Виды электромагнитных импульсов. Электромагнитный импульс: просто о сложном

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.



Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.


В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, \кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.


Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В. Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения. Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.



Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.


Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров. Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам. Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.



Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.



Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.

Этот серьезный проект показывает, как получить импульс электромагнитной энергии в несколько мегаватт, который может нанести непоправимый вред электронному компьютеризированному и чувствительному к электромагнитным помехам коммуникационному оборудованию. Ядерный взрыв вызывает подобный импульс, для защиты от него электронных устройств необходимо принимать специальные меры. Этот проект требует накопления смертельного количества энергии, и его не следует пытаться реализовать вне специализированной лаборатории. Подобное устройство можно использовать для вывода из строя компьютерных систем управления автомобилем с целью остановки автомобиля в неординарных случаях угона или если за рулем находится пьяный

Рис. 25.1. Лабораторный электромагнитный импульсный генератор

и опасный для окружающих автомобилистов водитель. Электронное оборудование можно протестировать с помощью электронного импульсного генератора на чувствительность к мощным импульсным помехам – к молниям и потенциальному ядерному взрыву (это актуально для военного электронного оборудования).

Проект описан здесь без указания всех деталей, указаны только основные компоненты. Используется дешевый открытый искровой разрядник, но он даст только ограниченные результаты. Для достижения оптимальных результатов необходим газовый или радиоизотопный разрядник, который эффективен для создания помех как при потенциальном ядерном взрыве (рис. 25.1).

Общее описание устройство

Генераторы ударной волны способны вырабатывать сфокусированную акустическую или электромагнитную энергию, которая может разрушать предметы, применяться в медицинских целях, например, для разрушения камней во внутренних органах человека (почках, мочевом пузыре и т.д.). Генератор электромагнитных импульсов может вырабатывать электромагнитную энергию, которая может разрушать чувствительную электронику в компьютерах и микропроцессорном оборудовании. Нестабилизированные индуктивно-емкостные цепи LC могут вырабатывать импульсы в несколько гигаватт за счет использования устройств взрывания провода. Эти импульсы высокой энергии – электромагнитные импульсы (в иностранной технической литературе ЕМР – ElectroMagnetic Pulses) можно использовать для тестирования твердости металла параболических и эллиптических антенн, гудков и других направленных дистанционных воздействий на предметы.

Например, в настоящее время ведутся исследования по разработке системы, которая будет выводить автомобиль из строя во время опасной погони на высоких скоростях за человеком, совершившим противоправное действие, например, угонщиком или пьяным водителем. Секрет заключается в генерации обладающего достаточной энергией импульса для сжигания электронных управляющих процессорных модулей автомобиля. Это гораздо проще выполнить, когда автомобиль покрыт пластиком или оптоволокном, чем когда он покрыт металлом. Экранирование металлом создает дополнительные проблемы исследователю, разрабатывающему практически применимую систему. Можно построить устройство и для этого тяжелого случая, но оно может быть дорогостоящим и оказать вредное воздействие на дружественные устройства, заодно выводя их из строя. Поэтому исследователи находятся в поиске оптимальных решений для мирных и военных целей применения электромагнитных импульсов (ЕМР).

Цель проекта

Цель проекта заключается в генерации пикового импульса энергии для тестирования на прочность электронного оборудования. В частности, данный проект исследует использование подобных устройств для выведения из строя транспортных средств за счет разрушения микросхем компьютера. Мы проведем эксперименты по разрушению цепей электронных устройств с помощью направленной ударной волны.

Внимание! Донный проект использует смертельно опасную электрическую энергию, которая при неправильном контакте может убить человека мгновенно.

Система высокой энергии, которая будет собрана, использует взрывающийся провод, который может создать эффекты, подобные шрапнели. Разряд системы может серьезно повредить электронику близко расположенных компьютеров и другого аналогичного оборудования.

Конденсатор С заряжается от источника тока до напряжения источника питания в течение определенного периода времени. Когда он достигает напряжения, соответствующего определенному уровню запасенной энергии, ему дается возможность быстро разрядиться через индуктивность резонансного LC-конту- ра. Генерируется мощная, недемпфированная волна на собственной частоте резонансного контура и на ее гармониках. Индуктивность L резонансной цепи может состоять из катушки и индуктивности связанного с ней провода, а также собственной индуктивности конденсатора, которая составляет около 20 нГн. Конденсатор цепи является накопителем энергии и также оказывает влияние на резонансную частоту системы.

