Заключение..................................................................................................................... 25

Приложение................................................................................................................... 26

Список использованной литературы.......................................................................... 29

План.

Введение.

Историческая справка.

Уравнения. Алгебраически уравнения.

а) Основные определения.

б) Линейное уравненение и способ его решения.

в) Квадратные уравнения и способы его решения.

г) Двучленные уравнения способ их решения.

д) Кубические уравнения и способы его решения.

е) Биквадратное уравнение и способ его решения.

ё) Уравнения четвертой степени и способы его решения.

ж) Уравнения высоких степеней и способы из решения.

з) Рациональноное алгебраическое уравнение и способ его

и) Иррациональные уравнения и способы его решения.

к) Уравнения, содержащие неизвестное под знаком.

абсолютной величины и способ его решения.

Трансцендентные уравнения.

а) Показательные уравнения и способ их решения.

б) Логарифмические уравнения и способ их решения.

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположил материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попытался показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стал ограничиваться только действительным решением, но и указал комплексное, так как считаю, что иначе уравнение просто недорешено. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений. К сожалению, из-за нехватки времени я не смог изложить весь имеющийся у меня материал, но даже по тому материалу, который здесь изложен, может возникнуть множество вопросов. Я надеюсь, что моих знаний хватит для того, чтобы дать ответ на большинство вопросов. Итак, я приступаю к изложению материала.

Математика... выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

Аристотель.

Историческая справка

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

уравнения. Алгебраические уравнения

Основные определения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв ). Для записи тождества наряду со знаком

также используется знак .

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:

, , ... – или теми же буквами, снабженными индексами: , , ... или , , ...); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: , , , ... – или теми же буквами, снабженными индексами: , , ... или , , ...).

В общем виде уравнение может быть записано так:

(, , ..., ).

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

Обучающие:

  • Обобщить знания по всем видам уравнений, подчеркнуть значимость всех способов, применяемых при решении уравнений.
  • Активизирование работы учащихся за счет, разнообразных приемов на уроке.
  • Проверить теоретические и практические навыки при решении уравнений.
  • Заострить внимание на том, что, одно уравнение можно решить несколькими способами

Развивающие:

  • Повысить интерес учащихся к предмету, через использование ИКТ.
  • Ознакомление учащихся с историческим материалом по теме.
  • Развитие мыслительной деятельности при определении вида уравнения и способов его решения.

Воспитательные:

  • Воспитать дисциплину на уроке.
  • Развитие способности к восприятию прекрасного, в себе самом, в другом человеке и в окружающем мире.

Тип урока:

  • Урок обобщения и систематизации знаний.

Вид урока:

  • Комбинированный.

Материально-техническое оснащение:

  • Компьютер
  • Экран
  • Проектор
  • Диск с презентацией темы

Методы и приемы:

План урока:

  1. Организационный момент (1минуты)
  2. Расшифровка темы урока (3минуты)
  3. Сообщение темы и цели урока (1минута)
  4. Теоретическая разминка (3минут)
  5. Исторический экскурс (3минуты)
  6. Игра “Убери лишнее” (2минуты)
  7. Творческая работа (2минуты)
  8. Задание “Найди ошибку” (2минуты)
  9. Решение одного уравнения несколькими способами (на слайде) (3минуты)
  10. Решение одного уравнения несколькими способами (у доски) (24 минут)
  11. Самостоятельная работа в парах с последующим объяснением (5минут)
  12. Индивидуальное домашнее задание(1минуты)
  13. Итог урока рефлексия (1минута)

Эпиграф урока:

“Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”.
А.Франс

Конспект урока

Организационная часть

Проверяю готовность учащихся к уроку, отмечаю отсутствующих на уроке. Ребята, Французский писатель 19 века А.Франс однажды заметил “ Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”. Так давайте на нашем уроке следовать совету, писателя и переваривать знания с большим аппетитом, ведь они пригодятся в нашей жизни.

