Высшая степень бериллия. Три «но» бериллия

Бериллий - светло-серый, легкий, достаточно твердый, хрупкий металл. На воздухе покрывается оксидной пленкой.

Получение:

В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия : BeCl2+2K=Be+2KCl.B e C l 2 + 2 K ⟶ B e + 2 K C l {\displaystyle {\mathsf {BeCl_{2}+2K\longrightarrow Be+2KCl}}}

В настоящее время бериллий получают, восстанавливаяфторид бериллиямагнием : BeF2+Mg=Be+MgF2,

либо электролизом расплава смеси хлоридов бериллия и натрия.

Химические свойства:

Для бериллия характерна только одна степень окисления +2. По многим химическим свойствам бериллий больше похож на алюминий, чем на находящийся непосредственно под ним в таблице Менделеева магний (проявление «диагонального сходства »). Металлический бериллий относительно мало реакционноспособен при комнатной температуре.

Пассивируется в холодной воде, концентрированных серной и азотной кислотах. Восстановитель, реагирует с кипящей водой, разбавленными кислотами, концентрированными щелочами, неметаллами, аммиаком, оксидами металлов, при нагревании сгорает в кислороде и на воздухе. С металлами бериллий образует интерметаллические соединения.

2Be + O 2 (900°С) = 2BeO

С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом.

Be + Hal 2 (нагр.) = 2BeHal 2 (7Be+2F→Be 7 F 2 ; 2Be+I 2 →2BeI)

3Be + C 2 H 2 = BeC 2 + H 2

Be + MgO = BeO + Mg

Взаимодействие с серой: 2Be+S→Be 2 S

Взаимодействие с азотом(N): 2Be+N 2 →2BeN

Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.

Be + 2HCl(разб.) = BeCl 2 + H 2

3Be + 8HNO3(разб) = 3 Be(NO3)2 + 2 NO + 4 H2O

Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.

Be + 2NaOH(конц.) + H 2 O = Na 2 BeO 2 + H 2

Be + 2NaOH(расплав) = Na 2 + H 2

Взаимодействие с водой:

2Be+3H 2 O→2H 2 + ВеО + Ве(OH) 2

2Be + 3H 2 O(кип.) = BeO↓ + Be(OH) 2 ↓ + 2H 2

Бериллий склонен к образованию комплексных соединений при взаимодействии с водными растворами щелочей.

Взаимодействие с азотной кислотой:

Взаимодействие с растворами щелочей:

Be + 2KOH + 2H 2 O = K 2 + H 2

Производство и применение:

В России планируется строительство нового комбината по производству бериллия к 2019 году. На долю остальных стран приходилось менее 1 % мировой добычи. Всего в мире производится 300 тонн бериллия в год (2016 год).

Легирование сплавов

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей, изготовленных из этих сплавов изделий. Рентгенотехника Бериллий слабо поглощает рентгеновское излучение , поэтому из него изготавливают окошки рентгеновских трубок Ядерная энергетика

В атомных реакторах из бериллия изготовляют отражатели нейтронов , его используют как замедлитель нейтронов . Лазерные материалы В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).Аэрокосмическая техника

В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материалРакетное топливо Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в связи с этим приложены значительные усилия для выявления бериллийсодержащих топлив, имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия .Огнеупорные материалы Он служит высокотеплопроводным высокотемпературным изолятором и огнеупорным материалом для лабораторных тиглей и в других специальных случаях.Акустика

Ввиду своей легкости и высокой твёрдости бериллий успешно применяется в качестве материала для электродинамических громкоговорителей . Биологическая роль и физиологическое действие:

В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах , что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.

(на всякий случай)

Соединения бериллия (II). В кислых водных растворах ионы Ве 2+ находятся в виде прочных аква-комплексов [Ве(Н 2 О) 4 ] 2+ ; в сильно щелочных растворах – в виде ионов [Ве(ОН) 4 ] 2– .

Оксид ВеО – амфолит, при сплавлении взаимодействует и с основными, и с кислотными оксидами:

ВеО + SiО 2 = BeSiО 3 ; ВеО + Na 2 О = Na 2 BeО 2

При нагревании ВеО взаимодействует со щелочами и кислотами:

ВеО + 2HCl(конц.) = BeCl 2

ВеО + 2NaОН + Н 2 О = Na 2 [Ве(ОН) 4 ]

ВеО применяют в качестве химически стойкого и огнеупорного материала для изготовления тиглей и специальной керамики, а в атомной энергетике – как замедлитель и отражатель нейтронов.

Гидроксид Ве(ОН) 2 – полимерное соединение, и поэтому в воде не растворяется, амфолит.

Ве(ОН) 2 + 2NaОН(конц.) = Na 2 [Ве(ОН) 4 ]

ВеО + 2HCl + 3Н 2 О = [Ве(Н 2 О) 4 ]Cl 2

Амфотерностъ ВеНа1 2 наиболее отчетливо проявляется у фторида. Так, при нагревании BeF 2 с основными фторидами образуются фторобериллаты (другие галогенобериллаты не характерны): 2KF + BeF 2 = K 2

При взаимодействии BeF 2 с кислотными фторидами образуются соли бериллия:

BeF 2 + SiF 4 = Be

Гидрид ВеН 2 – сильный восстановитель; при его разложении водой выделяется водород: ВеН 2 + 2Н 2 О = Ве(ОН) 2 ↓ + Н 2

Большинство солей бериллия растворимо в воде, нераствори­мы ВеСО 3 , Ве 3 (РО 4) 2 и некоторые другие. Для бериллия весьма ха­рактерны двойные соли – бериллаты со сложными лигандами, например:

Na 2 SО 4 + BeSО 4 = Na 2

(NH 4) 2 CО 3 + BeCО 3 = (NH 4) 2

Прежде всего несколько (их может быть гораздо больше!) ответов на вопрос: «Что может нам дать бериллий?»... Самолет, вес которого вдвое меньше обычного; ...ракетное топливо с наивысшим удельным импульсом; ...пружины, способные выдержать до 20 миллиардов (!) циклов нагрузки – пружины, не знающие усталости, практически вечные.