Излучение энергетического импульса может быть достигнуто посредством проводящей конической секции или металлической структуры в форме рупора. Некоторые экспериментаторы могут использовать полуволновые элементы с питанием, подаваемым на центр катушкой, связанной с катушкой резонансной цепи. Эта полуволновая антенна состоит из двух четвертьволновых секций, настроенных на частоту резонансной схемы. Они представляют собой катушки, намотка которых имеет примерно одинаковую длину с длиной четверти волны. Антенна имеет две радиально направленные части, параллельные длине или ширине антенны. Минимальное излучение происходит в точках, расположенных по оси или на концах, но мы не проверяли на практике этот подход. Например, газоразрядная лампа будет вспыхивать ярче на расстоянии от источника, индицируя мощный направленный импульс электромагнитной энергии.

Наша тестовая импульсная система вырабатывает электромагнитные импульсы в несколько мегаватт (1 МВт широкополосной энергии), которые распространяются с помощью конической секционной антенны, состоящей из параболического рефлектора диаметром 100-800 мм. Расширяющийся металлический рупор 25×25 см также обеспечивает определенную степень воздействия. Специальный

Рис. 25.2. Функциональная схема импульсного электромагнитного генератора Примечание:

Базовая теория работы устройства:

Резонансная схема LCR состоит из указанных на рисунке компонентов. Конденсатор С1 заряжается от зарядного устройства постоянного тока током l c . Напряжение V на С1 опг*а’ ouivwrcs. соотношением:

Искровой разрядник GAP установлен на запуск при напряжении V чуть ниже50000 В. При запуске пиковый ток достигает значения:

di/dt-V/L.

Период отклика схемы является функцией от 0,16 х (LC) 5 . Kj jhj />»–гп ц > затем i ьтэрное гея в индуктивность схемы за VaX, причем пиковое значение тока приводит к взрыву провода и прерывает этотток йог» с{№лстшнно перед тем, как он достигнет пикового значения. Иц’ .^сп*»*»^ энергия (LP) виа*/» – «сдается в виде вчрьва и в jftpcxa цл^хтигггуктосго электромагнитного излучения. Пиковая мощность ипрмоьл*тз1 описанным ниже образом и щ»«**и*гг многие мегаватты!

1. Цикл заряд а: dv=ldt/C.

(Выражает напряжение заряда на конденсаторе в функции времени, где I – постоянный ток.)

2. Накопленная энергия в С как функция от напряжения: £=0,5CV

(Выражает энергию в джоулях при увеличении напряжения.)

3. Время отклика V* цикла пикового тока: 1,57 (LC) 0 – 5 . (Выражает время для первого пика резонансного тока при запуске искрового разрядника.)

4. Пиковый ток вточке V* цикла: V(C/ Ц 05 (Выражает пиковый ток.)

5. Исходный отклик в функции от времени:

Ldi/dt+iR+ 1/С+ 1/CioLidt=0.

(Выражает напряжение как функцию от времени.)

6. Энергия катушки индуктивности в д жоулях: E=0,5U 2 .

7. Отклик, когда схема разомкнута при максимальном токе через L: LcPi/dt 2 +Rdi/dt+it/С=dv/dt.

Из этого выражения видно, что энергия катушки должна направляться куда-либо в течение очень короткого времени, результатом чего является взрывное поле высвобождения энергии Е х В.

Мощный импульс в много мегаватт вд иапазонеулырвныилс<*хчастот можно получить засчет д естабилизации LCR- схемы, как показано выше. Единственным ограничивающим фактором является собственное сопротивление, которое всегда присутствует в разных формах, например: провода, пивирхнистн-лй эффект, потери в диэлектриках и переключателях и т.д- Потери могут быть минимизированы для достижения оптимальных результатов. электромагнитная волна рвадихастль должна излучаться антенной, которая можетбытъ в виде параболической тарелки микроволновой печи или настроенного их**» in >чг>;*ттеля. i-M. < г п1гч электромагнитная волна будетзависетъотгеометрии конструкции. Большая длина г* Х’бодз обеспечит лучшие характеристики магнитного поля В, а короткие приесда в большей степени образуют поле электрическое поле Е. Эти параметры войдут в уравнения взаимодействия эффективности излучения антенны. Наилучшим подходом здесь является экспериментирование с конструкцией антенны для достижения оптимальных результатов с использованием ваших математических знаний для улучшения основных параметров. Повреждения схемы обычно являются результатом очень высокого di/dt (поле «В») импульса. Это предмет для обсуждения!

конденсатор 0,5 мкФ с малой индуктивностью заряжается за 20 с с помощью устройства ионного заряда, описанного в главе 1 «Антигравитационный проект», и дорабатывается, как показано. Можно достичь более высокой скорости заряда с помощью систем с более высоким током, которые можно получить по специальному заказу для более серьезных исследований через сайт www.amasingl.com.