Расшифровка темы урока

Для того, чтобы перейти к более сложном заданием, давайте разомнем свои мозги простыми заданиями. Тема нашего урока зашифрована, решив устные задания и найдя к ним ответ, зная, что каждый ответ имеет свою букву, мы раскроем тему урока. Презентация слайд 3

Сообщение темы и цели урока

Вы, сегодня сами назвали тему урока

“Виды уравнений и способы их решения”. Презентация слайд 4

Цель: Вспомнить и обобщить все виды уравнений и способы их решения. Решить одно уравнение всеми способами. Презентация слайд 5 Прочитать высказывание Эйнштейна Презентация слайд 5

Теоретическая разминка

Вопросы Презентация слайд 7

Ответы

  1. Равенство, содержащее переменную величину, обозначенную какой-то буквой.
  2. Это значит найти все его корни, или доказать, что корней нет.
  3. Значение переменной, при котором уравнение обращается в верное равенство.
  4. После этого определения прочесть стихотворение об уравнении Презентация слайд 12,13,14

Ответы на 2 последних вопроса Презентация слайд 9,10,11

Исторический экскурс

Историческая справка, о том “Кто и когда придумал уравнение” Презентация слайд 15

Представим себе, что первобытная мама по имени... впрочем, у неё, наверно, и имени то не было, сорвала с дерева 12 яблок, чтобы дать каждому из своих 4 детей. Вероятно, она не умела считать не только до 12, но и до четырёх, и уж несомненно не умела делить 12 на 4.А яблоки она поделила, наверно, так: сначала дала каждому ребёнку по яблоку, потом ещё по яблоку, потом ещё по одному и тут увидела, что яблок больше нет и дети довольны. Если записать эти действия на современном математическом языке, то получается х4=12, то есть мама решила задачу на составление уравнение. По-видимому, ответить на поставленный выше вопрос невозможно. Задачи, приводящие к решению уравнений, люди решили на основе здравого смысла с того времени, как они стали людьми. Ещё за 3-4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых и приёмы решения были не похожи на современные. Греки унаследовали знания египтян, и пошли дальше. Наибольших успехов в развитие учения об уравнениях достиг греческий учёный Диофант(III век), о котором писали:

Он уйму всяких разрешил проблем.
И запахи предсказывал, и ливни.
Поистине, его познанья дивны.

Большой вклад в решение уравнений внёс среднеазиатский математик Мухаммед ал Хорезми (IХ век). Его знаменитая книга ал-Хорезми посвящена решению уравнений. Она называется “Китаб ал-джебр вал-мукабала”, т. е. “Книга о восполнении и противопоставлении”. Эта книга стала известна европейцам, а от слова “ал-джебр” из ее заглавия произошло слово “алгебра” – название одной из главных частей математики. В дальнейшем многие математики занимались проблемами уравнений. Общее правило решений квадратных уравнений приведённых к виду х2+вх=0 было сформулировано немецким математиком Штифелем, проживавшим в ХV веке. После трудов нидерландского математика Жирара (ХVI век), а также Декарта и Ньютона, способ решения принял современный вид. Формулы, выражающие зависимости корней уравнения от его коэффициентов была введена Виетом. Франсуа Виет жил в ХVI веке. Он внёс большой вклад в изучение различных проблем в математике и астрономии; в частности, он ввёл буквенные обозначения коэффициентов уравнения. А сейчас познакомимся с интересным эпизодом из его жизни. Громкую славу Виет получил при короле Генрихе III, вовремя франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись, благодаря которой испанцы вели переписку с врагами Генриха III даже в самой Франции.

Напрасно французы пытались найти ключ к шифру, и тогда король обратился к Виету. Рассказывают, что Виет нашёл за две недели непрерывной работы ключ к шифру, после чего, неожиданно для Испании, Франция стала выигрывать одно сражение за другим. Будучи уверенным, что шифр разгадать не возможно, испанцы обвинили Виета в связи с дьяволом и приговорили к сожжению на костре. К счастью, он не был выдан инквизиции и вошёл в историю как великий математик.

Игра “Убери лишнее”

Цель игры ориентирование в видах уравнений.

У нас даны три столбика уравнений,в каждом из них, уравнения определены по какому-то признаку,но одно из них лишнее ваша задача его найти и охарактеризовать. Презентация слайд 16

Творческая работа

Цель этого задания: Восприятие на слух математической речи ориентировании детей в видах уравнений.

На экране вы видите 9 уравнений. Каждое уравнение имеет свой номер, я буду называть вид этого уравнения, а вы должны найти уравнение этого вида, и поставить только номер, под которым оно стоит, в результате вы получите 9-значное число Презентация слайд 17

  1. Приведенное квадратное уравнение.
  2. Дробно-рациональное уравнение
  3. Кубическое уравнение
  4. Логарифмическое уравнение
  5. Линейное уравнение
  6. Неполное квадратное уравнение
  7. Показательное уравнение
  8. Иррациональное уравнение
  9. Тригонометрическое уравнение

Задание “Найди ошибку”

Один ученик решал уравнения, но весь класс смеялся, в каждом уравнении он допустил ошибку, ваша задача найти ее и исправить. Презентация слайд 18

Решение одного уравнения несколькими способами

А теперь решим одно уравнение всеми возможными способами, для экономии времени на уроке одно уравнение на экране. Сейчас вы назовете вид этого уравнения, и объясните какой способ используется, при решении этого уравнения Презентация слайды 19-27

Решение одного уравнения несколькими способами (у доски)

Мы посмотрели пример, а теперь давайте решим уравнение у доски всевозможными способами.

