Водород выделяется при электролизе водного раствора. Пример: Электролиз водного раствора хлорида магния на инертных электродах

Электролизом называется разложение электролита (раствора солей, кислот, щелочей) электрическим током.

Электролиз можно производить только постоянным током. При электролизе на отрицательном электроде (катоде) выделяется водород или металл, содержащийся в соли. Если положительный электрод (анод) выполнен из металла (обычно того же, что и в соли), то положительный электрод при электролизе растворяется. Если анод нерастворим (например, угольный), то содержание металла в электролите при электролизе уменьшается.

Количество вещества, выделяющегося при электролизе на катоде, пропорционально количеству электричества, которое протекло через электролит.

Количество вещества, выделенное одним кулоном электричества, называется электрохимическим эквивалентом A, поэтому G=A Q; G=A I t,

где G – количество выделенного вещества; Q – количество электричества; I – электрический ток; t – время.

Каждый металл имеет свой электрохимический эквивалент A.

Примеры расчета

1. Сколько меди выделится из медного купороса (CuSO4) (рис. 1) током I=10 А за 30 мин. Электрохимический эквивалент меди A=0,329 мг/A сек.

Рис. 1. Схема к примеру 1

G = A I t = 0,329 10 30 60 = 5922 мг =5,922 г.

На предмете, подвешенном к катоду, выделится 5,9 г чистой меди.

2. Допустимая плотность тока при электролитическом меднении =0,4 А/дм2. Площадь катода, которая должна покрыться медью, S=2,5 дм2. Какой ток необходим для электролиза и сколько меди выделится на катоде за 1 ч (рис. 2 ).

Рис. 2 . Схема к примеру 2

I= S =0,4-2,5=l A; G=A Q=A I t=0,329 1 60 60=1184,4 мг.

3. Окисленная вода (например, слабый раствор серной кислоты H2SO4) при электролизе разлагается на водород и кислород. Электроды могут быть угольные, оловянные, медные и т. д., но лучше всего из платины. Сколько кислорода выделится на аноде и сколько водорода выделится на катоде за 1/4 ч при токе 1,5 А. Количество электричества 1 А сек выделяет 0,058 см3 кислорода и 0,116 см3 водорода (рис. 3 ).

Рис. 3 . Схема к примеру 3

На катоде выделится Gа=A I t=0,058 1,5 15 60=78,3 см3 кислорода.

На аноде выделится Gк=A I t=0,1162 1,5 15 60=156,8 см3 водорода.

Смесь водорода и кислорода в такой пропорции называется гремучим газом, который при поджигании взрывается с образованием воды.

4. Кислород и водород для лабораторных опытов получают при помощи (окисленной серной кислотой) (рис. 4 ). Платиновые электроды впаяны в стекло. Установим с помощью сопротивления ток I=0,5 А. (В качестве источника тока используется батарея из трех сухих элементов по 1,9 В.) Сколько водорода и кислорода выделится через 30 мин.

Рис. 4 . Рисунок к примеру 4

В правом сосуде выделится Gк=А I t=0,1162 0,5 30 60=104,58 см3 водорода.

В левом сосуде выделится Ga=A l t=0,058 0,5 30 60=52,2 см3 кислорода (газы выталкивают воду в средний сосуд).

5. Преобразовательная установка (двигатель-генератор) обеспечивает ток для получения электролитической (чистой) меди. За 8 ч необходимо получать 20 кг меди. Какой ток должен обеспечить генератор Электрохимический эквивалент меди равен A=0,329 мг/А сек.

Так как G=A I t, то I=G/(A t)=20000000/(0,329 8 3600)=20000000/9475,2=2110,7 А.

6. Нужно отхромировать 200 фар, из которых на каждую требуется 3 г хрома. Какой ток необходим, чтобы эта работа была выполнена за 10 ч (электрохимический эквивалент хрома A=0,18 мг/А сек).

I=G/(A t)=(200 3 1000)/(0,18 10 3600)=92,6 А.

7. Алюминий получают путем электролиза раствора каолиновой глины и криолита в ваннах при рабочем напряжении ванны 7 В и токе 5000 А. Аноды изготовляются угольными, а ванна – стальной с угольными блоками (рис. 5 ).

Рис. 5 .Рисунок к примеру 5

Ванны для получения алюминия соединяются последовательно для увеличения рабочего напряжения (например, 40 ванн). Для получения 1 кг алюминия требуется примерно 0,7 кг угольных анодов и 25–30 кВт ч электроэнергии. По приведенным данным определить мощность генератора, расход электроэнергии за 10 ч работы и вес полученного алюминия.

Мощность генератора при работе на 40 ванн P=U I=40 7 5000=1400000 Вт =1400 кВт.

Электрическая энергия, расходуемая за 10 ч, A=P t=1400 кВт 10 ч=14000 кВт ч.

Количество полученного алюминия G=14000: 25=560 кг.

Исходя из теоретического электрохимического эквивалента, количество полученного алюминия должно быть равно:

Gт=A I t=0,093 5000 40 10 3600=0,093 7200000000 мг=669,6 кг.

Коэффициент полезного действия электролитической установки равен: кпд=G/Gт =560/669,6=0,83=83%.

ЭЛЕКТРОЛИЗ

Одним из способов получения металлов является электролиз. Активные металлы встречаются в природе только в виде химических соединений. Как выделить из этих соединений в свободном состоянии?

Растворы и расплавы электролитов проводят электрический ток. Однако при пропускании тока через раствор электролита могут происходить химические реакции. Рассмотрим, что будет происходить, если в раствор или расплав электролита поместить две металлические пластинки, каждая из которых соединена с одним из полюсов источника тока. Эти пластинки называются электродами. Электрический ток представляет собой движущийся поток электронов. В результате того, что электроны в цепи движутся от одного электрода к другому, на одном из элек­тродов возникает избыток электронов. Электроны имеют отри­цательный заряд, поэтому этот электрод заряжается отрицатель­но. Его называют катодом. На другом электроде создается не­достаток электронов, и он заряжается положительно. Этот элек­трод называют анодом. Электролит в растворе или расплаве диссоциирует на положительно заряженные ионы - катионы и отрицательно заряженные ионы - анионы. Катионы притягива­ются к отрицательно заряженному электроду - катоду. Анионы притягиваются к положительно заряженному электроду - аноду. На поверхности электродов может происходить взаимодействие между ионами и электронами.

Электролизом называются процессы, происходящие при пропускании через растворы или расплавы электролитов электрического тока.

Процессы, происходящие при электролизе растворов и рас­плавов электролитов, достаточно сильно отличаются. Рассмот­рим подробно оба этих случая.

Электролиз расплавов

В качестве примера рассмотрим электролиз расплава хлори­да натрия. В расплаве хлорид натрия диссоциирует на ионы Na +
и Cl - : NaCl = Na + + Cl -

Катионы натрия перемещаются к поверхности отрицательно заряженного электрода - катода. На поверхности катода имеется избыток электронов. Поэтому происходит передача электронов от поверхности электрода к ионам натрия. При этом ионы Na + превращаются в атомы натрия, то есть происходит восстановле­ние катионов Na + . Уравнение процесса:

Na + + е - = Na

Хлорид-ионы Cl - перемещаются к поверхности положительно заряженного электрода - анода. На поверхности анода создан недостаток электронов и происходит передача электронов от анионов Cl - к поверхности электрода. При этом отрицательно заряженные ионы Cl - превращаются в атомы хлора, которые сразу же соединяются в молекулы хлора С l 2 :

2С l - -2е - = Cl 2

Хлорид-ионы теряют электроны, то есть происходит их окисле­ние.

Запишем вместе уравнения процессов, происходящих на ка­тоде и аноде

Na + + е - = Na

2 С l - -2 е - = Cl 2

В процессе восстановления катионов натрия участвует один электрон, а в процессе окисления ионов хлора - 2 электрона. Однако должен соблюдаться закон сохранения электрического заряда, то есть общий заряд всех частиц в растворе должен быть постоянным Следовательно, число электронов, участвующих в восстановлении катионов натрия, должно быть равно числу электронов, участвующих в окислении хлорид-ионов Поэтому первое уравнение умножим на 2:

Na + + е - = Na 2

2С l - -2е - = Cl 2 1


Сложим вместе оба уравнения и получим общее уравнение ре­акции.

2 Na + + 2С l - = 2 Na + Cl 2 (ионное уравнение реакции), или

2 NaCl = 2 Na + Cl 2 (молекулярное уравнение реакции)

Итак, на рассмотренном примере мы видим, что электролиз является окислительно-восстановительной реакцией. На катоде происходит восстановление положительно заряженных ионов - катионов, на аноде окисление отрицательно заряженных ионов – анионов. Запомнить, какой процесс где происходит, можно с помощью "правила Т":

каТод - каТион – воссТановление.

Пример 2. Электролиз расплава гидроксида натрия.

Гидроксида натрия в растворе диссоциирует на катионыигидроксид-ионы.