Радиочастотный импульс высокой энергии можно генерировать также и в случае, где выход импульсного генератора взаимодействует с полноразмерной полуволновой антенной с центральным питанием, настроенной на частоты в диапазоне 1-1,5 МГц. Реальная дальность действия при частоте 1 МГц – более 150 м. Такая дальность действия может быть избыточна для многих экспериментов. Однако это нормально для коэффициента излучения, равного 1, во всех других схемах этот коэффициент меньше 1. Можно уменьшить длину реальных элементов с помощью настроенной четвертьволновой секции, состоящей из 75 м провода, намотанных через интервалы или с использованием двух-трех- метровых трубок из поливинилхлорида PVC. Эта схема вырабатывает импульс низкочастотной энергии.

Пожалуйста, имейте в виду, как это уже указывалось ранее, что импульсный выход этой системы может причинить вред компьютерам и любым приборам с микропроцессорами и другими аналогичными схемами на значительном расстоянии. Всегда будьте осторожны при тестировании и использовании этой системы, она может повредить устройства, которые просто находятся рядом. Описание основных частей, использованных в нашей лабораторной системе, дает рис. 25.2.

Конденсатор

Конденсатор С, используемый для подобных случаев, должен обладать очень низкой собственной индуктивностью и сопротивлением разряда. В то же время этот компонент должен обладать способностью к накоплению достаточной энергии для генерации необходимого импульса высокой энергии заданной частоты. К сожалению, два этих требования вступают в противоречие друг с другом, их трудно выполнить одновременно. Конденсаторы высокой энергии всегда будут обладать большей индуктивностью, чем конденсаторы низкой энергии. Другим важным фактором является использование сравнительного высокого напряжения для генерации сильных токов разряда. Эти значения необходимы для преодоления собственного комплексного импеданса последовательно соединенных индуктивного и резистивного сопротивлений на пути разряда.

В данной системе используется конденсатор 5 мкФ при 50000 В с индуктивностью 0,03 мкГн. Необходимая нам основная частота для схемы низкой энергии составляет 1 МГц. Энергия системы составляет 400 Дж при 40 кВ, что определяется соотношением:

Е = 1/2 CV 2 .

Катушка индуктивности

Вы можете использовать катушку из нескольких витков для экспериментов с низкими частотами с двойной антенной. Размеры определяются формулой индуктивности воздуха:

Рис. 25.7. Установка искрового разрядника для соединения с антенной при работе с низкой частотой

Применение устройство

Данная система предназначена для исследования чувствительности электронного оборудования к электромагнитным импульсам. Систему можно видоизменить для использования в полевых условиях и работы от перезаряжаемых аккумуляторных батарей. Ее энергию можно увеличить до уровня импульсов электромагнитной энергии в несколько килоджоулей, на собственный страх и риск пользователя. Нельзя предпринимать попыток изготовления своих вариантов устройства или использовать данное устройство, если вы не имеете достаточного опыта в использовании импульсных систем высокой энергии.

Импульсы электромагнитной энергии можно сфокусировать или запускать параллельно с помощью параболического отражателя. Экспериментальной мишенью может служить любое электронное оборудование и даже газоразрядная лампа. Вспышка акустической энергии может вызвать звуковую ударную волну или высокое звуковое давление на фокусном расстоянии параболической антенны.

Источники приобретении компонентов и деталей

Устройства заряда высокого напряжения, трансформаторы, конденсаторы, газовые искровые разрядники или радиоизотопные разрядники, импульсные генераторы MARX до 2 MB, генераторы ЕМР можно приобрести через сайт www.amasingl.com .

ТЕМА: ЭЛЕКТРОМАГНИТНЫЙ ИМПУЛЬС ЯДЕРНОГО ВЗРЫВА

И ЗАЩИТА ОТ НЕГО РАДИОЭЛЕКТРОННЫХ СРЕДСТВ.

С О Д Е Р Ж А Н И Е

1. НЕСМЕРТЕЛЬНОЕ ОРУЖИЕ.

11. ВЗГЛЯДЫ РУКОВОДСТВА США И НАТО НА ИСПОЛЬЗОВАНИЕ ЭЛЕК

ТРОМАГНИТНОГО ИМПУЛЬСА В ВОЕННЫХ ЦЕЛЯХ.

111. ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В

ОБЛАСТИ ЭМИ.

1У. ИСПОЛЬЗОВАНИЕ ИМИТАТОРОВ ЭМИ ДЛЯ НАБОРА ЭКСПЕРИМЕН

ТАЛЬНЫХ ЗНАНИЙ.

1. НЕСМЕРТЕЛЬНОЕ ОРУЖИЕ.

Военно-политическое руководство США, не отказываясь от использования насилия в качестве одного из главных инструментов достижения своих целей, осуществляет поиск новых способов ведения боевых действий и создает для них средства, в полной мере учитывающие реалии современности.

В начале 90-х годов в США стала зарождаться концепция, согласно которой вооруженные силы страны должны иметь не только ядерные и обычные вооружения, но и специальные средства, обеспечивающие эффективное участие в локальных конфликтах без нанесения противнику излишних потерь в живой силе и материальных ценностях.

