Водород и его соединения химические свойства. Водород - это что за вещество? Химические и физические свойства водорода

Водород занимает особое положение в Периодической системе химических элементов Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H + он сходен со щелочными металлами, и его следует поместить в I группу. По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.

Электронная формула водорода 1s 1 . Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления +1 и –1.

Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:

Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.

В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.

Простое вещество водород (H 2) представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раз легче воздуха, мало растворим в воде.

Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации (435 кДж/моль) распад молекул H 2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.

Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведет себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):

По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щелочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.

В большинстве реакций водород ведет себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:

Смесь двух объемов водорода с одним объемом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °C.

Реакция с галогенами протекает, в зависимости от природы галогена, по-разному:

С фтором такая реакция идет со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идет значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.

При повышенной температуре водород взаимодействует с элементами VI группы - серой, селеном, теллуром, например:

Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450–500 °C в присутствии различных катализаторов:

Водород восстанавливает многие металлы из оксидов, например:

Данную реакцию используют для получения некоторых чистых металлов.

Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.

Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.

В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твердого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.

Вода H 2 O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода - бесцветная жидкость, без запаха и вкуса. Вода - самое распространенное вещество на поверхности Земли. В человеческом организме содержится 63–68% воды.

Физические свойства воды во многом являются аномальными. При нормальном атмосферном давлении вода кипит при 100 °C. Температура замерзания чистой воды 0 °C. B отличие от других жидкостей плотность воды при охлаждении возрастает не монотонно, а имеет максимум при +4 °C. Теплоемкость воды очень высока и составляет 418 кДж/моль·K. Теплоемкость льда при 0 °C составляет 2,038 кДж/моль·K. Аномально высокой является теплота плавления льда. Электропроводность воды очень мала. Аномальные физические свойства воды объясняют ее строение. Валентный угол H–O–H равен 104,5°. Молекула воды представляет собой искаженный тетраэдр, в двух вершинах которого располагаются атомы водорода, а две другие заняты орбиталями неподеленных пар электронов атома кислорода, не участвующих в образовании химических связей.

Вода является стабильным соединением, ее разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:

Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах. Так, натрий вступает в реакцию водой уже при комнатной температуре, реакция сопровождается выделением большого количества тепла; железо реагирует с водой при температуре 800 °С:

Водород – особый элемент, занимающий сразу две ячейки в периодической системе Менделеева. Он располагается в двух группах элементов, обладающих противоположными свойствами, и эта особенность делает его уникальным. Водород является простым веществом и составной частью многих сложных соединений, это органогенный и биогенный элемент. Стоит подробно ознакомиться с основными его особенностями и свойствами.

Водород в периодической системе Менделеева

Главные особенности водорода, указанные в :

  • порядковый номер элемента – 1 (протонов и электронов столько же);
  • атомная масса составляет 1,00795;
  • водород имеет три изотопа, каждый из которых обладает особыми свойствами;
  • благодаря содержанию только одного электрона, водород способен проявлять восстановительные и окислительные свойства, а после отдачи электрона водород имеет свободную орбиталь, принимающую участие в составлении химических связей по донорно-акцепторному механизму;
  • водород – легкий элемент с небольшой плотностью;
  • водород является сильным восстановителем, он открывает группу щелочных металлов в первой группе главной подгруппе;
  • когда водород вступает в реакцию с металлами и другими сильными восстановителями, он принимает их электрон и становится окислителем. Такие соединения называются гидридами. По указанному признаку водород условно относится к группе галогенов (в таблице он приводится над фтором в скобках), с которыми он имеет сходство.

Водород как простое вещество

Водород - это газ, молекула которого состоит из двух . Это вещество было открыто в 1766 году британским ученым Генри Кавендишем. Он доказал, что водород является газом, который взрывается при взаимодействии с кислородом. После изучения водорода химики установили, что это вещество является самым легким из всех известных человеку.

Другой ученый, Лавуазье, присвоил элементу имя «гидрогениум», что в переводе с латыни означает «рождающий воду». В 1781 году Генри Кавендиш доказал, что вода является сочетанием кислорода и водорода. Другими словами, вода - это продукт реакции водорода с кислородом. Горючие свойства водорода были известны еще древним ученым: соответствующие записи оставил Парацельс, живший в XVI столетии.

Молекулярный водород - это образующееся естественным путем распространенное в природе газообразное соединение, которое состоит из двух атомов и при поднесении горящей лучинки. Молекула водорода может распадаться на атомы, превращающиеся в ядра гелия, так как они способны участвовать в ядерных реакциях. Такие процессы регулярно протекают в космосе и на Солнце.