Катод (-) <-- Na + + OH - à Анод (+)

На поверхности катода происходит восстановление катионов натрия, при этом образуются атомы натрия:

катод (-) Na + +e à Na

На поверхности анода окисляются гидрокисд-ионы, при этом выделяется кислород и образуются молекулы воды:

катод (-) Na + + e à Na

анод (+)4 OH - – 4 e à 2 H 2 O + O 2

Число электронов, участвующих в реакции восстановления катионов натрия и в реакции окисления гидроксид-ионов, должно быть одинаковым. Поэтому умножим первое уравнение на 4:

катод (-) Na + + e à Na 4

анод (+)4 OH - – 4 e à 2 H 2 O + O 2 1

Сложим вместе оба уравнения и получим уравнение реакции электролиза:

4 NaOH à 4 Na + 2 H 2 O + O 2

Пример 3. Рассмотрим электролиз расплава Al 2 O 3

При помощи этой реакции получают алюминий из боксита – природного соединения, в котором содержится много оксида алюминия. Температура плавления оксида алюминия очень высокая (более 2000º С), поэтому к нему добавляют специальные добавки, понижающие температуру плавления до 800-900º С. В расплаве оксид алюминия диссоциирует на ионы Al 3+ и O 2- . H а катоде восстанавливаются катионы Al 3+ , превращаясь в атомы алюминия:

Al +3 e à Al

На аноде окисляются анионы O 2- , превращаясь в атомы кислорода. Атомы кислорода сразу же соединяются в молекулы О 2:

2 O 2- – 4 e à O 2

Число электронов, участвующих в процессах восстановления катионов алюминия и окисления ионов кислорода, должно быть равно, поэтому умножим первое уравнение на 4, а второе на 3:

Al 3+ +3 e à Al 0 4

2 O 2- – 4 e à O 2 3

Сложим оба уравнения и получим

4 Al 3+ + 6 O 2- à 4 Al 0 +3 O 2 0 (ионное уравнение реакции)

2 Al 2 O 3 à 4 Al + 3 O 2

Электролиз растворов

В случае пропускания электрического тока через водный раствор электролита дело осложняется тем, что в растворе при­сутствуют молекулы воды, которые также могут взаимодейство­вать с электронами. Вспомним, что в молекуле воды атомы во­дорода и кислорода связаны полярной ковалентной связью. Электроотрицательность кислорода больше, чем электроотрица­тельность водорода, поэтому общие электронные пары смещены к атому кислорода. На атоме кислорода возникает частичный отрицательный заряд, его обозначают δ-, а на атомах водорода -частичный положительный заряд, его обозначают δ+.

δ+

Н-О δ-

Н δ+

Благодаря такому смещению зарядов молекула воды имеет положительный и отрицательный "полюса". Поэтому молекулы воды могут положительно заряженным полюсом притягиваться к отрицательно заряженному электроду - катоду, а отрицатель­ным полюсом - к положительно заряженному электроду - ано­ду. На катоде может происходить восстановление молекул воды, при этом выделяется водород:

На аноде может происходить окисление молекул воды с выде­лением кислорода:

2 H 2 О - 4е - = 4Н + + О 2

Поэтому на катоде могут восстанавливаться либо катионы элек­тролита, либо молекулы воды. Эти два процесса как бы конку­рируют между собой. Какой процесс в действительности проис­ходит на катоде, зависит от природы металла. Будут ли на като­де восстанавливаться катионы металла или молекулы воды, за­висит от положения металла в ряду напряжений металлов .

Li K Na Ca Mg Al ¦¦ Zn Fe Ni Sn Pb (H 2) ¦¦ Cu Hg Ag Au

Если металл находится в ряду напряжений правее водорода, на катоде восстанавливаются катионы металла и выделяется свободный металл. Если металл находится в ряду напряжений левее алюминия, на катоде восстанавливаются молекулы воды и выделяется водород. Наконец, в случае катионов металлов от цинка до свинца может происходить либо выделение металла, либо выделение водорода, а иногда одновременно выделяются и водород, и металл. Вообще это довольно сложный случай, мно­гое зависит от условий реакции: концентрации раствора, сипы электрического тока и других.

На аноде также может происходить один из двух процессов - либо окисление анионов электролита, либо окисление молекул воды. Какой именно процесс будет протекать на самом деле, зависит от природы аниона. При электролизе солей бескислородных кислот или самих кислот на аноде окисляются анионы. Единственным исключением является фторид-ион F - . В случае кислородсодержащих кислот на аноде окисляются молекулы воды и выделяется кислород.

Пример 1. Давайте рассмотрим электролиз водного раствора хлорида натрия.

В водного растворе хлорида натрия будут находиться катионы натрия Na + , анионы хлора Cl - и молекулы воды.

2 NaCl à 2 Na + + 2 Cl -

2Н 2 О à 2 H + + 2 OH -

катод (-) 2 Na + ; 2 H + ; 2Н + + 2е à Н 0 2

анод (+) 2 Cl - ; 2 OH - ; 2 Cl - – 2е à 2 Cl 0

2NaCl + 2H 2 O à H 2 + Cl 2 + 2NaOH

Химическая активность анионов вряду уменьшается.

Пример 2. А если в состав соли входит SO 4 2- ? Рассмотрим электролиз раствора сульфата никеля (II ). Сульфата никеля (II ) диссоциирует на ионы Ni 2+ и SO 4 2- :

NiSO 4 à Ni 2+ + SO 4 2-

H 2 O à H + + OH -

Катионы никеля находятся между ионами металлов Al 3+ и Pb 2+ , занимающих в ряду напряжения среднее положение, процесс восстановления на катоде происходит по обеим схемам:

2 H 2 О + 2е - = H 2 + 2ОН -

Анионы кислородсодержащих кислот не окисляются на аноде (ряд активности анионов ), происходит окисление молекул воды:

анод е à O 2 + 4H +

Запишем вместе уравнения процессов, происходящих на катоде и аноде:

катод (-) Ni 2+ ; H + ; Ni 2+ + 2е à Ni 0

2 H 2 О + 2е - = H 2 + 2ОН -

анод (+) SO 4 2- ; OH - ;2H 2 O – 4 е à O 2 + 4H +

В процессах восстановления участвуют 4 электрона и в процессе окисления тоже участвуют 4 электрона. Сложим вместе эти уравнения и получим общее уравнение реакции:

Ni 2+ +2 H 2 О + 2 H 2 О à Ni 0 + H 2 + 2ОН - + O 2 + 4 H +

В правой части уравнения находятся одновременно ионы Н + и OH - , которые соединяются с образованием молекул воды:

Н + + OH - à H 2 О

Поэтому в правой части уравнения вместо 4 ионов Н + и 2 ионов OH - запишем 2 молекулы воды и 2 иона Н + :

Ni 2+ +2 H 2 О + 2 H 2 О à Ni 0 + H 2 +2 H 2 О + O 2 + 2 H +

Сократим по две молекулы воды в обеих частях уравнения:

Ni 2+ +2 H 2 О à Ni 0 + H 2 + O 2 + 2 H +

Это краткое ионное уравнение. Чтобы получить полное ионное уравнение, нужно добавить в обе части по сульфат-иону SO 4 2- , образовавшиеся при диссоциации сульфата никеля (II ) и не участвовавшие в реакции:

Ni 2+ + SO 4 2- +2H 2 О à Ni 0 + H 2 + O 2 + 2H + + SO 4 2-

Таким образом, у нас при электролизе раствора сульфата никеля (II ) на катоде выделяетсяводород и никель, а на аноде – кислород.

NiSO 4 + 2H 2 O à Ni + H 2 + H 2 SO 4 + O 2

Пример 3. Написать уравнения процессов, происходящих при электролизе водного раствора сульфата натрия с инертным анодом.

Стандартный электродный потенциал системы Na + + e = Na 0 значительно отрицательнее потенциала водного электрода в нейтральной водной среде (-0,41 В).Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода

2Н 2 О à 2 H + + 2 OH -

а ионы Na + , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство).

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода

2 H 2 O – 4е à O 2 + 4 H +

поскольку отвечающий этой системе стандартный электродный потенциал (1,23 В) значительно ниже, чем стандартный электродный потенциал (2,01 В), характеризующий систему

2 SO 4 2- + 2 e = S 2 O 8 2- .

Ионы SO 4 2- , движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве.

Умножая уравнение катодного процесса на два, и складывая его с уравнением анодного процесса, получаем суммарное уравнение процесса электролиза:

6 H 2 O = 2 H 2 + 4 OH - + O 2 + 4 H +

Приняв во внимание, что одновременно происходит накопление ионов в катодном пространстве и ионов в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:

6H 2 O + 2Na 2 SO 4 = 2H 2 + 4Na + + 4OH - + O 2 + 4H + + 2SO 4 2-

Таким образом, одновременно с выделением водорода и кислорода образуется гидроксид натрия (в катодном пространстве) и серная кислота (в анодном пространстве).

Пример 4. Электролиз раствора сульфата меди (II ) CuSO 4 .

Катод (-) <-- Cu 2+ + SO 4 2- à анод (+)

катод (-) Cu 2+ + 2e à Cu 0 2

анод (+) 2H 2 O – 4 е à O 2 + 4H + 1

В растворе остаются ионы Н + и SO 4 2- , т. к. накапливается серная кислота.

2CuSO 4 + 2H 2 O à 2Cu + 2H 2 SO 4 + O 2

Пример 5. Электролиз раствора хлорида меди (II ) CuCl 2 .

Катод (-) <-- Cu 2+ + 2Cl - à анод (+)

катод (-) Cu 2+ + 2e à Cu 0

анод (+) 2Cl - – 2e à Cl 0 2

В обоих уравнениях участвуют по два электрона.

Cu 2+ + 2e à Cu 0 1

2Cl - -– 2e à Cl 2 1

Cu 2+ + 2 Cl - à Cu 0 + Cl 2 (ионное уравнение)

CuCl 2 à Cu + Cl 2 (молекулярное уравнение)

Пример 6. Электролиз раствора нитрата серебра AgNO 3 .

Катод (-) <-- Ag + + NO 3 - à Анод (+)

катод (-) Ag + + e à Ag 0

анод (+) 2H 2 O – 4 е à O 2 + 4H +

Ag + + e à Ag 0 4

2H 2 O – 4 е à O 2 + 4H + 1

4 Ag + + 2 H 2 O à 4 Ag 0 + 4 H + + O 2 (ионное уравнение)

4 Ag + + 2 H 2 O à 4 Ag 0 + 4 H + + O 2 + 4 NO 3 - (полное ионное уравнение)

4 AgNO 3 + 2 H 2 O à 4 Ag 0 + 4 HNO 3 + O 2 (молекулярное уравнение)

Пример 7. Электролиз раствора соляной кислоты HCl .