К этому специальному оружию американские военные специалисты в первую очередь относят: средства создания электромагнитного импульса(ЭМИ); генераторы инфразвука; химические составы и биологические рецептуры, способные изменять структуру базовых материалов основных элементов боевой техники; вещества, которые выводят из строя смазку и резиновые изделия, вызывают загустение горючего; лазеры.

В настоящее время основные работы по развитию технологий оружия несмертельного действия (ОНСД) проводятся в управлении перспективных исследований министерства обороны, Ливерморской и Лос-Аламосской лабораториях министерства энергетики, центре разработок вооружения министерства армии и т.д. Наиболее близки к принятию на вооружение различные типы лазеров для ослепления личного состава, химические средства для его обездвиживания, генераторы ЭМИ, отрицательно влияющие на работу электронной техники.

ОРУЖИЕ ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА.

Генераторы ЭМИ (супер ЭМИ), как показывают теоретические работы и проведенные за рубежом эксперименты, можно эффективно использовать для вывода из строя электронной и электротехнической аппаратуры, для стирания информации в банках данных и порчи ЭВМ.

С помощью ОНСД на основе генераторов ЭМИ возможен вывод из строя ЭВМ, ключевых радио и электротехнических средств, систем электронного зажигания и других автомобильных агрегатов, подрыв или инактивация минных полей. Воздействие этого оружия достаточно избирательно и политически вполне приемлемо, однако требуется точная доставка его в районы поражаемой цели.

11. ВЗГЛЯДЫ РУКОВОДСТВА США И НАТО НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРО

МАГНИТНОГО ИМПУЛЬСА В ВОЕННЫХ ЦЕЛЯХ.

Несмотря на признание военно-политическим руководством США и НАТО невозможности победы в ядерной войне, различные аспекты поражающего действия ядерного оружия продолжают широко обсуждаться. Так, в одном из рассматриваемых иностранными специалистами сценариев начального периода ядерной войны особое место отводится потенциальной возможности вывода из строя радиоэлектронной техники в результате воздействия на нее ЭМИ. Считается, что подрыв на высоте около 400 км. только одного боеприпаса мощностью более 10 Мт приведет к такому нарушению функционирования радиоэлектронных средств в обширном районе, при котором

время их восстановления превысит допустимые сроки для принятия ответных мер.

По расчетам американских экспертов, оптимальной точкой подрыва ядерного боеприпаса для поражения ЭМИ радиоэлектронных средств почти на всей территории США была бы точка в космосе с эпицентром в районе географического центра страны, находящегося в штате Небраска.

Теоретические исследования и результаты физических экспериментов показывают, что ЭМИ ядерного взрыва может привести не только к выходу из строя полупроводниковых электронных устройств, но и к разрушению металлических проводников кабелей наземных сооружений. Кроме того возможно поражение аппаратуры ИСЗ, находящихся на низких орбитах.

Для генерации ЭМИ ядерный боеприпас может подрываться в космическом пространстве, что не приводит к возникновению ударной волны и выпадению радиоактивных осадков. Поэтому в зарубежной прессе высказывются следующие мнения о "неядерном характере" такого боевого применения ядерного оружия и о том, что удар с использованием ЭМИ не обязательно приведет к всеобщей ядерной войне. Опасность этих заявлений очевидна,т.к. одновременно некоторые зарубежные специалисты не исключают возможность массового поражения с помощью ЭМИ и живой силы. Во всяком случае вполне очевидно, что наводимые под воздействием ЭМИ в металлических элементах техники токи и напряжения будут смертельно опасны для личного состава.

111.ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В ОБЛАСТИ ЭМИ.

Для того, чтобы понять всю сложность проблем угрозы ЭМИ и мер по защите от нее, необходимо кратко рассмотреть историю изучения этого физического явления и современное состояние знаний в этой области.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в

конце 50-х - начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.Однако количественные характеристики импульса измерялись в недостаточной степени, во-первых, потому что отсутствовала контрольно-измерительная аппаратура, способная регистрировать чрезвычайно мощное электромагнитное излучение, существующее чрезвычайно короткое время (миллионные доли секунду), во-вторых, потому что в те годы в радиоэлектронной аппаратуре использовались исключительно электровакуумные приборы, которые мало подвержены воздействию ЭМИ, что снижало интерес к его изучению.

Создание полупроводниковых приборов, а затем и интегральных схем,особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ. С 1970 года вопросы защиты оружия и военной техники от ЭМИ стали рассматриваться министерством обороны США как имеющие высшую приоритетность.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов,выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетки. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 - 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания амплитуды импульса (максимум достигается на 3 - 5 нс после взрыва) наведенное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорциональна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля.

Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

ЭМИ генерируются и при других видах ядерных взрывов - воздушном и наземном. Теоретически установлено, что в этих случаях его интенсивность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность,однако она быстро уменьшается по мере удаления от эпицентра.