Водород и его физические свойства

Водород имеет такие физические параметры:

  • кипит при температуре -252,76 °C;
  • плавится при температуре -259,14 °C; *в указанных температурный пределах водород - это не имеющая запаха бесцветная жидкость;
  • в воде водород слабо растворяется;
  • водород теоретически может перейти в металлическое состояние при обеспечении особых условий (низких температур и высокого давления);
  • чистый водород - взрывоопасное и горючее вещество;
  • водород способен диффундировать сквозь толщу металлов, поэтому хорошо в них растворяется;
  • водород легче воздуха в 14,5 раз;
  • при высоком давлении можно получить снегообразные кристаллы твердого водорода.

Химические свойства водорода


Лабораторные способы:

  • взаимодействие разбавленных кислот с активными металлами и металлами средней активности;
  • гидролиз гидридов металлов;
  • реакция с водой щелочных и щелочноземельных металлов.

Соединения водорода:

Галогенводороды; летучие водородные соединения неметаллов; гидриды; гидроксиды; гидроксид водорода (вода); пероксид водорода; органические соединения (белки, жиры, углеводороды, витамины, липиды, эфирные масла, гормоны). Нажмите , чтобы увидеть безопасные эксперименты на изучение свойств белков, жиров и углеводов.

Чтобы собрать образующийся водород, нужно держать пробирку перевернутой вверх дном. Водород нельзя собрать, как углекислый газ, ведь он намного легче воздуха. Водород быстро улетучивается, а при смешении с воздухом (или при большом скоплении) взрывается. Поэтому необходимо переворачивать пробирку. Сразу после заполнения пробирка закрывается резиновой пробкой.

Чтобы проверить чистоту водорода, нужно поднести зажженную спичку к горлышку пробирки. Если произойдет глухой и тихий хлопок - газ чистый, а примеси воздуха минимальные. Если хлопок громкий и свистящий - газ в пробирке грязный, в нем присутствует большая доля посторонних компонентов.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Наиболее известным и наиболее изученным соединением кислорода является его оксид H 2 O – вода. Чистая вода представляет собой бесцветную прозрачную жидкость без запаха и вкуса. В толстом слое имеет голубовато-зеленоватый цвет.

Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

Из всех жидких и твердых веществ вода обладает наибольшей удельной теплоемкостью. Благодаря этому факту вода является аккумулятором теплоты в различных организмах.

При нормальном давлении температура плавления льда 0 0 С (273 0 К), температура кипения воды +100 0 С (373 0 К). Это аномально высокие значения. При Т 0 +4 0 С вода имеет небольшую плотность, равную 1 г/мл. Выше или ниже этой температуры плотность воды меньше 1 г/мл. Эта особенность отличает воду от всех других веществ, плотность которых с понижением t 0 увеличивается. При переходе воды их жидкого состояния в твердое состояние происходит увеличение объема: из каждых 92 объемов жидкой воды образуется 100 объемов льда. С увеличением объема плотность уменьшается, поэтому, будучи легче воды, лед всегда всплывает на поверхность.

Исследования строения воды показали, что молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород. Валентный угол равен 104, 27. Молекула воды полярна – электронная плотность смещена к атому кислорода. Такая полярная молекула может взаимодействовать с другой молекулой с образованием более сложных агрегатов как за счет взаимодействия диполей, так и путем образования водородных связей. Это явление получило название ассоциации воды. Ассоциация молекул воды в основном определяется образованием между ними водородных связей. Молекулярная масса воды в состоянии пара равна 18 и отвечает ее простейшей формуле – Н 2 О. В остальных случаях молекулярная масса воды в кратное число раз больше восемнадцати (18).

Полярность и малые размеры молекулы приводят к тому, что она обладает сильными гидратирующими свойствами.

Диэлектрическая проницаемость воды настолько велика (81), что она оказывает мощное ионизирующее действие на растворенные в ней вещества, вызывая диссоциацию кислот, солей и оснований.

Молекула воды способна присоединиться к различным ионам, образуя гидраты. Эти соединения характеризуются специфическим стрением, напоминая комплексные соединения.

Одним из важнейших продуктов присоединения является ион гидроксония – Н 3 О, который образуется вследствие присоединения иона Н + к неподеленной паре электронов атома кислорода.

Вследствие этого присоединения образующийся ион гидроксония приобретает заряд +1.

Н + + Н 2 О Н 3 О +

Такой процесс возможен в системах, где содержатся вещества, отщепляющие ион водорода.

