Спектральный состав света. Свет и цвет

Спектральный состав излучения определяется цветовой температурой (ТцВ) источника света, которая выражается в градусах Кельвина. Так, Тцв ЛН составляет 2800-3600 К, при этом излучается преимущественно оранжево-красная часть спектра. Эти лампы превращают в световой поток лишь 5 % (до 18,6 %) потребляемой энергии, испускают непрерывный поток излучения и имеют срок службы 1000 ч(ГОСТ2239-79).[ ...]

Спектральный анализ - физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров . Физическая основа спектрального анализа - спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров . Атомный спектральный анализ определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный спектральный анализ - молекулярный состав вещества по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света .[ ...]

Интенсивность света и его спектральный состав - мощный бо-танико-географический экологический фактор. Широтные различия в интенсивности и спектральном составе радиации во многом определили особенности формирования типов растительности, характерных для тундр, тайги, степей и других географических зон земного шара. Световой режим, сложившийся в том или ином регионе, выполняет роль фактора естественного отбора растений. Поэтому в одних местообитаниях преобладают светолюбивые растения (гелиофиты), в других - тенелюбивые, теневыносливые (сциофиты).[ ...]

Остается еще исследовать спектральный состав света, рассеиваемого крупными частицами.[ ...]

Существенное влияние оказал спектральный состав света и на подземную часть растений. Как видно из табл. 31 и рис. 242, внесение кииетина в культуральную среду в условиях синего света заметно стимулировало клубиеобразоваиие. При освещении же красным светом стимулирующий эффект кшхетппа не проявился (на коротком дне) или же был выражен значительно слабее (на длинном дне). Зависимость морфогенетического действия ИУК от спектрального состава света оказалась прямо противоположной той, которая выявилась в случае кииетина. Особенно ясно стимулирующее влияние ИУК в комбинации с освещением красным светом обнаружилось в условиях длинного дня.[ ...]

Лампы накаливания генерируют свет по принципу теплового нагрева. Видимое излучение в них возникает в результате нагревания нити накала до температуры свечения, от которой и зависит спектральный состав излучения.[ ...]

Согласно существующим представлениям, спектральный состав света наряду с влиянием на устьичный аппарат оказывает сильное воздействие на чувствительность растительности к атмосферным загрязнениям, особенно с учетом влияния солнечной радиации на различные светозависимые физиологические процессы. Из результатов наблюдений на загрязненных территориях и в фумигационных камерах стало известно, что высокая интенсивность освещения не только во время, но и после газации может усиливать реакции растений на загрязнители воздуха (Stoklasa, 1923; Haselhoff et al., 1932; van Haut, Stratmann, 1970). Например, пребывание при полном солнечном освещении растений сои (Glycine max.[ ...]

На рост и развитие растений влияют внешние факторы: интенсивность и спектральный состав света, продолжительность дня и ночи, температура и влажность воздуха и почвы, органические и минеральные удобрения.[ ...]

В океане интенсивность освещения падает с глубиной. Параллельно изменяется и спектральный состав света: глубже всего проникает его коротковолновая часть - синие и голубые лучи. Освещенность щ мелководье мало отличается от суши, и обитающие здесь рыбы имеют в сетчатке большой процент колбочек, чувствительных к красному цвету. У рыб, обитающих в зеленой воде прибрежной зоны, таких колбочек нет; отсутствуют у них и оранжево-чувствительные клетки. Среди глубоководных рыб большинство имеют в сетчатке лишь один тип палочек, чувствительных к синему цвету.[ ...]

Таким образом, в разных местообитаниях различаются не только интенсивность радиации, но и ее спектральный состав, продолжительность освещения растений, пространственное и временное распределение света разной интенсивности и т. д. Соответственно разнообразны и приспособления организмов к жизни в наземной среде при том или ином световом режиме. Как уже нами было отмечено ранее, по отношению к свету различают три основных группы растений: светолюбивые (гелиофиты), тенелюбивые (сцио-фиты) и теневыносливые. Светолюбивые и тенелюбивые растения различаются положением экологического оптимума (рис. 5.43).[ ...]