1У. ИСПОЛЬЗОВАНИЕ ИМИТАТОРОВ ЭМИ ДЛЯ НАБОРА ЭКСПЕРИМЕНТАЛЬНЫХ

Поскольку сбор экспериментальных данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение набора данных достигается методами и средствами физического моделирования.

Среди капиталистических стран передовые позиции в разработке и

практическом использовании имитаторов ЭМИ ядерного взрыва занимают США. Подобные имитаторы представляют собой электрогенераторы со специальными излучателями, создающими электромагнитное поле с параметрами близкими к тем, которые характерны для реального ЭМИ. В зону действия излучателя помещаются испытываемый объект и приборы, регистрирующие интенсивность поля, его частотный спектр и длительность воздействия.

Один из таких имитаторов, развернутый на авиабазе ВВС США Киртленд, предназначен для моделирования условий воздействия ЭМИ на самолет и его аппаратуру. Он может использоваться для испытаний таких крупных летательных аппаратов, как бомбардировщик В-52 или гражданский авиалайнер Боинг-747.

В настоящее время создано и действует большое количество имитаторов ЭМИ для испытаний авиационной, космической, корабельной и наземной техники. Однако они не в полной мере воссоздают реальные условия воздействия ЭМИ ядерного взрыва вследствие ограничений, накладываемых характеристиками излучателей, генераторов и источников электропитания на частотный спектр излучения, его мощность и скорость нарастания импульса. Вместе с тем, и при этих ограничениях удается получить достаточно полные и надежные данные о появлении неисправностей в полупроводниковых приборах, сбоя в их функционировании и т.п., а также об эффективности действия различных защитных устройств. Кроме того, такие испытания позволили дать количественную оценку опасности различных путей воздействия ЭМИ на радиоэлектронную технику.

Теория электромагнитного поля показывает, что такими путями для наземной техники являются прежде всего различные антенные устройства и кабельные вводы системы электропитания, а для авиационной и космической техники - антенны, а также токи, наводимые в обшивке, и излучения,проникающие через остекление кабин и лючки из нетокопроводящих материалов. Токи, наводимые ЭМИ в наземных и заглубленных кабелях электропитания протяженностью в сотни и тысячи километров, могут достигать тысяч ампер, а напряжение в разомкнутых цепях таких кабелей - миллион вольт. В антенных вводах, длина которых не превышает десятков метров,наводимые ЭМИ токи могут иметь силу в несколько сотен ампер. ЭМИ, проникающий непосредственно через элементы сооружений из диэлектрических материалов (неэкранированные стены, окна, двери и т.п.), может наводить во внутренней электропроводке токи силой в десятки ампер.

Поскольку слаботочные цепи и радиоэлектронные приборы нормально действуют при напряжениях в несколько вольт и токах силой до нескольких десятков миллиампер, то для их абсолютно надежной защиты от ЭМИ требуется обеспечить снижение величины токов и напряжений в кабелях,до шести порядков.

У. ВОЗМОЖНЫЕ ПУТИ РЕШЕНИЯ ЗАДАЧИ ЗАЩИТЫ ОТ ЭМИ.

Идеальной защитой от ЭМИ явилось бы полное укрытие помещения, в котором размещена радиоэлектронная аппаратура, металлическим экраном.

Вместе с тем ясно, что практически обеспечить такую защиту в ряде случаев невозможно, т.к. для работы аппаратуры часто требуется обеспечить ее электрическую связь с внешними устройствами. Поэтому используются менее надежные средства защиты, такие, как токопроводящие сетки или пленочные покрытия для окон, сотовые металлические конструкции для воздухозаборников и вентиляционных отверстий и контактные пружинные прокладки, размещаемые по периметру дверей и люков.

Более сложной технической проблемой считается защита от проникновения ЭМИ в аппаратуру через различные кабельные вводы. Радикальным решением данной проблемы мог бы стать переход от электрических сетей связи к практически не подверженным воздействию ЭМИ волоконно-оптическим. Однако замена полупроводниковых приборов во всем спектре выполняемых ими функций электронно-оптическими устройствами возможно только в отдаленном будущем. Поэтому в настоящее время в качестве средств защиты кабельных вводов наиболее широко используются фильтры, в том числе волоконные, а также искровые разрядники,металлоокисные варисторы и высокоскоростные зенеровские диоды.

Все эти средства имеют как преимущества, так и недостатки. Так,емкостно-индуктивные фильтры достаточно эффективны для защиты от ЭМИ малой интенсивности, а волоконные фильтры защищают в относительно узком диапазоне сверхвысоких частот.Искровые разрядники обладают значительной инерционностью и в основном пригодны для защиты от перегрузок,возникающих под воздействием напряжений и токов, наводимых в обшивке самолета, кожухе аппаратуры и оплетке кабеля.