Вода, как на холоде, так и при нагревании активно взаимодействует со многими металлами, стоящими в ряду активности до водорода. В этих реакциях образуются соответствующие им оксиды или гидроксиды и вытесняется водород.:

2 Fe + 3 HOH = Fe 2 O 3 + 3 H 2

2 Na + 2 HOH = 2 NaOH + H 2

Ca + 2 HOH = Ca (OH) 2 + H

Вода довольно активно присоединяется к основным и кислотным оксидам, образуя соответствующие гидроксиды:

CaO + H 2 O = Ca (OH) 2 – основание

P 2 O 5 + 3 H 2 O = 2 H 3 PO 4 – кислота

Вода, которая присоединена в этих случаях, называется конституционной (в отличие от кристаллизационной в кристаллогидратах).

Вода реагирует с галогенами, в этом случае образуется смесь кислот:

H 2 + HOH HCl + HClO

Наиболее важным свойством воды является ее растворяющая способность.

Вода – самый распространенный растворитель в природе и технике. Большинство химических реакций проводится в воде. Но, пожалуй, наибольшее значение имеют биологические и биохимические процессы, происходящие в растительном и животном организмах с участием белков, жиров, углеводов и других веществ в водной среде организма.

Второе соединение водорода с кислородом – пероксид водорода H 2 O 2 .

Структурная формула Н – О – О – Н, молекулярный вес – 34.

Латинское название Hydrogenii peroxydum.

Это вещество было открыто в 1818 году французским ученым Луи-Жаком Тенаром, который изучал действие различных минеральных кислот на бария пероксид (BaO 2). В природе пероксид водорода образуется в процессе окисления. Наиболее удобным и современным способом получения H 2 O 2 является электролитический способ, который и используется в промышленности. В качестве исходных веществ используют серную кислоту или аммония сульфат.

Современными физико-химическими методами установлено, что оба атома кислорода в пероксиде водорода связаны непосредственно друг с другом неполярной ковалентной связью. связи же между атомами водорода и кислорода (вследствие смещения общих электронов в сторону кислорода) полярны. Поэтому молекула H 2 O 2 также полярна. Между молекулами H 2 O 2 возникает водородная связь, что приводит к их ассоциации с энергией связи О – О, равной 210 кДж, это значительно меньше энергии связи Н – О (470 кДж).

Раствор перекиси водорода – прозрачная бесцветная жидкость, без запаха или со слабым своеобразным запахом, слабокислой реакции. Быстро разлагается под действием света, при нагревании, при соприкосновении с щелочью, окисляющими и восстанавливающими веществами, выделяя кислород. Происходит реакция: H 2 O 2 = H 2 O + O

Малая устойчивость молекул H 2 O 2 обусловлена непрочностью связи О – О.

Хранят его в посуде из темного стекла и в прохладном месте. При действии на кожу концентрированных растворов перекиси водорода образуются ожоги, причем обожженное место болит.

ПРИМЕНЕНИЕ: в медицине применяют 3 % раствор перекиси водорода как кровоостанавливающее средство, дезинфицирующее и дезодорирующее средство для промываний и полосканий при стоматите, ангине, гинекологических заболеваниях и др.

При соприкосновении с ферментом каталазой (из крови, гноя, тканей) действует атомарный кислород в момент выделения. Действие H 2 O 2 кратковременное. Ценность препарата заключается в том, что продукты его разложения безвредны для тканей.

ГИДРОПЕРИТ – комплексное соединение перекиси водорода с мочевиной. Содержание перекиси водорода составляет около 35 %. Применяют как антисептическое средство вместо перекиси водорода.

Одним из основных химических свойств H 2 O 2 является его окислительно-восстановительные свойства. Степень окисления кислорода в H 2 O 2 равна -1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому перекись водорода обладает свойствами как окислителя, так и восстановителя, т.е. проявляет окислительно-восстановительную двойственность. Следует отметить, что окислительные свойства H 2 O 2 выражены гораздо сильнее, чем восстановительные и проявляются они в кислой, щелочной и нейтральной средах. Например:

2 KI + H 2 SO 4 + H 2 O 2 = I 2 + K 2 SO 4 + 2 H 2 O

2 I - - 2ē → I 2 0 1 – в-ль

H 2 O 2 + 2 H + + 2ē → 2 H 2 O 1 – ок-ль

2 I - + H 2 O 2 + 2 H + → I 2 + 2 H 2 O

Под действием сильных окислителей H 2 O 2 проявляет восстановительные свойства:

2 KMnO 4 + 5 H 2 O 2 + 3 H 2 SO 4 = 2 MnSO 4 + 5 O 2 + K 2 SO 4 + 8 H 2 O

MnO 4 - + 8H + + 5ē → Mn +2 + 4 H 2 O 2 – ок-ль

H 2 O 2 - 2ē → O 2 + 2 H + 5 – в-ль

2 MnO 4 - + 5 H 2 O 2 + 16 H + → 2 Mn +2 + 8 H 2 O + 5 O 2 + 10 H +

Выводы:

1. Кислород -самый распространенный элементна Земле.