Катод (-) <-- H + + Cl - à анод (+)

катод (-) 2 H + + 2 e à H 2

анод (+) 2 Cl - – 2 e à Cl 2

2 H + + 2 Cl - à H 2 + Cl 2 (ионное уравнение)

2 HCl à H 2 + Cl 2 (молекулярное уравнение)

Пример 8. Электролиз раствора серной кислоты H 2 SO 4 .

Катод (-) <-- 2H + + SO 4 2- à анод (+)

катод (-) 2H+ + 2e à H 2

анод (+) 2H 2 O – 4 е à O 2 + 4H+

2H+ + 2e à H 2 2

2H 2 O – 4 е à O 2 + 4H+1

4H+ + 2H 2 O à 2H 2 + 4H+ +O 2

2H 2 O à 2H 2 + O 2

Пример 9. Электролиз раствора гидроксида калия KOH .

Катод (-) <-- K + + OH - à анод (+)

Катионы калия не будут восстанавливаться на катоде, так как калий находится в ряду напряжения металлов левее алюминия, вместо этого будет происходить восстановление молекул воды:

2H 2 O + 2e à H 2 +2OH - 4OH - -4e à 2H 2 O +O 2

катод (-) 2H 2 O + 2e à H 2 +2OH - 2

анод (+) 4OH - - 4e à 2H 2 O +O 2 1

4H 2 O + 4OH - à 2H 2 + 4OH - + 2H 2 O + O 2

2 H 2 O à 2 H 2 + O 2

Пример 10. Электролиз раствора нитрата калия KNO 3 .

Катод (-) <-- K + + NO 3 - à анод (+)

2H 2 O + 2e à H 2 +2OH - 2H 2 O – 4 е à O 2 + 4H +

катод (-) 2H 2 O + 2e à H 2 + 2OH-2

анод (+) 2H 2 O – 4 е à O 2 + 4H+1

4H 2 O + 2H 2 O à 2H 2 + 4OH - + 4H + + O 2

2H 2 O à 2H 2 + O 2

При пропускании электрического тока через растворы кислородосодержащих кислот, щелочей и солей кислородсодержащих кислот с металлами, находящимися в ряду напряжения металлов, левее алюминия, практически происходит электролиз воды. При этом на катоде выделяется водород, а на аноде кислород.

Выводы. При определении продуктов электролиза водных растворов электролитов можно в простейших случаях руководствоваться следующими соображениями:

1.Ионы металлов с малой алгебраической величиной стандартного потенциала – от Li + до Al 3+ включительно – обладают весьма слабой тенденцией к обратному присоединению электронов, уступая в этом отношении ионам H + (см. Ряд активности катионов ). При электролизе водных растворов соединений, содержащих эти катионы, функцию окислителя на катоде выполняют ионы H + , восстанавливаясь при этом по схеме:

2 H 2 O + 2 е à H 2 + 2OH -

2.Катионы металлов с положительными значениями стандартных потенциалов (Cu 2+ , Ag + , Hg 2+ и др.) обладают большой тенденцией к присоединению электронов по сравнению с ионами. При электролизе водных растворов их солей функцию окислителя на катоде выделяют эти катионы, восстанавливаясь при этом до металла по схеме, например:

Cu 2+ +2 e à Cu 0

3.При электролизе водных растворов солей металлов Zn , Fe , Cd , Ni и др., занимающих в ряду напряжения среднее положение между перечисленными группами, процесс восстановления на катоде происходит по обеим схемам. Масса, выделившегося металла не соответствует в этих случаях количеству протекшего электрического тока, часть которого расходуется на образование водорода.

4.В водных растворах электролитов функцию восстановителей по отношению к аноду-окислитею могут одноатомные анионы (Cl - , Br - , J - ), кислородосодержащие анионы (NO 3 - , SO 4 2- , PO 4 3- и другие), а также гидроксильные ионы воды. Более сильными восстановительными свойствами из них обладают галогенид ионы, за исключением F . Ионы OH занимают промежуточное положение между ними и многоатомными анионами. Поэтому при электролизе водных растворов HCl , HBr , HJ или их солеей на аноде происходит окисление галогенид-ионов по схеме:

2 X - -2 e à X 2 0

При электролизе водных растворов сульфатов, нитратов, фосфатов и т.п. функцию восстановителя выполняют ионы, окисляясь при этом по схеме:

4 HOH – 4 e à 2 H 2 O + O 2 + 4 H +

.

Задачи.

За дача 1. При электролизе раствора сульфата меди на катоде выделилось 48 г меди. Найдите объем газа, выде­лившегося на аноде, и массу серной кислоты, образовав­шейся в растворе.

Сульфат меди в растворе диссоциирует ни ионы Си 2+ и S 0 4 2 ".

CuS0 4 = Cu 2+ + S0 4 2 "

Запишем уравнения процессов, происходящих на катоде и аноде. На катоде восстанавливаются катионы Си, на аноде происходит электролиз воды:

Cu 2+ +2e- = Cu 12

2H 2 0-4e- = 4H + + 0 2 |1

Общее уравнение электролиза:

2Cu2+ + 2H2O = 2Cu + 4H+ + O2 (краткоеионное уравнение)

Добавим в обе части уравнения по 2 сульфат-иона, которые об­разуются при диссоциации сульфата меди, получим полное ион­ное уравнение:

2Си2+ + 2S042" + 2Н20 = 2Cu + 4Н+ + 2SO4 2" + О2

2CuSO4 + 2H2O = 2Cu + 2H2SO4 + О2

Газ, выделяющийся на аноде - кислород. В растворе образуется серная кислота.

Молярная масса меди равна 64 г/моль, вычислим количество вещества меди:

По уравнению реакции при выделении на катоде 2 моль ме­ди ла аноде выделяется 1 моль кислорода. На катоде выделилось 0,75 моль меди, пусть на аноде выделилось х моль кислорода. Составим пропорцию:

2/1=0,75/x, x=0,75*1/2=0,375моль

На аноде выделилось 0,375 моль кислорода,

v(O2) = 0,375 моль.

Вычислим объем выделившегося кислорода:

V(O2) = v(O2)«VM = 0,375 моль«22,4 л/моль = 8,4 л

По уравнению реакции при выделении на катоде 2 моль ме­ди в растворе образуется 2 моль серной кислоты, значит, если на катоде выделилось 0,75 моль меди, то в растворе образовалось 0,75 моль серной кислоты, v(H2SO4) = 0,75 моль. Вычислим мо­лярную массу серной кислоты:

M(H2SO4) = 2-1+32+16-4 = 98 г/моль.

Вычислим массу серной кислоты:

m(H2S04) = v(H2S04>M(H2S04) = = 0,75 моль«98 г/моль = 73,5 г.

Ответ: на аноде выделилось 8,4 л кислорода; в растворе образо­валось 73,5 г серной кислоты

Задача 2. Найдите объем газов, выделившихся на катоде и аноде, при электролизе водного раствора, содержащего 111,75 г хлорида калия. Какое вещество образовалось в рас­творе? Найдите его массу.

Хлорид калия в растворе диссоциирует на ионыК+ и Сl:

2КС1 =К+ + Сl

Ионы калия не восстанавливаются на катоде, вместо этого про­исходит восстановление молекул воды. На аноде окисляются хлорид-ионы и выделяется хлор:

2Н2О + 2е" = Н2 + 20Н-|1

2СГ-2е" = С12|1

Общее уравнение электролиза:

2СГl+ 2Н2О = Н2 + 2ОН" + С12 (краткое ионное уравнение) В растворе присутствуют также ионы К+, образовавшиеся при диссоциации хлорида калия и не участвующие в реакции:

2К+ + 2Сl + 2Н20 = Н2 + 2К+ + 2ОН" + С12

Перепишем уравнение в молекулярном виде:

2КС1 + 2Н2О = Н2 + С12 + 2КОН

На катоде выделяется водород, на аноде хлор, в растворе обра­зуется гидроксид калия.

В растворе содержалось 111,75 г хлорида калия.

Вычислим молярную массу хлорида калия:

М(КС1) = 39+35,5 = 74,5 г/моль

Вычислим количество вещества хлорида калия:

По уравнению реакции при электролизе 2 моль хлорида ка­лия выделяется 1 моль хлора. Пусть при электролизе 1,5 моль хлорида калия выделяется х моль хлора. Составим пропорцию:

2/1=1,5/x , x=1,5 /2=0,75 моль

Выделится 0,75 моль хлора, v(C!2) = 0,75 моль. По уравнению реакции при выделении 1 моль хлора на аноде на катоде выде­ляется 1 моль водорода. Следовательно, если на аноде выделит­ся 0,75 моль хлора, то на катоде выделится 0,75 моль водорода, v(H2) = 0,75 моль.

Вычислим объем хлора, выделившегося на аноде:

V(C12) = v(Cl2)-VM = 0,75 моль«22,4 л/моль = 16,8 л.

Объем водорода равен объему хлора:

У(Н2) = У(С12)=16,8л.

По уравнению реакции при электролизе 2 моль хлорида ка­лия образуется 2 моль гидроксида калия, значит, при электроли­зе 0,75 моль хлорида калия образуется 0,75 моль гидроксида калия. Вычислим молярную массу гидроксида калия:

М(КОН) = 39+16+1 - 56 г/моль.

Вычислим массу гидроксида калия:

m(KOH) = v(KOH>M(KOH) = 0,75 моль-56 г/моль = 42 г.

Ответ: на катоде выделилось 16,8 л водорода, на аноде выдели­лось 16,8 л хлора, в растворе образовалось 42 г гидроксида калия.