Металлоокисные варисторы, представляют собой полупроводниковые приборы, резко повышающие свою проводимость при высоком напряжении.

Однако, при применении этих приборов в качестве средств защиты от ЭМИ следует учитывать их недостаточно высокое быстродействие и ухудшение характеристик при неоднократном воздействии нагрузок. Эти недостатки отсутствуют у высокоскоростных зенеровских диодов, действие которых основано на резком лавинообразном изменении сопротивления от относительно высокого значения практически до нуля при превышении приложенного к ним напряжения определенной пороговой величины. Кроме того в отличии от варисторов характеристики зенеровских диодов после многократных воздействий высоких напряжений и переключений режимов не ухудшаются.

Наиболее рациональным подходом к проектированию средств защиты от ЭМИ кабельных вводов является создание таких разъемов, в конструкции

которых предусмотрены специальные меры, обеспечивающие формирование элементов фильтров и установку встроенных зенеровских диодов. Подобное решение способствует получению очень малых значений емкости и индуктивности, что необходимо для обеспечения защиты от импульсов, которые имеют незначительную длительность и, следовательно, мощную высокочастотную составляющую. Использование разъемов подобной конструкции позволит решить проблему органичения массо-габаритных характеристик устройства защиты.

Сложность решения задачи защиты от ЭМИ и высокая стоимость разработанных для этих целей средств и методов заставляют пойти на первых парах по пути их выборочного применения в особо важных системах оружия и военной техники. Первыми целенаправленными работами в данном направлении были программы защиты от ЭМИ стратегического оружия. Такой же путь избран и для защиты имеющих большую протяженность систем управления и связи. Однако основным методом решения данной данной проблемы зарубежные специалисты считают создание так называемых распределенных сетей связи (типа "Гвен"), первые элементы которых уже развернуты на континентальной части США.

Современное состояние проблемы ЭМИ можно оценить следующим образом. Достаточно хорошо исследованы теоретически и подтверждены экспериментально механизмы генерации ЭМИ и параметры его поражающего действия. Разработаны стандарты защищенности аппаратуры и известны эффективные средства защиты. Однако для достижения достаточной уверенности в надежности защиты систем и средств от ЭМИ необходимо провести испытания с помощью имитатора. Что касается полномасштабных испытаний систем связи и управления, то эта задача вряд ли будет решена в обозримом будущем.

Мощный ЭМИ можно создать не только в результате ядерного взрыва.

Современные достижения в области неядерных генераторов ЭМИ позволяют сделать их достаточно компактными для использования с обычными и высокоточными средствами доставки.

В настоящее время в некоторых западных странах ведутся работы по генерации импульсов электромагнитного излучения магнитодинамическими устройствами, а также высоковольтными разрядами. Поэтому вопросы защищенности от воздействия ЭМИ будут оставаться в центре внимания специалистов при любом исходе переговоров о ядерном разоружении.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Ядерный взрыв сопровождается электромагнитным излучением в виде мощного короткого импульса, поражающего главным образом, электрическую и электронную аппаратуру.

Источники возникновения электромагнитного импульса (ЭМИ). По природе ЭМИ с некоторыми допущениями можно сравнить с электромагнитным полем близкой молнии, создающим помехи для радиоприемников. Длина волн колеблется от 1 до 1000 м и более. Возникает ЭМИ в основном в результате взаимодействия гамма-излучения, образующегося во время взрыва, с атомами окружающей среды.

При взаимодействии гамма-квантов с атомами среды последним сообщается импульс энергии, небольшая доля которой тратится на ионизацию атомов, а основная - на сообщение поступательного движения электронам и ионам, образовавшимся в результате ионизации. Ввиду того, что электрону сообщается значительно больше энергии, чем иону, а также из-за большой разницы в массе электроны обладают более высокой скоростью по сравнению с ионами. Можно считать, что ионы практически остаются на месте, а электроны удаляются от них со скоростями, близкими к скорости света в радиальном направлении от центра взрыва. Таким образом, в пространстве на некоторое время происходит разделение положительных и отрицательных зарядов.

Вследствие того, что плотность воздуха в атмосфере уменьшается с высотой, в области, окружающей место взрыва, получается асимметрия в распределении электрического заряда (потока электронов). Асимметрия потока электронов может возникнуть также из-за несимметричности самого потока гамма-квантов ввиду различной толщины оболочки бомбы, а также наличия магнитного поля Земли и других факторов. Несимметричность электрического заряда (потока электронов) в месте взрыва в воздухе вызывает импульс тока. Он излучает электромагнитную энергию так же, как и прохождение его в излучающей антенне.