В природе кислород встречается в двух аллотропных видоизменениях: O 2 – дикислород или «обычный кислород» и О 3 – трикислород (озон).

2.Аллотропия – образование разных простых веществ одним элементом.

3.Аллотропные видоизменения кислорода: кислород и озон.

4.Соединения кислорода с водородом -вода и пероксид водорода .

5.Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

6.При Т 0 +4 0 С вода имеет плотность, равную 1 г/мл.

7.Молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород.

8.Валентный угол равен 104, 27

9.Молекула воды полярна – электронная плотность смещена к атому кислорода.

12.Сера. Характеристика серы, исходя из ее положения в периодической системе, с точки зрения теории строения атома, возможные степени окисления, физические свойства, распространение в природе,биологическая роль, способы получения, химические свойства. . Применение серы и её соединений в медицине и народном хозяйстве.

СЕРА:

А) нахождение в природе

Б) биологическая роль

В) применение в медицине

Сера широко распространена в природе и встречается как в свободном состоянии (самородная сера), так и в виде соединений – FeSe (пирит), CuS, Ag 2 S, PbS, CaSO 4 и др. Входит в состав различных соединений, содержащихся в природных углях, нефтях и природных газах.

Сера принадлежит к числу элементов, имеющих важное значение для жизненных процессов, т.к. она входит в состав белковых веществ. Содержание серы в организме человека составляет 0, 25 %. Входит в состав аминокислот: цистеина, глютатиона, метионина и др.

Особенно много серы в белках волос, рогов, шерсти. Кроме того, сера является составной частью биологически активных веществ организма: витаминов и гормонов (н-р, инсулина).

В виде соединений сера обнаружена в нервной ткани, в хрящах, костях и в желчи. Она участвует в окислительно-восстановительных процессах организма.

При недостатке серы в организме наблюдается хрупкость и ломкость костей, выпадение волос.

Сера содержится в крыжовнике, винограде, яблоках, капусте, луке репчатом, ржи, горохе, ячмене, гречихе, пшенице.

Рекордсмены: горох 190, соя 244 %.

Водород был открыт во второй половине 18 столетия английским ученым в области физики и химии Г. Кавендишем. Он сумел выделить вещество в чистом состоянии, занялся его изучением и описал свойства.

Такова история открытия водорода. В ходе экспериментов исследователь определил, что это горючий газ, сгорание которого в воздухе дает воду. Это привело к определению качественного состава воды.

Что такое водород

О водороде, как о простом веществе, впервые заявил французский химик А. Лавуазье в 1784 году, поскольку определил, что в состав его молекулы входят атомы одного вида.

Название химического элемента по-латыни звучит как hydrogenium (читается «гидрогениум»), что означает «воду рождающий». Название отсылает к реакции горения, в результате которой образуется вода.

Характеристика водорода

Обозначение водорода Н. Менделеев присвоил этому химическому элементу первый порядковый номер, разместив его в главной подгруппе первой группы и первом периоде и условно в главной подгруппе седьмой группы.

Атомарный вес (атомная масса) водорода составляет 1,00797. Молекулярная масса H 2 равна 2 а. е. Молярная масса численно равна ей.

Представлен тремя изотопами, имеющими специальное название: самый распространенный протий (H), тяжелый дейтерий (D), радиоактивный тритий (Т).

Это первый элемент, который может быть полностью разделен на изотопы простым способом. Основывается он на высокой разнице масс изотопов. Впервые процесс был осуществлен в 1933 году. Объясняется это тем, что лишь в 1932 году был выявлен изотоп с массой 2.

Физические свойства

В нормальных условиях простое вещество водород в виде двухатомных молекул является газом, без цвета, у которого отсутствует вкус и запах. Мало растворим в воде и других растворителях.

Температура кристаллизации — 259,2 о C, температура кипения — 252,8 о C. Диаметр молекул водорода настолько мал, что они обладают способностью к медленной диффузии через ряд материалов (резина, стекло, металлы). Это свойство находит применение, когда требуется очистить водород от газообразных примесей. При н. у. водород имеет плотность, равную 0,09 кг/м3.