Задача 3. При электролизе раствора 19 г хлорида двух­валентного металла на аноде выделилось 8,96 л хлора. Оп­ределите, хлорид какого металла подвергли электролизу. Вычислите объем водорода, выделившегося на катоде.

Обозначим неизвестный металл М, формула его хлорида МС12. На аноде окисляются хлорид-ионы и выделяется хлор. В условии сказано, что на катоде выделяется водород, следова­тельно, происходит восстановление молекул воды:

2Н20 + 2е- = Н2 + 2ОH|1

2Cl -2е" = С12! 1

Общее уравнение электролиза:

2Сl + 2Н2О = Н2 + 2ОН" + С12 (краткое ионное уравнение)

В растворе присутствуют также ионы М2+, которые при реакции не изменяются. Запишем полное ионное уравнение реакции:

2СГ + М2+ + 2Н2О = Н2 + М2+ + 2ОН- + С12

Перепишем уравнение реакции в молекулярном виде:

МС12 + 2Н2О - Н2 + М(ОН)2 + С12

Найдем количество вещества выделившегося на аноде хлора:

По уравнению реакции при электролизе 1 моль хлорида не­известного металла выделяется 1 моль хлора. Если выделилось 0,4 моль хлора, то электролизу подвергли 0,4 моль хлорида ме­талла. Вычислим молярную массу хлорида металла:

Молярная масса хлорида неизвестного металла 95 г/моль. На два атома хлора приходится 35,5»2 = 71 г/моль. Следовательно, молярная масса металла равна 95-71 = 24 г/моль. Этой моляр­ной массе соответствует магний.

По уравнению реакции на 1 моль выделившегося на аноде хлора приходится 1 моль выделившегося на катоде водорода. В нашем случае на аноде выделилось 0,4 моль хлора, значит, на катоде выделилось 0,4 моль водорода. Вычислим объем водоро­да:

V(H2) = v(H2>VM = 0,4 моль«22,4 л/моль = 8,96 л.

Ответ: электролизу подвергли раствор хлорида магния; на като­де выделилось 8,96 л водорода.

*3адача 4. При электролизе 200 г раствора сульфата ка­лия с концентрацией 15% на аноде выделилось 14,56 л ки­слорода. Вычислите концентрацию раствора по окончании электролиза.

В растворе сульфата калия и на катоде, и на аноде реагиру­ют молекулы воды:

2Н20 + 2е" = Н2 + 20Н-|2

2Н2О - 4е" = 4Н+ + О2! 1

Сложим вместе оба уравнения:

6Н2О = 2Н2 + 4ОН" + 4Н+ + О2, или

6Н2О = 2Н2 + 4Н2О + О2, или

2Н2О = 2Н2 + 02

Фактически при электролизе раствора сульфата калия происхо­дит электролиз воды.

Концентрация растворенного вещества в растворе определя­ется по формуле:

С=m(растворенного вещества) 100% / m(раствора)

Чтобы найти концентрацию раствора сульфата калия по окончании электролиза, необходимо знать массу сульфата калия и массу раствора. Масса сульфата калия при реакции не изменя­ется. Вычислим массу сульфата калия в исходном растворе. Обозначим концентрацию исходного раствора Сь

m(K2S04) = C2 (K2S04) m(pacтвора) = 0,15 200 г = 30 г.

Масса раствора во время электролиза изменяется, так как часть воды превращается в водород и кислород. Вычислим ко­личество вещества выделившегося кислорода:

(O 2)=V(O2) / Vм =14,56л / 22,4л/моль=0,65моль

По уравнению реакции из 2 моль воды образуется 1 моль кислорода. Пусть 0,65 моль кислорода выделяется при разложе­нии х моль воды. Составим пропорцию:

Разложилось 1,3 моль воды, v(H2O) = 1,3 моль.

Вычислим мо­лярную массу воды:

М(Н2О) =1-2+16=18 г/моль.

Вычислим массу разложившейся воды:

m(H2O) = v(H2O>M(H2O) = 1,3 моль* 18 г/моль = 23,4 г.

Масса раствора сульфата калия уменьшилась на 23,4 г и стала равна 200-23,4 = 176,6 г. Вычислим теперь концентрацию рас­твора сульфата калия по окончании электролиза:

С2 (K2 SO4)=m(K2 SO4) 100% / m(раствора)=30г 100% / 176,6г=17%

Ответ: концентрация раствора по окончании электролиза равна 17%.

*3адача 5. 188,3 г смеси хлоридов натрия и калия рас­творили в воде и пропустили через полученный раствор электрический ток. При электролизе на катоде выделилось 33,6 л водорода. Вычислите состав смеси в процентах по массе.

После растворения смеси хлоридов калия и натрия в воде в растворе содержатся ионы К+, Na+ и Сl-. Ни ионы калия, ни ио­ны натрия не восстанавливаются на катоде, восстанавливаются молекулы воды. На аноде окисляются хлорид-ионы и выделяет­ся хлор:

Перепишем уравнения в молекулярном виде:

2КС1 + 2Н20 = Н2 + С12 + 2КОН

2NaCl + 2Н2О = Н2 + С12 + 2NaOH

Обозначим количество вещества хлорида калия, содержащегося в смеси, х моль, а количество вещества хлорида натрия у моль. По уравнению реакции при электролизе 2 моль хлорида натрия или калия выделяется 1 моль водорода. Поэтому при электроли­зе х моль хлорида калия образуется х/2 или 0,5х моль водорода, а при электролизе у моль хлорида натрия 0,5у моль водорода. Найдем количество вещества водорода, выделившегося при электролизе смеси:

Составим уравнение:0,5х + 0,5у =1,5

Вычислим молярные массы хлоридов калия и натрия:

М(КС1) = 39+35,5 = 74,5 г/моль

M(NaCl) = 23+35,5 = 58,5 г/моль

Масса х моль хлорида калия равна:

m(KCl) = v(KCl)-M(KCl) = х моль-74,5 г/моль = 74,5х г.

Масса у моль хлорида натрия равна:

m(KCl) = v(KCl)-M(KCl) = у моль-74,5 г/моль = 58,5у г.

Масса смеси равна 188,3 г, составим второе уравнение:

74,5х + 58,5у= 188,3

Итак, решаем систему из двух уравнений с двумя неизвестными:

0,5(х + у)= 1,5

74,5х + 58,5у=188,3г

Из первого уравнения выразим х:

х + у= 1,5/0,5 = 3,

х = 3-у

Подставим это значение х во второе уравнение, получим:

74,5-(3-у) + 58,5у= 188,3

223,5-74,5у + 58,5у= 188,3

-16у = -35,2

у = 2,2 100% / 188,3г=31,65%

Вычислим массовую долю хлорида натрия:

w(NaCl) = 100% - w(KCl) = 68,35%

Ответ: в смеси содержится 31,65% хлорида калия и 68,35% хлорида натрия.

Электролизом называются электрохимические процессы прямого преобразования электрической энергии в химическую, протекающие на электродах под действием постоянного тока. Под действием электрического поля беспорядочное движение ионов в электролите превращается в направленное: положительно заряженные ионы (катионы) перемещаются к отрицательному электроду – катоду, отрицательно заряженные ионы (анионы) движутся к положительному электроду – аноду.

При электролизе катод подсоединяется к отрицательному полюсу внешнего источника тока, а анод – к положительному.

На катоде (К ) происходят процессы восстановления: положительные ионы или нейтральные молекулы принимают электроны и переходят в восстановленную форму.На катоде в первую очередь идут процессы, характеризующиеся более положительным потенциалом, т.е. восстанавливаются более сильные окислители.

На аноде (А + ) могут окисляться анионы, нейтральные молекулы и сам материал анода. Анод может быть растворимым, т.е. окисляться в условиях электролиза, и инертным, нерастворимым, т.е. не участвовать в анодном процессе. К растворимым или частично растворимым анодам относятсяZn,Cu,Fe,Cd,Ag,Ni,Coи т.д., к нерастворимым –Pt,Pdи некоторые другие благородные металлы в определенных условиях, а также графит С.На аноде в первую очередь окисляются более сильные восстановители, т.е. идут процессы, характеризующиеся более отрицательным потенциалом.

Для того, чтобы правильно определить процессы электролиза, необходимо:

1) рассмотреть ионный состав электролита;

2) распределить ионы по электродам;

3)определить равновесные потенциалы возможных процессов. Для расчета равновесных потенциалов возможных процессов, используется уравнение Нернста. Если не указаны конкретные условия, то для оценочной характеристики процессов используются стандартные потенциалы материала анода , анионов
и катионов
.

Равновесные потенциалы процессов выделения кислорода и водорода при относительных парциальных давлениях газов
иТ = 298 К рассчитываются по формулам:

, (3.1),

, (3.2)

4) Записать электродные процессы после сравнения электродных потенциалов.

При относительно малом отличии равновесных потенциалов (менее 0,8 1,0 В) на электродах возможно параллельное протекание нескольких процессов. Если на электроде идут одновременно несколько процессов, то доля количества электричества, пошедшего на каждый из процессов, называется выходом по току (В j ):

, (3.3),

где Q j – количество электричества, пошедшее на конкретный процесс;

Q – общее количество электричества, прошедшее через электрохимическую систему.

Сложные кислородсодержащие ионы, такие как SO 4 2- ,NO 3 - ,PO 4 3- и др. из водных растворов на аноде не окисляются, т.к. обладают существенно более положительным потенциалом разряда, чем гидроксид-ионOH – .

Ионы элементов (приложение 1, табл. 1), обладающие высоко отрицательным электродным потенциалом (Al 3+ ,Na + и др.) из водных растворов на катоде не восстанавливаются. Их разряд на катоде возможен только из расплавов соответствующих солей или из неводных растворов.

Количество вещества, испытавшего электрохимические превращения на электродах, рассчитывается по закону Фарадея.