Район, где гамма-излучение взаимодействует с атмосферой, называется районом источника ЭМИ. Плотная атмосфера вблизи земной поверхности ограничивает область распространения гамма-квантов (сердняя длина свободного пробега составляет сотни метров). Поэтому при наземном взрыве район источника занимает площадь всего в несколько квадратных километров и примерно совпадает с районом, где воздействуют другие поражающие факторы ядерного взрыва.

При высотном ядерном взрыве гамма-кванты могут пройти сотни километров до взаимодействия с молекулами воздуха и вследствие его разреженности проникнуть глубоко в атмосферу. Поэтому размеры района источника ЭМИ получаются большими. Так, при высотном взрыве боеприпаса мощностью 0,5-2 млн. т может образоваться район источника ЭМИ диаметром до 1600-3000 км и толщиной около 20 км, нижняя граница которого пройдет на высоте 18-20 км (рис. 1.4).

Рис. 1.4. Основные варианты ЭМИ-обстановки: 1 - ЭМИ-обстановка района источника и образования полей излучения наземного и воздушного взрывов; 2 - подземная ЭМИ-обстановка на некотором расстоянии от взрыва вблизи поверхности; 3 - ЭМИ-обстановка высотного взрыва.

Большие размеры района источника при высотном взрыве порождают интенсивный ЭМИ, направленный вниз, над значительной частью земной поверхности. Поэтому очень большой район может оказаться в условиях сильного воздействия ЭМИ, где другие поражающие факторы ядерного взрыва практически не действуют.

Таким образом, при высотных ядерных взрывах объекты полиграфии, находящиеся и за пределами очага ядерного поражения, могут подвергнуться сильному воздействию ЭМИ.

Основными параметрами ЭМИ, определяющими поражающее действие, являются характер изменения напряженности электрического и магнитного полей во времени - форма импульса и максимальная напряженность поля - амплитуда импульса.

ЭМИ наземного ядерного взрыва на расстоянии до нескольких километров от центра взрыва представляет собой одиночный сигнал с крутым передним фронтом и длительностью в несколько десятков миллисекунд (рис. 1.5).

Рис. 1.5. Изменение напряженности поля электромагнитного импульса: а - начальная фаза; б - основная фаза; в - длительность первого квазиполупериода.

Энергия ЭМИ распространена в широком диапазоне частот от десятков герц до нескольких мегагерц. Однако высокочастотная часть спектра содержит незначительную долю энергии импульса; основная же часть его энергии приходится на частоты до 30 кГц.

Амплитуда ЭМИ в указанной зоне может достигать очень больших значений - в воздухе тысяч вольт на метр при взрыве боеприпасов малой мощности и десятков тысяч вольт на метр при взрывах боеприпасов большой мощности. В грунте амплитуда ЭМИ может доходить соответственно до сотен и тысяч вольт на метр.

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, ЭМИ наземного ядерного взрыва поражает только на расстоянии нескольких километров от центра взрыва; на больших расстояниях оно оказывает только кратковременное отрицательное воздействие на работу радиотехнической аппаратуры.

Для низкого воздушного взрыва параметры ЭМИ в основном остаются такими же, как и для наземного взрыва, но с увеличением высоты взрыва амплитуда импульса у поверхности земли уменьшается.

При низком воздушном взрыве мощностью 1 млн.т ЭМИ с поражающими величинами напряженности полей распространяются на площади с радиусом до 32 км, 10 млн. т - до 115 км.

Амплитуда ЭМИ подземного и подводного взрывов значительно меньше амплитуды ЭМИ при взрывах в атмосфере, поэтому поражающее действие его при подземном и подводном взрывах практически не проявляется.

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках, расположенных в воздухе, земле, на оборудовании других объектов.

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, его поражающее действие - несколько километров от центра (эпицентра) взрыва крупного калибра. Так, при наземном взрыве мощностью 1 Мт вертикальная составляющая электрического поля ЭМИ на расстоянии 4 км - 3 кВ/м, на расстоянии 3 км - 6 кВ/м, и 2 км - 13 кВ/м.

ЭМИ непосредственного действия на человека не оказывает. Приемники энергии ЭМИ - проводящие электрический ток тела: все воздушные и подземные линии связи, линии управления, сигнализации (так как они имеют электрическую прочность, не превышающую 2-4 кВ напряжения постоянного тока), электропередачи, металлические мачты и опоры, воздушные и подземные антенные устройства, наземные и подземные турбопроводы, металлические крыши и другие конструкции, изготовленные из металла. В момент взрыва в них на доли секунды возникает импульс электрического тока и появляется разность потенциала относительно земли. Под действием этих напряжений может происходить: пробой изоляции кабелей, повреждение входных элементов аппаратуры, подключенной к антеннам, воздушным и подземным линиям (пробой трансформаторов связи, выход из строя разрядников, предохранителей, порча полупроводниковых приборов и т.д., а также выгорание плавких вставок, включенных в линии для защиты аппаратуры. Высокие электрические потенциалы относительно земли, возникающие на экранах, жилах кабелей, антенно-фидерных линиях и проводных линиях связи могут представлять опасность для лиц, обслуживающих аппаратуру.