X-2 - иррациональное уравнение

Возведем в квадрат обе части уравнения.

X 2 +2x+4x-1-4=0

Решаем это уравнение у доски 9 способами.

Самостоятельная работа в парах с последующим объяснением у доски

А сейчас вы поработаете в парах, на парту я даю уравнение, ваша задача определить вид уравнения, перечислить все способы решения этого уравнения, решить 1-2 наиболее рациональными для вас способами. (2 минуты)

Задания для работы в парах

Решите уравнение

После самостоятельной работы в парах один представитель выходит к доске представляет свое уравнение, решает одним способом

Индивидуальное домашнее задание (дифференцируемо)

Решите уравнение

(определить вид уравнения, решить всеми способами на отдельном листе)

Итог урока рефлексия.

Подвожу итог урока, заостряю внимание на том, что одно уравнение можно решить многими способами, выставляю оценки, делаю вывод, кто был активным кому надо быть поактивнее. Зачитываю высказывание Калинина Презентация слайд 28

Посмотрите внимательно на те цели которые мы с вами поставили для сегодняшнего урока:

  • Что на ваш взгляд нам удалось сделать?
  • Что получилось не очень хорошо?
  • Что вам особенно понравилось и запомнилось?
  • Сегодня я узнал новое...
  • На уроке мне пригодились знания...
  • Для меня было сложно...
  • На уроке мне понравилось...

Литература.

  1. Дорофеев Г.В. “Сборник заданий для проведения письменного экзамена по математике за курс средней школы” - М.: Дрофа, 2006.
  2. Гарнер Мартин. Математические головоломки и развлечения.
  3. Ивлев Б.М., Саакян С.М. Дидактические материалы по алгебре и началам анализа для 10 кл., 11 кл. М.: Просвещение. 2002.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Уравнение, представляющее собой квадратный трехчлен, обыкновенно называется квадратным уравнением. С точки зрения алгебры оно описывается формулой a*x^2+b*x+c=0. В данной формуле х - это неизвестное, которое требуется найти (его называют свободной переменной); a, b и c - числовые коэффициенты. В отношении компонентов указанной существует ряд ограничений: так, коэффициент а не должен быть равен 0.

Решение уравнения: понятие дискриминанта

Значение неизвестного х, при котором квадратное уравнение превратится в верное равенство, называют корнем такого уравнения. Для того чтобы решить квадратное уравнение, необходимо сначала найти значение специального коэффициента - дискриминанта, который покажет количество корней у рассматриваемого равенства. Дискриминант вычисляется по формуле D=b^2-4ac. При этом результат вычисления может оказаться положительным, отрицательным или равным нулю.

При этом следует иметь в виду, что понятие требует, чтобы лишь коэффициент а был строго отличающимся от 0. Следовательно, коэффициент b может быть равным 0, а само уравнение в этом случае вид a*x^2+c=0. В такой ситуации следует использовать значение коэффициента, равное 0, и в формулах расчета дискриминанта и корней. Так, дискриминант в этом случае будет рассчитываться как D=-4ac.

Решение уравнения при положительном дискриминанте

В случае, если дискриминант квадратного уравнения оказался положительным, из этого можно сделать вывод, что данное равенство имеет два корня. Указанные корни можно вычислить по следующей формуле: x=(-b±√(b^2-4ac))/2a=(-b±√D)/2a. Таким образом, для расчета значения корней квадратного уравнения при положительном значении дискриминанта используются известные значения коэффициентов, имеющихся в . Благодаря использованию суммы и разности в формуле расчета корней результатом вычислений будут два значения, обращающие рассматриваемое равенство в верное.

Решение уравнения при нулевом и отрицательном дискриминанте

В случае, если дискриминант квадратного уравнения оказался равным 0, можно сделать вывод о том, что указанное уравнение имеет один корень. Строго говоря, в этой ситуации корней у уравнения по-прежнему два, однако вследствие нулевого дискриминанта они будут равны между собой. В этом случае x=-b/2a. Если же в процессе вычислений значение дискриминанта оказывается отрицательным, следует сделать вывод о том, что рассматриваемое квадратное уравнение не имеет корней, то есть таких значений x, при которых оно обращается в верное равенство.

Понравилась статья? Поделитесь с друзьями!