При электролизе в результате прохождения через систему постоянного электрического тока происходит поляризация электродов (Е К,Е А): потенциал анода становится более положительным, а потенциал катода – более отрицательным и возникает омическое падение напряжения на внутреннем сопротивлении электрохимической цепиR (Е ом = R . I ). Поэтому напряжение (U ), которое необходимо подать на электроды от внешнего источника постоянного тока, больше минимальной разности потенциалов (U min ), равной разности равновесных потенциалов процессов:

Ход поляризационных кривых при электролизе показан на рис. 3.1. :

E i к

U min

Рис. 3.1. Поляризационные кривые при электролизе.

Пример 3.1. Рассмотрите электролизрасплава соли хлорида калияKClна нерастворимыхPt-электродах. Напишите уравнения электродных процессов. Рассчитайте минимальную разность потенциаловU min электролиза.

Решение. 1) Запишем ионный состав электролита:

КCl→ К + +Cl -

2) и 3)стандартные потенциалы электродных процессов:

К - :
В

A + :
В.

4)Электродные процессы:

K - : К + + → К

A + : 2Cl - → Cl 2 + 2.

Данный электролиз можно использовать для получения лития и хлора.

U min =Е = Е 0 Cl - / Cl 2 -Е 0 К + /К =1.36В – (-2.925В) = 4.285В

Поляризационные кривые:

Пример 3.2. Определите минимальную разность потенциаловU min , которую необходимо подать наPt-электроды для проведения электролиза водного раствораKOH, рН = 12. Напишите уравнения процессов электролиза. Рассчитайте объемы газов (приведенные к нормальным условиям), которые образуются на электродах за 10 часов при токе 5А.

Решение. 1) С целью определения ионного состава электролита запишем уравнения диссоциации раствора электролита:

КОН → К + + ОН - ;H 2 O H + +OH -

2) Распределение ионов по электродам:

А () (OH -) , К () (К + ,H +)

3)определим равновесные потенциалы возможных электродных процессов:

К - :
B,
В,

А + :
В.

4)Так как Е 0 К + /К значительно отрицательнее
, то на катоде будет протекать только процесс восстановления ионов Н + , а на аноде – процесс окисления ионов ОН - :

К - : 2Н 2 О + 2е → Н 2 + 2ОН - ,

А + : 2ОН - - 2е → 1/2О 2 + Н 2 О.

Минимальная разность потенциалов для электролиза данного раствора (противоЭДС):

Объем газов, выделившихся на электродах, рассчитаем по закону Фарадея (условия нормальные):

л,

л.

Электролиз водного раствора гидроксида калия широко применяется для электрохимического получения водорода.

Пример 3.3. Рассмотрите электролиз водного раствораCuCl 2 на графитовых (нерастворимых) электродах. Напишите электродные процессы, покажите ход поляризационных кривых. Рассчитайте массу меди, образовавшейся на катоде, если за это же время на аноде выделилось 5,6 млCl 2 и 5,6 млO 2 .

Решение.

CuCl 2 → Cu 2+ + 2Cl -

H 2 O H + + OH - .

Соль CuCl 2 образована слабым основаниемCu(OH) 2 и сильной кислотойHCl, следовательно, при ее растворении в воде будет протекать процесс гидролиза с образованием избытка ионов Н + , раствор электролита будет иметь слабокислую реакцию среды (примем рН = 5).

Определим потенциалы возможных процессов на аноде и катоде и запишем уравнения электродных процессов:

К - :
B,
B,

т.к.
более положителен, чем
, то на катоде будет протекать только процесс восстановления ионов меди Сu 2+ из раствора электролита.

A + :
В,
В,

т.к.
более отрицателен, чем
, то в первую очередь на аноде будет идти процесс окисления ионов ОН - . Однако, вследствие поляризации при больших плотностях тока потенциалы процессов выделения кислорода и хлора достаточно близки, поэтому на аноде будет идти также процесс окисления ионов Cl – из раствора электролита. Таким образом, на электродах протекают следующие процессы:

K - : Cu 2+ + 2→ Cu

A + : 2H 2 O → O 2 + 4H + + 4

2Cl - → Cl 2 + 2.

Электролиз данного раствора можно проводить для нанесения медного покрытия на изделие, а также для получения газообразных кислорода и хлора.

Рис. 3.2. Поляризационные кривые процесса электролиза водного раствора хлорида меди на нерастворимых электродах.

Определим массу меди, образовавшейся на катоде, для чего сначала рассчитаем объемы моль эквивалентов газов при н.у. и массу моля эквивалента меди:

л/моль,
л/моль,
г/моль.

По закону Фарадея определим количество электричества, необходимое для выделения заданных объемов кислорода и хлора на аноде (н.у.):

Кл,

Кл.

Суммарное количество электричества, прошедшее через анод, равно:

Кл.

Такое же количество электричества на катоде (Q К =Q А) пойдет только на один процесс образования меди. По закону Фарадея определим массу выделившейся меди:

г = 48,3 мг

Определим выход по току (B j ) для всех процессов электролиза:

%, (т.к. на катоде идет один процесс);

% ;
%.

Пример 3.4. Рассмотрите электролиз водного раствораCuCl 2 на медных электродах. Напишите уравнения электродных процессов, покажите ход поляризационных кривых. Чем отличается ход поляризационных кривых в данном варианте от варианта, рассмотренного в примере 3.3.?

Решение. Ионный состав раствора электролита таков же, как в примере 3.3., поэтому на катоде, как и в случае с электролизом на нерастворимых электродах, пойдет только процесс восстановления ионов меди.

Потенциалы возможных процессов на аноде:

В,
В, (см. пр. 3.3), потенциал материала анода
В. Так как равновесный потенциал окисления меди значительно отрицательнее равновесных потенциалов выделения кислорода и хлора, то на аноде в первую очередь пойдет процесс окисления медного электрода. Если при электролизе на катоде и аноде не будут достигнуты равновесные потенциалы систем
и
(небольшие поляризации Е К, Е А и плотности тока i ), то электродные процессы будут следующие:

K - : Cu 2+ + 2→ Cu

A + : Cu → Cu 2+ + 2.

При больших напряжениях электролизера U , могут быть достигнуты
,
и
,тогда начнется газовыделение и к указанным уравнениям электродных процессов добавятся уравнения из примера 3.3.

Благодаря растворению под действием тока медного анода запас ионов Cu 2+ в растворе электролита будет восполняться, и процесс образования медного покрытия на катоде будет идти более интенсивно, чем в случае использования инертных электродов (пр. 3.3.).

Рис. 3.3. Поляризационные кривые процесса электролиза водного раствора хлорида меди на медных электродах.

Пример 3.5. Рассмотрите электролиз водного раствора смеси солей Pb(NO 3) 2 и Sn(NO 3) 2 на графитовых (нерастворимых) электродах. Напишите уравнения электродных процессов. Рассчитайте выход по току веществ, если на катоде одновременно образовалось 30г Sn, 52г Pb и 2,8л Н 2 (условия нормальные).

Решение. Определим ионный состав раствора электролита и оценим водородный показатель среды. Запишем уравнения диссоциации молекул соли и воды:

Pb(NO 3) 2 → Pb 2+ + 2NO 3 -

Sn(NO 3) 2 → Sn 2+ + 2NO 3 -

H 2 O H + +OH - .

Соли Sn(NO 3) 2 иPb(NO 3) 2 образованы слабыми основаниями и сильной кислотой, следовательно, при их растворении в воде будет протекать процесс гидролиза с образованием избытка ионов Н + , раствор электролита будет иметь слабокислую реакцию среды (примем рН ≈ 5).

Определим равновесные потенциалы возможных процессов на аноде и катоде:

К - :
B,
B,

В.

т.к.
,
и
имеют близкое значение, то на катоде будут параллельно протекать процессы восстановления ионовPb 2+ ,Sn 2+ и Н + из раствора электролита. На аноде ионыNO 3 - , как сложные кислородсодержащие ионы, окисляться не будут, и в данном растворе электролита на нерастворимом аноде будет идти только процесс окисления ионов ОН - .

Таким образом, на электродах протекают следующие процессы:

K - : Pb 2+ + 2e → Pb

Sn 2+ + 2e → Sn

A + :H 2 O→O 2 + 4H + + 4.

Запишем массы и объем (при нормальных условиях) моль эквивалентов веществ, образовавшихся на катоде:

г/моль,
г/моль,
л/моль (н.у.).

По закону Фарадея определим количество электричества, необходимое для получения на катоде заданного количества вещества (н.у.):

Кл,

Кл,

Кл.

Суммарное количество электричества, прошедшее через катод:

Определим выход по току (B j ) для всех процессов электролиза:

o / o , (т.к. на аноде идет один процесс);

100 % =
100% = 40,2%;

100%= 39,9%;
100% = 19,9%.

Рис. 3.4. Поляризационные кривые процесса электролиза водного раствора смеси солей Pb(NO 3) 2 и Sn(NO 3) 2 на графитовых (нерастворимых) электродах.

Пример 3.6. Рассмотрите процесс рафинирования никеля, содержащего примеси цинка и меди в водном раствореH 2 SO 4 . Какие процессы будут протекать на аноде и катоде? Какое время нужно для проведения рафинирования при токе 500 А для выделения 5 кг никеля при выходе по току 98%?

Решение. Рафинирование – очистка металла от примесей с помощью электролиза. На аноде растворяются основной металл и примеси, потенциал которых отрицательнее основного металла. Примеси, имеющие более положительный потенциал, не растворяются и выпадают из анода в виде шлама. На катоде в первую очередь выделяется металл, имеющий наиболее положительный потенциал.