Наибольшую опасность ЭМИ представляет для аппаратуры, не оборудованной специальной защитой, даже если она находится в особо прочных сооружениях, способных выдерживать большие механические нагрузки от действия ударной волны ядерного взрыва. ЭМИ для такой аппаратуры является главным поражающим фактором.

Линии электропередач и их оборудование, рассчитанные на напряжение в десятки, сотни кВт, являются устойчивыми к воздействию электромагнитного импульса.

Необходимо также учитывать одновременность воздействия импульса мгновенного гамма-излучения и ЭМИ: под действием первого - увеличивается проводимость материалов, а под действием второго - наводятся дополнительные электрические токи. Кроме того, следует учитывать их одновременное воздействие на все системы, находящиеся в районе взрыва.

На кабельных и воздушных линиях, попавших в зону мощных импульсов электромагнитного излучения, возникают (наводятся) высокие электрические напряжения. Наведенное напряжение может вызывать повреждения входных цепей аппаратуры на довольно удаленных участках этих линий.

В зависимости от характера воздействия ЭМИ на линии связи и подключенную к ним аппаратуру рекомендуются следующие способы защиты: применение двухпроводных симметричных линий связи, хорошо изолированных между собой и от земли; исключение применения однопроводных наружных линий связи; экранирование подземных кабелей медной, алюминиевой, свинцовой облочкой; электромагнитное экранирование блоков и узлов аппаратуры; использование различного рода защитных входных устройств и грозозащитных средств.

Электромагнитный импульс (ЭМИ) -- поражающий фактор ядерного оружия, а также любых других источников ЭМИ (например молнии, специального электромагнитного оружия, короткого замыкания в электрооборудовании высокой мощности, или близкой вспышки сверхновой и т. д.). Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведённых напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов и т. п. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях.

Природа электромагнитного импульса

Ядерный взрыв производит огромное количество ионизированных частиц, сильнейшие токи и электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). На человека оно не оказывает никакого влияния (по крайней мере в пределах изученного), зато повреждает электронную аппаратуру. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов. Зарождение ЭМИ начинается с чрезвычайно короткого, но мощного выброса гамма-лучей из зоны реакции. На протяжении ~10 наносекунд в виде гамма-лучей выделяется 0.3% энергии взрыва. Гамма-квант, сталкиваясь с атомом какого-либо газа воздуха выбивает из него электрон, ионизируя атом. В свою очередь этот электрон сам способен выбить своего собрата из другого атома. Возникает каскадная реакция, сопровождающаяся образованием до 30 000 электронов на каждый гамма-квант. На низких высотах, гамма-лучи, испущенные по направлению к земле, поглощаются ею, не производя большого количества ионов. Свободные электроны, будучи гораздо легче и проворнее атомов, быстро покидают область, в которой они зародились. Образуется очень сильное электромагнитное поле. Это создает очень сильный горизонтальный ток, искру, рождающую широкополосное электромагнитное излучение. В то же время, на земле, под местом взрыва, собираются электроны "заинтересовавшиеся" скоплением положительно заряженных ионов непосредственно вокруг эпицентра. Поэтому сильное поле создается и вдоль Земли.

И хотя в виде ЭМИ излучается очень незначительная часть энергии - 1/3x10-10, это происходит за очень короткий промежуток времени. Так что мощность, развиваемая им огромна: 100 000 МВт. На больших высотах происходит ионизация расположенных ниже плотных слоев атмосферы. На космических высотах (500 км) область такой ионизации достигает 2500 км. Максимальная ее толщина - до 80 км. Магнитное поле Земли закручивает траектории электронов в спираль, образуя мощный электромагнитный импульс на несколько микросекунд. В течении нескольких минут между поверхностью Земли и ионизированным слоем возникает сильное электростатическое поле (20-50 кВ/м), пока большая часть электронов не будет поглощена вследствие процессов рекомбинации. Хотя пиковая напряженность поля при высотном взрыве составляет всего 1-10% от наземного, на образование ЭМИ уходит в 100 000 больше энергии - 1/3x10-5 всей выделившейся, напряженность остается примерно постоянной под всем ионизированным районом.

Воздействие ЭМИ на технику. Сверхсильное электромагнитное поле индуцирует высокое напряжение во всех проводниках. ЛЭП будут фактически являться гигантскими антеннами, наведенное в них напряжение вызовет пробой изоляции и выход из строя трансформаторные подстанции. Выйдет из строя большинство специально не защищенных полупроводниковых приборов. В этом плане большую фору микросхемам даст старая добрая ламповая техника, которой нипочем ни сильная радиация, ни сильные электрические поля.



Понравилась статья? Поделитесь с друзьями!