Для лучшего понимания процессов крашения и подцветки бумаги необходимо кратко остановиться на природе света и цвета. Солнечный луч света состоит из смеси простых монохроматических цветов, отличающихся длиной волны и коэффициентом преломления. Длина волн лучей видимого спектра лежит в пределах от 380 до примерно 780 нм. За пределами видимой части спектра располагается невидимая его часть. Участки спектра с длиной волны более 780 нм называются инфракрасными, или тепловыми, а участки с длиной волны менее 380 нм называются ультрафиолетовыми (УФ). Эти лучи химически активны и отрицательно влияют на свето-прочность некоторых пигментов и красителей. Световые лучи, исходящие от различных источников света, имеют неодинаковый спектральный состав и поэтому значительно отличаются по цвету.[ ...]

В связи с тем, что лучи разных участков солнечного спектра неодинаково поглощаются водой, с глубиной изменяется и спектральный состав света, ослабляются красные лучи (рис. 5.20). Сине-зеленые лучи проникают на значительные глубины. Сгущающиеся с глубиной сумерки в океане имеют вначале зеленый, затем голубой, синий, сине-фиолетовый цвета, сменяясь в дальнейшем постоянным мраком (рис. 5.21). Соответственно сменяют друг друга с глубиной и живые организмы.[ ...]

В условиях плохой освещенности (в пещерах, в глубинных горизонтах водоемов) в клетках сине-зеленых водорослей изменяется пигментный состав. Это явление, получившее название хроматической адаптации, представляет собой приспособительное изменение окраски водорослей под влиянием изменения спектрального состава света за счет увеличения количества пигментов, имеющих окраску, дополнительную к цвету падающих лучей. Изменения окраски клеток (хлорозы) происходят и в случае недостатка в среде некоторых компонентов, в присутствии токсических веществ, а также при переходе к гетеротрофному типу питания.[ ...]

Изучено разностороннее влияние на результаты дешифрирования таких природных факторов, как структура равнинных и горных ландшафтов, состав и сочетание в нем различных насаждений, структура полога и крон, условий освещения ландшафта прямым и рассеянным светом, спектральных характеристик растений и растительных группировок, сезона аэрофотосъемки, состояния атмосферы, влияющего на смещение деревьев от их раскачивания. Анализировалось многостороннее влияние таких технических условий аэрофотосъемки, как фокусное расстояние и угол изображения фотокамеры, высота фотографирования, величина проекции и разность параллаксов деревьев, масштаб, наклоны камеры и разность высот фотографирования стереопары, тип аэропленки и ее спектральная чувствительность, разрешающая способность и сдвиг изображения, способы получения позитивов и т.д. Такой анализ оказался совершенно необходимым для определения пригодности аэрофотоснимков при решении различных задач изучения лесов. Он нужен также для определения и выбора технических параметров съемки, соответствующих природным условиям региона (Киреев, 1975).[ ...]

Весьма перспективным методом определения концентрации хлорофилла является флюоресцентный метод, суть которого состоит в анализе спектра отраженного сигнала и сравнении площадей спектральных полос флюоресценции хлорофилла и водной среды. Отношение этих величин пропорционально отношению концентраций хлорофилла и молекул воды. На сегодня уже имеется набор данных «спектр возбуждения - спектр флюоресценции», по которым можно судить о возможностях неконтактного контроля хлорофилла по его флюоресценции и, в частности, установлен факт, что вода как таковая собственной флюоресценцией не обладает. Кроме того, по изменениям форм спектра фотолюминесценции при соответствующих изменениях возбуждающей длины волны можно качественно характеризовать состав флюоресцирующего фитопланктона, по свечению в УФ - свете определять соотношение физиологически наиболее активных, ослабленных и неактивных (мертвых) хлорофиллсодержащих клеток.[ ...]

Интенсивность облучения зависит от широты местности и угла падения лучей на поверхность. Поглощательная способность тела зависит от материала, из которого оно выполнено (стали), и от спектрального состава падающего облучения (солнечного света). Поглощенная телом энергия излучается обратно, однако спектральный состав излучения и его энергия уже отличны от падающего излучения.[ ...]