Анод – очищаемый металл Niс примесямиZnиCu. Ионный состав раствора электролита:H + ,SO 4 2- ,OH - . Запишем равновесные потенциалы возможных электродных процессов при рН = 2:

B,
B,
B,

В,
B.

Так как



, то первым на аноде при рафинировании пойдет процесс окисление примесей цинка, затем - окисление основного металла (никеля), примеси меди не растворяются, а выпадают в осадок (шлам) в виде частиц металла по окончании процесса.

Так как

, и концентрация ионов никеля выше, чем концентрация ионов цинка, то на катоде осаждается чистый никель. Однако, в начале процесса, когда в растворе электролита отсутствуют ионыNi 2+ , на катоде идет процесс выделения водорода.

Запишем уравнения электродных процессов:

А + :Zn→Zn 2+ + 2e

K - : 2H + + 2e→H 2

Ni 2+ + 2e→Ni.

Время, необходимое для рафинирования, рассчитаем по закону Фарадея (
г/моль) :

cили τ = 9,27 ч.

4. ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ МЕТАЛЛОВ

Коррозией называют самопроизвольное разрушение металлических материалов под действием компонентов окружающей среды. В результате коррозии протекает суммарная окислительно-восстановительная реакция взаимодействия металла с окислителем:

nM+mOx→M n Red m , (4.1).

При этом происходит окисление металла и разрушение металлоконструкций.

Для металла именно окисленное состояние является термодинамически более устойчивым. Поэтому процесс коррозии всегда самопроизволен, т.е. изменение энергии Гиббса в процессе коррозии имеет отрицательное значение
.

Термодинамический расчет
позволяет лишь определить возможность протекания процесса коррозии, но не дает реальных представлений о скорости коррозии. Например, для процесса:

4Al + 3O 2 + 6H 2 О = 4Al(OH) 3 ,
кДж < 0.

Казалось бы, алюминий должен интенсивно корродировать под действием растворенного в воде кислорода. Однако, алюминий широко используется в качестве конструкционного материала. Причина – свойства продуктов коррозии. Коррозия – гетерогенный процесс, протекающий на границе раздела М – Ох. Продукты коррозии могут образовывать на поверхности металла оксидные, гидроксидные, солевые и др. пленки, обладающие защитными свойствами, которые затрудняют контакт металла с окислителем и тормозят дальнейший процесс коррозии. В результате приведенной реакции на поверхности алюминия образуется плотная защитная пленка, вызывающая пассивацию металла и предохраняющая его от коррозии, поэтому алюминий устойчив в атмосфере.

По механизму протекания различают химическую (в среде, не проводящей электрический ток, например, в сухом газе, в агрессивных органических жидкостях) и электрохимическую (в среде, обладающей ионной проводимостью, например, в водных растворах солей, кислот, оснований, в морской воде, в атмосфере, в почве) коррозию. Наиболее распространенной является электрохимическая коррозия.

При электрохимической коррозии разрушение металла происходит в результате его анодного окисления. Поверхность металла энергетически неоднородна. На участках, имеющих более отрицательное значение потенциала, идет процесс окисления металла. Такие участки играют роль анодов коррозионных гальванических элементов и окисляются:

А – : М → М n + +n.

На участках металла, имеющих более положительное значение потенциала, идут процессы восстановления окислителей, присутствующих в окружающей среде:

K + : Ox + n→ Red .

Энергия Гиббса процесса электрохимической коррозии непосредственно связана с ЭДС коррозионного гальванического элемента:

, (4.2).

ЭДС коррозионного гальванического элемента равна разности равновесных потенциалов металла и окислителя:

, (4.3).

Поэтому электрохимическая коррозия возможна, если
или
. Чтобы установить возможность окисления данного металла под действием возможного окислителя, необходимо сравнить потенциалы металла и окислителя в данной среде. Равновесный потенциал анодной реакции окисления металла и равновесные потенциалы восстановления окислителей (Н + , О 2) рассчитываются по уравнению Нернста. Для оценочных расчетов можно использовать стандартные электродные потенциалы металлов
.

Самые распространенные окислители при электрохимической коррозии – кислород воздуха О 2 , растворенный в электролите, и ионы водорода Н + . В связи с этим могут наблюдаться:

Коррозия с кислородной деполяризацией, коррозия с поглощением кислорода, если
, (например, коррозияCu,Agв нейтральной среде на воздухе), в качестве окислителя при этом выступает растворенный О 2:

O 2 + 2H 2 O+ 4→ 4OH - , (pH7);

O 2 + 4H + + 4→ 2H 2 O, (pH< 7);

Коррозия с водородной деполяризацией, коррозия с выделением водорода, если
, (например, коррозияFe,Cdв кислоте), в качестве окислителя при этом выступает Н + :

2H + + 2→ H 2 , (pH < 7);

2H 2 O + 2→ H 2 + 2OH – (pH  7);

Коррозия со смешанной деполяризацией, если
,
, (например, коррозияMgв нейтральной среде на воздухе), в качестве окислителя выступают одновременно растворенный О 2 и Н + .

Если
,
, то в данных условиях процесс электрохимической коррозии металла протекать не будет, (например,Pt,Auв нейтральной среде на воздухе не корродируют).

Основными характеристиками электрохимической коррозии являются стационарный коррозионный потенциал Е кор , устанавливающийся на поверхности металла, при котором протекают сопряженные реакции ионизации М и восстановления Ох и ток коррозииI кор , или плотность тока коррозииi кор , отражающие скорость коррозионного процесса в электрических единицах. Скорость коррозии может быть выражена через потери металла в единицу времени, через величину тока или плотность тока коррозии, рассчитанные по закону Фарадея.

Скорость процесса электрохимической коррозии определяется по законам электрохимической кинетики. Скорость электрохимической коррозии в целом лимитируется скоростью самой медленной стадии процесса. Для большинства металлов лимитирующей является катодная реакция.

Если имеет место коррозия с водородной деполяризацией, то скорость процесса коррозии определяется скоростью катодного выделения водорода. Самой медленной стадией этого процесса, которая определяет скорость всего процесса коррозии в целом, является реакция восстановления ионов водорода до атомарного адсорбированного поверхностью водорода Н адс:

Н + +→ Н адс

Скорость этого процесса зависит от природы катодных участков, на поверхности которых он протекает. Присутствие в составе металла катодных примесей Hg, Pb, Cd, Zn замедляет скорость процесса выделения водорода и скорость коррозии в целом.

Если имеет место электрохимическая коррозия с кислородной деполяризацией, то скорость процесса определяется скоростью катодного восстановления кислорода. Стадией, лимитирующей этот катодный процесс, является процесс диффузии молекул кислорода через диффузионный слой. Изменение состава катодных примесей в сплаве металла мало влияет на скорость катодного восстановления кислорода. Скорость катодного восстановления кислорода определяется предельной плотностью тока i пр:

i пр = 4F . D O2 . c O2 . δ -1 , (4.4)

где D O2 - коэффициент диффузии кислорода;

c O2 - концентрация кислорода в растворе;

δ - толщина диффузионного слоя.

Существенно увеличивает скорость коррозии с поглощением кислорода перемешивание коррозионной среды.

В некоторых случаях скорость электрохимической коррозии лимитируется анодной реакцией окисления металла. Это характерно для металлов, способных пассивироваться (Cr, Al, Ti). Пассивация вызывается образованием на поверхности металла плотной труднорастворимой защитной пленки из продуктов коррозии, которая тормозит анодный процесс и скорость электрохимической коррозии в целом.

К методам защиты от коррозии относятся:

– легирование (обычно компонентами, повышающими пассивацию металла (Cr,Ni,Al,Mn,Mo,Cu);

– защитные металлические (анодные и катодные) и неметаллические покрытия;

– электрохимическая защита: а) катодная защита – подключение защищаемого изделия к отрицательному полюсу внешнего источника тока, при этом оно становится катодом и не окисляется, б) присоединение к защищаемому изделию протектора – металла с более отрицательным значением потенциала, в) анодная защита – подключение защищаемого металла к положительному полюсу внешнего источника тока и перевод его в пассивное состояние, применима к металлам, способным пассивироваться (Cr,Al,Ti,Zrи др.);

– изменение свойств коррозионной среды (удаление растворенного кислорода, увеличение pH , добавление ингибиторов коррозии).

Рассмотрим способ защиты металла от электрохимической коррозии с помощью металлического покрытия. По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. При повреждении покрытия возникает коррозионный элемент, в котором основной металл служит анодом и растворяется, а металл покрытия – катодом, на котором восстанавливается окислитель. Анодные покрытия имеют более отрицательный потенциал, чем потенциал основного металла. В этом случае основной металл служит катодом коррозионного элемента, поэтому он не корродирует при повреждении покрытия.

Пример 4.1. Имеется спай олова (Sn) с серебром (Ag). Определите возможность коррозии при эксплуатации изделия в щелочной среде (рН = 9) при контакте с кислородом. Напишите уравнения возможных коррозионных процессов.

Решение. По табл.1 приложения определим стандартные электродные потенциалы металлов:

B,
B,

т.к.

, то в образующейся гальванической паре анодом будет олово, а катодом – серебро.

Поскольку
<
<
, то возможной будет только коррозия олова под действием кислорода:

A – : Sn → Sn 2+ + 2e .

K + : O 2 + 2H 2 O + 4e → 4OH – .

Пример 4.2. При коррозии железного изделия с поглощением кислорода за 3 мин образовалось 0,125гFe(OH) 2 . Вычислите объем кислорода, израсходованного на коррозию железа, силу коррозионного тока и массу металла, разрушенного коррозией.

Решение. Рассчитаем количество моль-эквивалентов образовавшегосяFe(OH) 2:

моль-экв.

Поскольку все вещества взаимодействуют в эквивалентных количествах, то разрушилось 2,8 . 10 -3 моль-эквивалентовFeи израсходовалось столько же моль-эквивалентовO 2 .