Возможно ли превращение водорода в металл по аналогии с элементами, расположенными в первой группе? Учеными установлено, что водород в условиях, когда давление приближается к 2 млн. атмосфер, начинает поглощать инфракрасные лучи, что свидетельствует о поляризации молекул вещества. Возможно, при еще более высоких давлениях, водород станет металлом.

Это интересно: есть предположение, что на планетах-гигантах, Юпитере и Сатурне, водород находится в виде металла. Предполагается, что в составе земного ядра тоже присутствует металлический твердый водород, благодаря сверхвысокому давлению, создаваемому земной мантией.

Химические свойства

В химическое взаимодействие с водородом вступают как простые, так и сложные вещества. Но малую активность водорода требуется увеличить созданием соответствующих условий – повышением температуры, применением катализаторов и др.

При нагревании в реакцию с водородом вступают такие простые вещества, как кислород (O 2), хлор(Cl 2), азот (N 2), сера(S).

Если поджечь чистый водород на конце газоотводной трубки в воздухе, он будет гореть ровно, но еле заметно. Если же поместить газоотводную трубку в атмосферу чистого кислорода, то горение продолжится с образованием на стенках сосуда капель воды, как результат реакции:

Горение воды сопровождается выделением большого количества теплоты. Это экзотермическая реакция соединения, в процессе которой водород окисляется кислородом с образованием оксида H 2 O. Это также и окислительно-восстановительная реакция, в которой водород окисляется, а кислород восстанавливается.

Аналогично происходит реакция с Cl 2 с образованием хлороводорода.

Для осуществления взаимодействия азота с водородом требуется высокая температура и повышенное давление, а также присутствие катализатора. Результатом является аммиак.

В результате реакции с серой образуется сероводород, распознавание которого облегчает характерный запах тухлых яиц.

Степень окисления водорода в этих реакциях +1, а в гидридах, описываемых ниже, – 1.

При реакции с некоторыми металлами образуются гидриды, например, гидрид натрия – NaH. Некоторые из этих сложных соединений используются в качестве горючего для ракет, а также в термоядерной энергетике.

Водород реагирует и с веществами из категории сложных. Например, с оксидом меди (II), формула CuO. Для осуществления реакции, водород меди пропускается над нагретым порошкообразным оксидом меди (II). В ходе взаимодействия реагент меняет свой цвет и становится красно-коричневым, а на холодных стенках пробирки оседают капельки воды.

Водород в ходе реакции окисляется, образуя воду, а медь восстанавливается из оксида до простого вещества (Cu).

Области применения

Водород имеет большое значение для человека и находит применение в самых разных сферах:

  1. В химическом производстве – это сырье, в других отраслях – топливо. Не обходятся без водорода и предприятия нефтехимии и нефтепереработки.
  2. В электроэнергетике это простое вещество выполняет функцию охлаждающего агента.
  3. В черной и цветной металлургии водороду отводится роль восстановителя.
  4. Сего помощью создают инертную среду при упаковке продуктов.
  5. Фармацевтическая промышленность — пользуется водородом как реагентом в производстве перекиси водорода.
  6. Этим легким газом наполняют метеорологические зонды.
  7. Известен этот элемент и в качестве восстановителя топлива для ракетных двигателей.

Ученые единодушно пророчат водородному топливу пальму первенства в энергетике.

Получение в промышленности

В промышленности водород получают методом электролиза, которому подвергают хлориды либо гидроксиды щелочных металлов, растворенные в воде. Также можно получать водород этим способом непосредственно из воды.

Используется в этих целях конверсия кокса или метана с водяным паром. Разложение метана при повышенной температуре также дает водород. Сжижение коксового газа фракционным методом тоже применяется для промышленного получения водорода.

Получение в лаборатории

В лаборатории для получения водорода используют аппарат Киппа.

В качестве реагентов выступают соляная или серная кислота и цинк. В результате реакции образуется водород.

Нахождение водорода в природе

Водород чаще других элементов встречается во Вселенной. Основную массу звезд, в том числе Солнца, и иных космических тел составляет водород.

В земной коре его всего 0,15%. Он присутствует во многих минералах, во всех органических веществах, а также в воде, покрывающей на 3/4 поверхность нашей планеты.

В верхних слоях атмосферы можно обнаружить следы водорода в чистом виде. Находят его и в ряде горючих природных газов.

Газообразный водород является самым неплотным, а жидкий – самым плотным веществом на нашей планете. С помощью водорода можно изменить тембр голоса, если вдохнуть его, а на выдохе заговорить.

В основе действия самой мощной водородной бомбы лежит расщепление самого легкого атома.

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.



Понравилась статья? Поделитесь с друзьями!