По мере углубления в толщу листового полога тени (зоны пониженной освещенности) становятся все более и более размытыми, потому что из-за рассеяния и переотражения значительная часть световых лучей утрачивает первоначальное направление. Изменен и спектральный состав прошедшего через листовой полог света - он обладает пониженной фотосинтетиче-ской активностью, так как в нем снижена доля ФАР. Изменены, таким образом, свойства света и как ресурса, и как условия.[ ...]

Выражение (30) позволяет для различных районов моря рассчитывать цвет (спектр моря) по данным измерения глубины исчезновения белого диска; при помощи таблиц получают коэффициент рассеяния и для различных длин световых волн задаются значениями коэффициента поглощения. В настоящее время для разных районов Мирового океана при помощи спектрофотометров определен спектральный состав диффузного (внутреннего) света.[ ...]

Кроме объемов водного стока методы ДЗЗ позволяют оценивать и некоторые показатели качества поверхностных вод. Зондирование водных объектов в «тепловом» диапазоне дает возможность локализовать, в частности, места сосредоточенных сбросов. Микроволновое зондирование применяется для обнаружения нефтяных пятен на поверхности внутренних водоемов, заливов морей и океанов. Показатели интенсивности и спектральный состав отраженного от водной поверхности солнечного света может быть индикатором качества воды водоема, поскольку характеристики отраженного света изменяются вместе с изменениями концентраций растворенных и взвешенных веществ, планктона, водорослей. Цвет и температура водоема могут свидетельствовать также о определенном трофическом статусе водного объекта L.[ ...]

Древние микроорганизмы, растения и животные участвовали в создании мощных запасов ископаемых топлив, толщ известняков, фосфоритов, некоторых руд и глинистых пород, содержащих железо, алюминий, марганец и другие металлы. По мнению А.Ю. Розанова (1999), «за редким исключением все осадочные породы в той или иной степени образовались с участием микробов». Биогенная миграция веществ во многом определила формирование ландшафтов и природно-климатических зон. Фотосинтез в растениях обусловил современный состав атмосферы, от которого зависят окислительно-восстановительное равновесие среды, радиационный и тепловой режим на планете, спектральный состав достигающего поверхности Земли солнечного света. Растительный покров существенно определяет водный баланс, распределение влаги и климатические особенности больших пространств. Живые организмы играют ведущую роль в самоочищении воздуха, рек и озер, от них во многом зависит солевой состав природных вод и распределение многих химических веществ между сушей и океаном. Благодаря растениям, животным и микроорганизмам создается почва и поддерживается ее плодородие.

Реальное излучение содержит в себе не одну определенную частоту колебаний, а некоторый набор различных частот, называемый спектром или спектральным составом данного излучения. Излучение называется монохроматическим, если оно содержит очень узкий интервал частот (или длин волн ). В видимой области монохроматическое излучение вызывает световое ощущение определенного цвета; например, излучение, охватывающее интервал длин волн от 0,55 до 0,56 мкм, воспринимается как зеленый цвет. Чем уже интервал частот данного излучения, тем более монохроматическим оно является. Формула (1.2) относится к идеально монохроматическому излучению, содержащему одну частоту колебаний.

Раскаленные твердые и жидкие тела испускают непрерывный (или сплошной) спектр электромагнитных волн очень широкого интервала частот. Светящиеся разреженные газы испускают линейчатый спектр, состоящий из отдельных монохроматических излучений, называемых спектральными линиями; каждая спектральная линия характеризуется определенной частотой колебаний (или длиной волны), расположенной в середине охватываемого ею узкого интервала частот. Если источниками излучения являются не отдельные (изолированные, свободные) атомы, а молекулы газа, то спектр состоит из полос (полосатый спектр), каждая полоса охватывает более широкий непрерывный Интервал длин волн, чем спектральная линия.

Линейчатый (атомный) спектр каждого вещества является характерным для пего; благодаря этому возможен спектральный анализ, т. е. определение химического состава вещества по длинам волн спектральных линий испускаемого им излучения.