моль-экв.

Тогда объем кислорода (н.у.), израсходованного на коррозию железа:

По закону Фарадея рассчитаем силу коррозионного тока:

А.

Определим массу прокорродировавшего железа:

Пример 4.3 . Предложите анодное покрытие для защиты железного изделия от электрохимической коррозии в кислородсодержащей среде при рН = 7,р газ =1. Напишите уравнения коррозионных процессов при нарушении целостности покрытия.

Решение. В качестве анодного покрытия дляFeможно использовать металлы с более отрицательным значением потенциала, (например,Zn,Cr,Alи др.). Например, выберем хром, стандартный потенциал
В, более отрицательный, чем
В.

По уравнению Нернста определим равновесные потенциалы вероятных окислителей (Н + и О 2):

т.к.
<
, то при нарушении целостности хромового покрытия на железном изделии роль анода будет выполнять хром.

Так как
<
,
, то в данной среде термодинамически возможна коррозия хрома с кислородной и водородной деполяризацией:

A - : Cr → Cr 3+ + 3e

K + : O 2 + 2H 2 O + 4e → 4OH -

2H 2 O + 2e → H 2 + 2OH -

В нейтральной среде хром отличается высокой коррозионной стойкостью вследствие склонности к пассивации. Продукты коррозии хрома (Cr 2 O 3 ,Cr(OH) 3 и др.) образуют на поверхности металла плотные труднорастворимые оксидно-солевые пленки, обладающие защитными свойствами, которые затрудняют контакт металла с окислителем и тормозят дальнейший процесс коррозии. Поэтому, хотя термодинамически коррозия возможна, железное изделиеcхромовым покрытием реально не разрушается под действием коррозии.

Пример 4.4. Предложите катодное покрытие для защиты железного изделия от электрохимической коррозии в кислородсодержащей среде при рН = 8 ир газ =1. Напишите уравнения процессов в коррозионном гальваническом элементе при нарушении целостности покрытия.

Решение. В качестве катодного покрытия дляFeможно использовать металлы с более положительным значением потенциала, (например,Ni,Cu,Agи др.). Например, выберем медь, стандартный потенциал
В, более положительный, чем
.

Так как
<
, то при нарушении целостности медного покрытия на железном изделии роль анода будет выполнять железо.

По уравнению Нернста определим равновесные потенциалы вероятных окислителей (Н + и О 2):

Так как
<
<
, то в данной среде термодинамически возможна коррозия железа с кислородной деполяризацией и невозможна коррозия с выделением водорода. Уравнения коррозионных процессов:

A - : Fe → Fe 2+ + 2e

K + : O 2 + 2H 2 O + 4e → 4OH -­­­­-

Железное изделие при этом будет разрушаться.

Пример 4.5. Напишите уравнения электрохимической коррозии парыSn-Znпри рН=5 и 298 К. Сколько и какого металла прокорродировало, если в процессе коррозии поглотилось 56 мл кислорода и выделилось 22,4 мл водорода? Определите, чему равен коррозионный ток, если продолжительность коррозии 20 мин.

Решение . Стандартные потенциалы металлов:

B,
B,

т.к.
<
то в заданной гальванической паре анодом будет цинк, а катодом – олово.

По уравнению Нернста определим равновесные потенциалы вероятных окислителей (Н + и О 2):

Так как
<
,
, то в данной среде термодинамически возможна электрохимическая коррозия цинка с кислородной и водородной деполяризацией:

A - :Zn→Zn 2+ + 2e

K + :O 2 + 2H 2 O+ 4e→ 4OH -

2H 2 O+ 2e→H 2 + 2OH - .


л/моль,
л/моль):

моль-экв,

моль-экв.

Таким образом, на катоде претерпело изменение 1,2 . 10 -2 моль-эквивалентов вещества. По закону эквивалентов такое же количество вещества растворится на аноде:
. Масса прокорродировавшего цинка (с учетом массы моля эквивалента цинка
г/моль) равна:

Величина коррозионного тока определяется по закону Фарадея:

А.

Пример 4.6. Выберите протектор для защиты стальной конструкции (Fe) в кислой среде (рН=4) на воздухе. Напишите уравнения процессов коррозии. Рассчитайте, как изменится масса протектора, если за некоторое время в процессе коррозии поглотилось 112 мл кислорода и выделилось 112 мл водорода.

Решение. При протекторной защите к металлическому изделию непосредственно или через металлический проводник подсоединяются металл или сплав с более отрицательным значением потенциала, чем потенциал защищаемого изделия. Для железа (
В) в качестве анодного протектора можно использовать магний (
В), цинк (
В), алюминий (
В). При контакте с окислителем металл протектора растворяется, а защищаемое изделие не разрушается. Например, выберем магний. Так как
<
, то в паре с железом магний будет анодом.

Согласно уравнению Нернста равновесные потенциалы вероятных окислителей (Н + и О 2) равны:

Так как
<
,
, то в данной среде термодинамически возможна электрохимическая коррозия магниевого протектора с кислородной и водородной деполяризацией:

A - : Мg → Мg 2+ + 2e

K + : O 2 + 4H + + 4e → 2H 2 О

2H + + 2e→H 2 .

В соответствии с заданием определим количество моль-эквивалентов поглотившегося кислорода и выделившегося водорода (условия считаем нормальными,
л/моль,
л/моль):

моль-экв,

моль-экв.

Таким образом, на катоде претерпело изменение 3 . 10 -2 моль-эквивалентов окислителя. По закону эквивалентов такое же количество протекторного материала растворилось на аноде:
моль-экв. Масса растворившегося протектора (с учетом молярной массы эквивалента магния
г/моль) равна.

Водород является ценным сырьем, которое находит широкое и разнообразное применение. Большое количество водорода применяется как сырье для ряда важных процессов химической промышленности: синтез аммиака, бензола. В металлургии водород используется для селективного восстановления цветных металлов из аммиачных растворов и для восстановления руд. Водород применяют для создания необходимой атмосферы в печах, для резки и сварки металлов и т.д.

Промышленные способы получения водорода подразделяются на физические, химические и электрохимические.

Физические методы основаны на фракционном выделении водорода из содержащей водород газовой смеси путем изменения физического состояния смеси (например, метод глубокого охлаждения коксового газа с конверсией всех компонентов, кроме водорода).Химические методы основаны на термическом разложении углеводородов или на процессах конверсии углеродов и окиси углерода, например:

СН 4 +Н 2 О СО + 3Н 2 ;СО +Н 2 О СО 2 +Н 2 

и на восстановлении паров воды, например:

4Н 2 О + 3Fe Fe 3 О 4 + 4Н 2 

Электрохимический способ получения водорода основан на электролитическом разложении воды. На долю электрохимических методов приходится примерно 3% получа­емого в мире водорода, однако по существующим оценкам, доля электролитического водорода, получаемого электрохимическим методом, будет увеличиваться в связи с сокращением запасов природных газов и нефти. В последние годы широко обсуждается перспектива использования водорода в качестве топлива, при сжигании которого в топливных элементах практически не образуется экологически вредных веществ.

Чистую воду подвергать электролизу нецелесообразно вследствие ее малой удельной проводимости (4∙10 -6 См/м для дистиллированной воды и 1∙10 -1 См/м – для водопроводной). Электролиз воды ведется с добавками кислоты, щелочи, либо соли для повышения электропроводности электролита и снижения расхода электроэнергии. Электропроводность растворов серной кислоты выше, чем растворов щелочи, однако, в промышленности применяют щелочные растворы, т.к. в них обычные конструкционные материалы являются устойчивыми.

Основные электродные процессы при электролизе – выделение водорода на катоде и кислорода на аноде по суммарной реакции 2Н 2 О → 2Н 2 +О 2 . Кислород является при электролизе попутным продуктом, самостоятельного значения этот продукт не имеет, поскольку получать кислород из воздуха экономичнее. Основы реакции в щелочной среде:

на катоде 2Н 2 О + 2→Н 2 + 2ОН - (7.а)

на аноде 4ОН - → 4Н 2 О + 2О 2 + 4; (7.б)

в кислой среде:

на катоде 2Н + +Н 2 (7.в)

на аноде 2Н 2 О → 4Н + +О 2 (7.г)

В щелочном электролите нет катионов, которые могли бы разряжаться на катоде и приводить к появлению других электродных реакций, кроме реакции образования газообразного водорода.

Единственной побочной реакцией при значительно более положительных потенциалах, чем реакция катодного образования водорода является реакция электровосстановления растворенного кислорода

О 2 + 2Н 2 О + 4→ 4ОН - (7.д)

Однако ее скорость ограничена малой растворимостью кислорода в щелочных растворах, особенно при больших температурах. Тратится лишь доля процента тока. Поэтому электролизные ванны все работают с очень высокими катодными выходами по току (порядка 97-98% с учетом утечек тока).

Процесс выделения кислорода на аноде сопровождается окислением материала анода с образованием поверхностных окислов типа МеО . Поэтому при длительном электролизе разряд анионов идет не на металле, а на окисленной поверхности. С течением времени перенапряжение выделения кислорода несколько повышается, пока не достигнет через длительный промежуток времени постоянного значения. Поэтому величина анодного потенциала в промышленной, длительно работающей ванне, более положительна, чем та, которую определяют в лабораторных условиях.

Электродные материалы . К материалам для электродов предъявляется требование – перенапряжение выделения водорода и кислорода на них должно быть по возможности мало. Выбор материалов электродов диктуется необходимостью снижения непроизводительного расхода электроэнергии на поляризацию электродов.

Как видно на рис. 7.1 наилучшим катодным материалом является платинированная платина, однако из-за высокой стоимости и нестойкости губчатого слоя платину в качестве электродного материала применять нельзя.

