Степенные функции их свойства и графики. Степенная функция и ее свойства

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

1. Степенная функция, ее свойства и график;

2. Преобразования:

Параллельный перенос;

Симметрия относительно осей координат;

Симметрия относительно начала координат;

Симметрия относительно прямой y = x;

Растяжение и сжатие вдоль осей координат.

3. Показательная функция, ее свойства и график, аналогичные преобразования;

4. Логарифмическая функция , ее свойства и график;

5. Тригонометрическая функция, ее свойства и график, аналогичные преобразования (y = sin x; y = cos x; y = tg x);

Функция: y = x\n - ее свойства и график.

Степенная функция, ее свойства и график

y = x, y = x 2 , y = x 3 , y = 1/x и т. д. Все эти функции являются частными случаями степенной функции, т. е. функции y = x p , где p - заданное действительное число.
Свойства и график степенной функции существенно зависит от свойств степени с действительным показателем, и в частности от того, при каких значениях x и p имеет смысл степень x p . Перейдем к подобному рассмотрению различных случаев в зависимости от
показателя степени p.

  1. Показатель p = 2n - четное натуральное число.

y = x 2n , где n - натуральное число, обладает следующими свойствами:

  • область определения - все действительные числа, т. е. множество R;
  • множество значений - неотрицательные числа, т. е. y больше или равно 0;
  • функция y = x 2n четная, так как x 2n = (-x) 2n
  • функция является убывающей на промежутке x < 0 и возрастающей на промежутке x > 0.

График функции y = x 2n имеет такой же вид, как например график функции y = x 4 .

2. Показатель p = 2n - 1 - нечетное натуральное число

В этом случае степенная функция y = x 2n-1 , где натуральное число, обладает следующими свойствами:

  • область определения - множество R;
  • множество значений - множество R;
  • функция y = x 2n-1 нечетная, так как (-x) 2n-1 = x 2n-1 ;
  • функция является возрастающей на всей действительной оси.

График функции y = x 2n-1 y = x 3 .

3. Показатель p = -2n , где n - натуральное число.

В этом случае степенная функция y = x -2n = 1/x 2n обладает следующими свойствами:

  • множество значений - положительные числа y>0;
  • функция y = 1/x 2n четная, так как 1/(-x) 2n = 1/x 2n ;
  • функция является возрастающей на промежутке x0.

График функции y = 1/x 2n имеет такой же вид, как, например, график функции y = 1/x 2 .

4. Показатель p = -(2n-1) , где n - натуральное число.
В этом случае степенная функция y = x -(2n-1) обладает следующими свойствами:

  • область определения - множество R, кроме x = 0;
  • множество значений - множество R, кроме y = 0;
  • функция y = x -(2n-1) нечетная, так как (-x) -(2n-1) = -x -(2n-1) ;
  • функция является убывающей на промежутках x < 0 и x > 0 .

График функции y = x -(2n-1) имеет такой же вид, как, например, график функции y = 1/x 3 .


Для удобства рассмотрения степенной функции будем рассматривать 4 отдельных случая: степенная функция с натуральным показателем, степенная функция с целым показателем, степенная функция с рациональным показателем и степенная функция с иррациональным показателем.

Степенная функция с натуральным показателем

Для начала введем понятие степени с натуральным показателем.

Определение 1

Степенью действительного числа $a$ с натуральным показателем $n$ называется число, равное произведению $n$ множителей, каждый из которых равняется числу $a$.

Рисунок 1.

$a$ - основание степени.

$n$ - показатель степени.

Рассмотрим теперь степенную функцию с натуральным показателем, её свойства и график.

Определение 2

$f\left(x\right)=x^n$ ($n\in N)$ называется степенной функцией с натуральным показателем.

Для дальнейшего удобства рассмотрим отдельно степенную функцию с четным показателем $f\left(x\right)=x^{2n}$ и степенную функцию с нечетным показателем $f\left(x\right)=x^{2n-1}$ ($n\in N)$.

Свойства степенной функции с натуральным четным показателем

    $f\left(-x\right)={(-x)}^{2n}=x^{2n}=f(x)$ -- функция четна.

    Область значения -- $ \

    Функция убывает, при $x\in (-\infty ,0)$ и возрастает, при $x\in (0,+\infty)$.

    $f{""}\left(x\right)={\left(2n\cdot x^{2n-1}\right)}"=2n(2n-1)\cdot x^{2(n-1)}\ge 0$

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } x^{2n}\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } x^{2n}\ }=+\infty \]

    График (рис. 2).

Рисунок 2. График функции $f\left(x\right)=x^{2n}$

Свойства степенной функции с натуральным нечетным показателем

    Область определения -- все действительные числа.

    $f\left(-x\right)={(-x)}^{2n-1}={-x}^{2n}=-f(x)$ -- функция нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- все действительные числа.

    $f"\left(x\right)=\left(x^{2n-1}\right)"=(2n-1)\cdot x^{2(n-1)}\ge 0$

    Функция возрастает на всей области определения.

    $f\left(x\right)0$, при $x\in (0,+\infty)$.

    $f{""\left(x\right)}={\left(\left(2n-1\right)\cdot x^{2\left(n-1\right)}\right)}"=2\left(2n-1\right)(n-1)\cdot x^{2n-3}$

    \ \

    Функция вогнута, при $x\in (-\infty ,0)$ и выпукла, при $x\in (0,+\infty)$.

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=x^{2n-1}$

Степенная функция с целым показателем

Для начала введем понятие степени с целым показателем.

Определение 3

Степень действительного числа $a$ c целым показателем $n$ определяется формулой:

Рисунок 4.

Рассмотрим теперь степенную функцию с целым показателем, её свойства и график.

Определение 4

$f\left(x\right)=x^n$ ($n\in Z)$ называется степенной функцией с целым показателем.

Если степень больше нуля, то мы приходим к случаю степенной функции с натуральным показателем. Его мы уже рассмотрели выше. При $n=0$ мы получим линейную функцию $y=1$. Её рассмотрение оставим читателю. Осталось рассмотреть свойства степенной функции с отрицательным целым показателем

Свойства степенной функции с отрицательным целым показателем

    Область определения -- $\left(-\infty ,0\right)(0,+\infty)$.

    Если показатель четный, то функция четна, если нечетный, то функция нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения:

    Если показатель четный, то $(0,+\infty)$, если нечетный, то $\left(-\infty ,0\right)(0,+\infty)$.

    При нечетном показателе функция убывает, при $x\in \left(-\infty ,0\right)(0,+\infty)$. При четном показателе функция убывает при $x\in (0,+\infty)$. и возрастает, при $x\in \left(-\infty ,0\right)$.

    $f(x)\ge 0$ на всей области определения

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.



Понравилась статья? Поделитесь с друзьями!