Допустим, что электромагнитная волна распространяется вдоль некоторой прямой, которую будем называть лучом. Можно интересоваться изменением вектора в определенной точке луча с течением

времени; возможно, что в. этой точке изменяется не только величина вектора как это следует из формулы (1.2), но и ориентировка вектора в пространстве. Далее можно зафиксировать величину и направление вектора в различных точках луча, но в определенный момент времени. Если окажется, что в различных точках вдоль луча все векторы лежат в одной плоскости, то излучение называется плоскополяризованным или линейно-поляризованным; такое излучение дает источник, который в процессе излучения сохраняет плоскость колебаний. Если же плоскость колебаний источника волны со временем изменяется, то вектор в волне не лежит в определенной плоскости и излучение не будет плоскополяризованным. В частности, можно получить волну, в которой вектор равномерно вращается вокруг луча. Если же вектор изменяет свою ориентировку вокруг луча совершенно беспорядочно, то излучение называется естественным. Такое излучение получается от светящихся твердых, жидких и газообразных тел, у которых плоскости, колебаний элементарных источников излечения - атомов и молекул - ориентированы в пространстве беспорядочно.

Таким образом, простейшим излучением является монохроматическая пласкополяризованная волна. Плоскость, в которой лежат вектор и вектор направления распространения волны, называется плоскостью колебаний плоскость, перпендикулярная плоскости колебаний (т. е. плоскость, в которой лежит вектор Н), называется плоскостью поляризации.

Скорость распространения электромагнитных волн в вакууме есть одна из важнейших констант физики и равна

В других средах она меньше к определяется по формуле (см. ч. III, § 29)

где соответственно диэлектрическая и магнитная проницаемости среды.

При переходе излучения из одной среды в другую частота колебаний в волне сохраняется, но длина волны К изменяется; обычно, если это не оговорено, К обозначает длину волны в вакууме.

Выше указывалось, что видимое излучение (которое мы называем светом) охватывает длины волн от 400 до при специальной тренировке глаз может воспринимать свет длиной волны от 320 до 900 нм. Более широкий интервал длин волн от 1 см до , охватывающий также ультрафиолетовую и инфракрасную области, называется оптическим излучением.

Основным естественным источником света является солнце. Излучаемый им свет называют белым . В 1672 году Ньютон, пропустив солнечный свет через стеклянную призму, показал, что он состоит из смеси излучений различной длины волны, или, что то же самое - различных цветов, находящихся в примерно равном соотношении.

1.1.3.1. Цветовая температура

Различные источники света излучают свет различного состава. В цветной фотографии очень важно знать состав света, которым освещается объект съемки. Для характеристики света по спектральному составу пользуются понятием цветовая температура.

Все нагретые тела являются источником электромагнитного излучения. При низких температурах они испускают лишь невидимое длинноволновое излучение. При повышении температуры тела начинают светиться сначала темно-красным, затем ярко-красным, желтым, белым и наконец, голубовато-белым светом (свечение электросварочной дуги). Таким образом, между температурой светящегося тела и цветностью излучения существует прямая связь. Она детально изучена для абсолютно черного тела (тела, поглощающего все падающее на него излучение).

Иными словами, для каждого значения температуры абсолютно черного тела известен состав света, который оно излучает. Исходя из этого спектральный состав света характеризуют цветовой температурой - температурой абсолютно черного тела, при которой оно излучает свет того же спектрального состава, что и исследуемый.

Цветовая температура выражается в единицах абсолютной температуры - Кельвинах. Ее значение характеризует распределение энергии (мощности) световых излучений в зависимости от длины волны (а не температуру источника света). Для абсолютно черного тела это распределение показано на рис. 1.5. С увеличением температуры растет общая энергия излучения, а максимум сдвигается в сторону коротких волн. То есть, чем выше цветовая температура источника света, тем больше в составе его света коротковолновых излучений - голубого, синего и фиолетового цветов. В излучении источника света с низкой цветовой температурой, преобладают длинноволновые составляющие - желтые, оранжевые и красные цвета

Свойствами абсолютно черного тела обладают маленькие отверстия в полости непрозрачного тела. Приближается к нему по свойствам поверхность солнца, раскаленный уголь, пламя свечи. Лампы накаливания, фотовспышки и некоторые другие тепловые источники света имеют спектры излучения, похожие по форме на спектры излучения абсолютно черного тела, хотя и с меньшей мощностью излучения. К ним применимо понятие цветовой температуры. К некоторым источникам света: лазерам, газосветным трубкам, светящимся краскам и организмам - понятие цветовая температура неприменимо (более подробно об источниках света и их особенностях см. в разд. 5.1).