Рис.7.1 Поляризационные кривые выделения водорода на некоторых металлах из раствора N a ОН (16 вес.%): при 25 С; - - - при 80 С.

Металлы группы железа устойчивы в щелочных растворах, обладают невысоким перенапряжением и пригодны в качестве материалов для катодов. Перенапряжение на железе и кобальте на несколько десятков милливольт меньше, чем на никеле. Другие металлы (Ti , Pb ) характеризуются более высокими значениями перенапряжения на них водорода и на практике не применяются.

На рис. 7.2 приведены анодные поляризационные кривые выделения кислорода из щелочного раствора, из которых следует, что на металлах группы железа перенапряжение выделения кислорода также невелико. Следовательно, эта группа металлов вполне пригодна в качестве материалов не только для катодов, но и для анодов.

Для изготовления катодов используется обычная сталь. Катод иногда активируют путем осаждения на его поверхность никеля, содержащего серу, или металлов платиновой группы.

Рис.7.2 Поляризационные кривые выделения кислорода на некоторых металлах из раствора Na ОН (16 вес.%) (Ni (S ) – содержащее серу никелевое покрытие): при 25°С;- - - при 80°С

В качестве анодов при электролизе водных щелочных растворов используют углеродистую сталь, на которую электрохимически наносят никелевое покрытие толщиной 100 мкм. Такой анод сохраняет достаточную коррозионную устойчивость в щелочных растворах даже при наличии 1,5∙10 3 пор на 1 м 2 . Малый износ такого анода даже при большей пористости гальванического покрытия объясняется забиванием пор продуктами коррозии стальной основы. Никелирование анода переводит его в пассивное состояние и делает нерастворимым в области потенциалов, при которых происходит выделение кислорода.

Во всех промышленных ваннах для разделения газов применяют диафрагмы, которые изготавливают из асбестовой ткани. Роль диафрагмы – воспрепятствовать смешению газов. Механическую прочность асбестовой ткани усиливают путем включения в пряжу никелевых проволок.

Состав раствора . Выбор состава и концентрации электролита, а также конструкция ванны и режимы ее эксплуатации диктуются целевым назначением электролизера и обусловлены необходимостью максимального снижения непроизводительного расхода электроэнергии на омические потери в электролите и контактах. В качестве электролита для электролиза воды применяют растворы едкого кали и растворы едкого натра. В электролит вводят 2 – 3 г/лК 2 С r 2 О 7 для подавления коррозии стали. Пригодной для электролизера считается вода с удельной электрической проводимостью не выше 10 -3 См∙м -1 , содержащая не более 10 мг/л хлоридов и до 3 мг/л железа. Однако для питания электролизеров рекомендуется применять более чистую воду; проводимость не выше 10 -4 См∙м -1 , содержание железа не выше 1 мг/л, хлоридов 2 мг/л и сухого остатка 3 мг/л.

В процессе электролиза происходит накопление в электролите примесей – карбонатов, хлоридов, сульфатов, силикатов, а также железа, образующихся в результате разрушения деталей электролизера и диафрагмы. Посторонние анионы, накапливающиеся в растворе, не участвуют в электрохимических реакциях, за исключением ионов хлора, которые могут вызвать депассивацию анода.

Ионы железа, присутствующие в электролите, разряжаются на катоде с образованием железной губки. Толщина губки в процессе электролиза увеличивается, слой ее достигает диафрагмы, вызывая ее металлизацию, вследствие чего на анодной стороне начинает выделяться водород. Установлено, что при введении в раствор хромата калия или натрия электроосаждение железа на катоде уменьшается. На катоде образуется пленка из продуктов неполного восстановления хроматов, затрудняется электровосстановление соединений железа.

Основной примесью в водороде является кислород, в кислороде – водород. Содержание щелочи в водороде обычно до 20 мг/м 3 , в кислороде до 100 мг/м 3 . Электролитический водород должен иметь следующий состав: не менее 99,7% (об.) водорода, не более 0,3%(об.) кислорода. Электролитический кислород должен содержать не более 0,7% (об.) водорода.

Очистку газов от щелочного тумана осуществляют в насадочных фильтрах, заполненных стеклянной ватой. Очистку водорода от примеси кислорода приводят в контактных аппаратах на никель-алюминиевом и никель-хромовом катализаторах при 100 - 130 С. Очистка кислорода от водорода происходит на катализаторах: платинированном асбесте, платине, нанесенной на оксид алюминия. После охлаждения газы осушаются сорбентами (силикагель, амомогель).

Для выбора оптимальной концентрации щелочи необходимо знать зависимость удельной электропроводности растворов от концентрации при различных температурах. Кривые, выражающие эту зависимость, при всех температурах проходят через максимум (рис. 7.3).

Рис.7.3. Зависимость удельной электропроводности растворов N аОН (а) и КОН (б) от концентрации при различных температурах

Максимальная электропроводность растворов КОН больше, чемNаОН , но стоимость гидроксида натрия меньше. Поэтому, какКОН , так иN аОН одинаково могут быть использованы в электролизных ваннах. В промышленных ваннах максимальной электропроводностью обладают 21% растворN аОН и соответственно 32%КОН . На практике применяют 16 – 20% растворN аОН и 25 – 30% растворКОН .

Температура . Электролиз водных растворов щелочей проводится при повышенных температурах с целью снижения перенапряжения выделения газов и удельного сопротивления электролита. На рис. 7.4 представлена зависимость между температурой, удельным сопротивлением и оптимальной концентрацией растворов щелочей.

Рис. 7.4 Зависимость оптимальной концентрации (1, 2) и удельного сопротивления (3, 4) растворов КОН (1, 3) и N аОН (2, 4) от температуры.

Показатели процесса электроли за (U р) Напряжение на клеммах электролизера состоит из напряжения разложения водыЕ пр – разности равновесных потенциалов кислородаи водорода
(Е пр =-
), перенапряжения водорода и кислорода
ина данных электродах и сумм омических потерь ΣIR Ом, главные из которых – падение напряжения в электролитеIR Эл + IR газ, в диафрагмеIR диафр. и в электродах и контактахIR Ом, В:

U p = Е пр +
+ +I (R эл. +R газ +R конт.), (7.1)

где I – рабочий ток на электролизере, А.

Перенапряжение водорода (кислорода) при данной рабочей плотности тока можно определить по уравнению Тафеля η =а +b lgi , воспользовавшись справочными значениями коэффициентова иb , соответствующих материалу электрода и раствору электролита.

Падение напряжения в электролите рассчитывают из площади электродов S , расстояния между ними l и удельной электропроводности электролита, значение которой можно взять из справочника (учитывая температуры электролита во время опыта).

Увеличение падения напряжения за счет газовыделения составляет примерно 10% падения напряжения в электролите. Падение напряжения в электродах и контактах принимают равным 0,1 – 0,5В.

Примерный баланс напряжения фильтпресной биполярной ванны, имеющей межэлектродное расстояние 3,6 см и работающей при давлении до 100 атм. с плотностью тока около 1000 А/дм 2 , приведено в таблице 7.1.

Таблица 7.1

Баланс напряжений фильтпрессной биполярной ванны

Электродные плотности тока . Значение электродных плотностей тока при электролитическом разложении воды колеблется в широких пределах в зависимости от конструкции электролизера. Успехи в области создания конструкций электролизеров с электродами, обеспечивающими быстрый отвод газов и снижение газонаполнения, активирование поверхности электродов, повышение температуры электролита и снижение вследствие этого перенапряжения газов позволили в новых конструкциях промышленных электролизеров повысить плотности тока до 2,5 - 3,7 кА/м 2 (0,25 – 0,37 А/см 2)

Конструкции электролизеров . Все современные конструкции электролизеров относятся к фильтр-прессному типу с биполярным включением электродов. Схема фильтрпрес­сного биполярного электролизера для получения водорода и кислорода представлена на рис. 7.5

Рис. 7.5. Биполярный фильтр-прессный электролизер: 1 – выносной электрод; 2 – монополярный электрод – анод; 3 – биполярный электрод; 4 – монополярный электрод – катод; 5 – диафрагма; 6 – стяжная плита; 7 – стяжной болт; 8 – диафрагменная рама.

Фильтр-прессные биполярные электролизеры могут иметь эквивалентную нагрузку до 1200 – 1800 кА и состоять из 160 – 170 отдельных ячеек.

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».

На аноде происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса: на аноде - окисление анионов и гидроксид-ионов, на катоде - восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются следующие:

на аноде - окисление анионов и гидроксид-ионов, анодное растворение металла - материала анода; на катоде - восстановление катиона соли и ионов водорода,

восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила.

1. На аноде могут образовываться следующие продукты: а) при электролизе растворов, содержащих в своем составе анионы , а также растворов щелочей выделяется кислород; б) при окислении анионов выделяются соответственно хлор, бром, иод; в) при окислении анионов органических кислот происходит процесс:

2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее на катоде выделяется водород; если ион расположен в ряду напряжений правее водорода, то на катоде выделяется металл.

3. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы которые под действием электрического тока направляются к соответствующим электродам:

На катоде выделяется металлическая медь, на аноде - газообразный хлор.

Если в рассмотренном примере электролиза раствора в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов он переходит в раствор. Электролиз с растворимым анодом можно записать так:

Таким образом, электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов:

Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются. На катоде выделяется водород, а на аноде - кислород, и электролиз сводится к электролитическому разложению воды.

Отметим наконец, что электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как электролиты - соли и щелочи - плавятся при очень высоких температурах.

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:

где m - масса образовавшегося при электролизе вещества (г); Э - эквивалентная масса вещества (г/моль); М - молярная масса вещества (г/моль); n - количество отдаваемых или принимаемых электронов; I - сила тока (А); t - продолжительность процесса (с); F - константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества .



Понравилась статья? Поделитесь с друзьями!