Цветовая температура некоторых источников света приведена в табл. 1.1,

1.1.3.2. Окраска тел

Спектральный состав света, прошедшего через прозрачное тело, может в большей или меньшей степени изменяться в зависимости от свойств тела. Если оно пропускает излучение всех длин волн одинаково, то спектральный состав прошедшего через него света не изменяется, а оно само воспринимается как неокрашенное. Примерами таких тел могут служить высокопрозрачные стекла, дистиллированная вода, некоторые прозрачные пластмассы, желатина с распределенными в ней микрокристаллами металлического серебра (фотослой в черно-белой фотографии). Неокрашенные прозрачные тела изменяют только энергию излучения.

Тела, которые по-разному пропускают излучения разных длин волн и изменяют тем самым спектральный состав проходящего через них света, воспринимаются как окрашенные. Пусть, например, тело поглощает синие и зеленые лучи сильнее, чем красные. В прошедшем через это тело свете будут преобладать красные лучи, и тело будет восприниматься как окрашенное в красный цвет, что можно интерпретировать как изменение цветовой температуры света (в нашем случае снижение). Способность среды неодинаково пропускать излучения с различной длиной волны описывается кривой спектрального пропускания и обратной ей кривой спектрального поглощения, а также кривой оптической плотности.

В фотографии для изменения спектрального состава света используются специальные окрашенные стекла- светофильтры. Наибольшее применение находят следующие:

Аддитивные (или зональные, цветоделенные ) светофильтры пропускают один из первичных цветов (синий, зеленый или красный) и поглощают два других (рис. 1.6).


Рис. 1.6. Кривые спектрального поглощения аддитивных светофильтров: синего (С), зеленого (З) и красного (К). (D λ - спектральная оптическая плотность)

Субтрактивные (или корректирующие ) светофильтры поглощают один из первичных цветов и пропускают два других (рис. 1.7). Цвет субтрактивных фильтров - голубой, пурпурный и желтый. И аддитивные и субтрактивные фильтры используют в процессе печати цветного фотографического изображения.


Рис. 1.7. Кривые спектрального поглощения субтрактивных светофильтров: желтого (Ж), пурпурного (П) и голубого (Г) (D λ - спектральная оптическая плотность)

Компенсационные светофильтры преобразуют дневной свет в свет со спектральным распределением ламп накаливания и наоборот (используются при съемке).

Фильтры неактиничного освещения (лабораторные) имеют максимум пропускания в зоне, в которой светочувствительные слои наименее чувствительны. Для обработки негативных и обращаемых материалов используется фильтр № 170 -очень плотный темно-зеленый фильтр, пропускающий очень слабый свет, (фотолюбители при обработке этих видов фотоматериалов, как правило, работают в полной темноте). При обработке цветных позитивных пленок и фотобумаг применяют менее плотный зеленовато-коричневый фильтр № 166.

Большинство предметов, встречающихся в природе, сами свет не испускают. Они становятся видимыми за счет того, что отражают падающий на них свет.

Непрозрачные предметы часть падающего на них света обязательно поглощают. Степень поглощения (а следовательно, и отражения) излучений с различными длинами волн неодинакова у разных отражающих поверхностей.

Поверхность непрозрачного предмета, отражающая свет всех видимых излучений одинаково, т. е. изменяющая только энергию излучения, воспринимается как неокрашенная - белого, черного или различных градаций серого цвета. Такое отражение называют неизбирательным.

Предмет, отражающий (поглощающий) излучения с различными длинами волн неодинаково, т. е. изменяющий спектральный состав отраженного света, воспринимается как окрашенный. Например, если предмет поглощает зеленые и красные лучи и отражает синие, то мы видим его синим.

О степени отражения различных излучений можно судить по кривой спектрального отражения, выражающей зависимость энергии отраженного света от, длины волны.

Красители - вещества, избирательно поглощающие излучения определенного спектрального состава. Нанося их на поверхность предмета, мы можем существенно изменить его отражательную способность, т. е. изменять их цвет. Подробнее о роли красителей в цветной фотографии см. пп. 2.2.2 и 3.1.2.

Окраска (цвет) предмета определяется спектральным составом отраженного от него света. Это значит, что она зависит не только от отражательной способности поверхности, но и от спектрального состава освещающего его света. Если предмет освещать светом разных спектральных составов, то и отраженный свет будет также не одинаковым. Эти факторы, вернее их различные сочетания, предопределяют все встречающееся в природе многообразие цветов несамосветящихся предметов.

Выполнил:Камалетдинов

План

Свет как экологический фактор

Спектральный состав света и понятие о ФАР

Распределение света по частям спектра и поглощение ее зеленым листом

Свет как экологический фактор

Различные местообитания на Земле имеют разную освещенность. От низких географических широт к высоким возрастает продолжительность дня в течение вегетационного периода. Значительные различия в условиях освещения наблюдаются между нижними и верхними поясами гор. Своеобразный световой климат создается в лесу, причем различно затенение, созданное кронами деревьев или густым высоким травостоем. Под пологом высоких растений свет не только ослабевает, но и меняет свой спектр. В лесу он

имеет два максимума - в красных и зеленых лучах.

В водной среде затененность зелено-голубая, и растения водные, как и лесные, являются теневыми растениями. Убывание силы света в воде с глубиной может идти в разном темпе, что зависит от степени

прозрачности воды. Изменение состава света отражается на распределении групп водорослей, имеющих различную окраску. Ближе к поверхности растут зеленые водоросли, глубже - бурые, на

больших глубинах - красные.

Свет малой интенсивности может проникать в почву,

Свет имеет важнейшее физиологическое значение в жизни зеленых растений, так как только на свету возможен процесс фотосинтеза.

Все наземные растения земного шара ежегодно образуют в процессе фотосинтеза около 450 млрд. т органического вещества, т. е. примерно по 180 т в расчете на каждого жителя Земли.

Разные растения неодинаково реагируют на изменение освещенности. У теневых растений фотосинтез активно протекает при малой интенсивности света, а дальнейшее повышение освещенности не усиливает его. У светолюбивых растений максимальный фотосинтез наблюдается при полной освещенности. Световые растения при недостатке света развивают слабую механическую ткань, поэтому стебли у них вытягиваются за счет увеличения длины междоузлий и полегают.

Освещенность влияет на анатомическое строение листьев. Световые листья толще и грубее теневых. Они имеют более толстую кутикулу, более толстостенную кожицу, хорошо развитые механические и проводящие ткани. Хлоропластов в клетках световых

Спектральный состав света и понятие о ФАР

Важнейшей особенностью процесса фотосинтеза является то, что он протекает с использованием энергии солнечного света.

Лучистая энергия - это энергия электромагнитных колебаний, которая характеризуется определенной длиной волны, частотой колебания и скоростью

распространения.

Характеристика отдельных участков спектра

Согласно первому закону фотохимии, только поглощенные лучи могут быть использованы в химических реакциях. В том случае, если реагирующие молекулы бесцветны и не поглощают свет, фотохимические реакции могут идти только в присутствии специальных веществ

Сенсибилизаторов. Сенсибилизаторы - вещества, поглощающие энергию света и передающие ее на ту или иную бесцветную молекулу

Фотохимические реакции возможны в пределах величины квантов от 147 до 587 кДж/моль. Таким образом, в квантах красного света (176 кДж/моль hv) заключено достаточное количество энергии для осуществления фотохимической реакции. Вместе с тем при поглощении квантов синего света (261 кДж/моль hv) реагирующие молекулы будут получать избыток энергии, который выделяется в виде тепла или света.

Молекулы будут вступать в реакцию под влиянием разного количества энергии. Использование энергии зависит от качества света. Это было подтверждено исследованиями О. Варбурга. В этих исследованиях впервые была установлена величина фотосинтетической работы, производимой за счет 1 Дж поглощенной лучистой энергии. Эта величина возрастает по мере увеличения длины волны.



Понравилась статья? Поделитесь с друзьями!