А в начале нашего века в справочниках и энциклопедиях о бериллии говорилось: «Практического применения не имеет». Открытый еще в конце XVIII в. бериллий 100 с лишним лет оставался «безработным» элементом, хотя химикам уже были известны его уникальные и очень полезные свойства. Для того чтобы эти свойства перестали быть «вещью в себе», требовался определенный уровень развития науки и техники. В 30-х годах академик А.Е. Ферсман называл бериллий металлом будущего. Сейчас о бериллии можно и должно говорить как о металле настоящего.

Недоразумение с периодической системой

История элемента №4 началась с того, что его долго не могли открыть. Многие химики XVIII в. анализировали берилл (основной минерал бериллия), но никто из них не смог обнаружить в этом минерале нового элемента.

Даже современному химику, вооруженному фотометрическим, полярографическим, радиохимическим, спектральным, радиоактивационным и флуориметрическим методами анализа, нелегко выявить этот элемент, словно прячущийся за спину алюминия и его соединений, – настолько похожи их признаки. Первым исследователям бериллия приходилось, разумеется, гораздо труднее.

Но вот в 1798 г. французский химик Луи Никола Воклен, занимаясь сравнительным анализом берилла и изумруда, открыл в них неизвестный окисел – «землю». Она была очень похожа на окись алюминия (глинозем), однако Воклен заметил и отличия. Окисел растворялся в углекислом аммонии (а окись алюминия не растворяется); сернокислая соль нового элемента не образовывала квасцов с сернокислым калием (а сернокислая соль алюминия такие квасцы образует). Именно этой разницей в свойствах Воклен и воспользовался для разделения окислов алюминия и неизвестного элемента. Редакция журнала «Annales de chimie», опубликовавшего работу Воклена, предложила для открытой им «земли» название «глицина» (от греческого γλυμυς – сладкий) из-за сладкого вкуса ее солей. Однако известные химики М. Клапрот и А. Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе XIX в., вплоть до 60-х годов, элемент №4 сплошь и рядом называется «глицием», «глицинием» или «глюцинием». Ныне это название сохранилось только во Франции.

Интересно отметить, что с предложением называть элемент №4 бериллием еще в 1814 г. выступал харьковский профессор Ф.И. Гизе.

Окисел был получен, но еще долгое время никому не удавалось выделить бериллий в чистом виде. Только через 30 лет Ф. Вёлер и А. Бюсси получили немного порошкообразного металла действием металлического калия на хлористый бериллий, но металл этот содержал много примесей. Прошло еще почти 70 лет, прежде чем П. Лебо смог получить (в 1898 г.) чистый бериллий электролизом бериллиево-фтористого натрия.

Сходство бериллия с алюминием принесло немало хлопот и автору периодического закона Д.И. Менделееву. Именно из-за этого сходства в середине прошлого века бериллий считали трехвалентным элементом с атомным весом 13,8. Но, будучи помещен в таблице между углеродом и азотом, как того требовал его атомный вес, бериллий вносил полную путаницу в закономерное изменение свойств элементов. Это было серьезной угрозой периодическому закону. Однако Менделеев был уверен в правильности открытой им закономерности и доказывал, что атомный вес бериллия определен неверно, что бериллий должен быть не трехвалентным, а двухвалентным элементом «с магнезиальными свойствами». Исходя из этого, Менделеев поместил бериллий во вторую группу периодической системы вместе с двухвалентными щелочноземельными металлами, исправив его атомный вес на 9.

Первое подтверждение своих взглядов Менделеев нашел в одной из малоизвестных работ русского химика И.В. Авдеева, который считал, что окись бериллия химически подобна окиси магния. А в конце 70-х годов прошлого века шведские химики Ларе Фредерик Нильсон и Отто Петерсон (некогда бывшие самыми ярыми сторонниками мнения о трехвалентном бериллии), повторно определив атомный вес бериллия, нашли его равным 9,1.

Так бериллий, бывший первым камнем преткновения на пути периодического закона, только подтвердил его всеобщность. Благодаря периодическому закону стало более четким понятие о физической и химической сущности бериллия. Образно говоря, бериллий получил, наконец, свой «паспорт».

Сейчас бериллием интересуются люди многих профессий. В каждой из них – свой подход к элементу №4, своя «бериллиевая» проблематика.

Бериллий с точки зрения геолога

Типично редкий элемент. На тонну земного вещества в среднем приходится лишь 4,2 г бериллия. Это, конечно, очень немного, но и не так уж мало, если вспомнить, например, что такого известного элемента как свинец, на Земле вдвое меньше, чем бериллия. Обычно бериллий встречается как незначительная примесь в различных минералах земной коры. И лишь ничтожная часть земного бериллия сконцентрирована в собственных бериллиевых минералах. Их известно более 30, но только шесть из них считаются более или менее распространенными (берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит). А серьезное промышленное значение приобрел пока только один берилл, известный человеку с глубокой древности.

Бериллы встречаются в гранитных пегматитах, имеющихся почти во всех странах земного шара. Это красивые зеленоватые кристаллы, достигающие иногда очень больших размеров; известны бериллы-гиганты весом до тонны и длиной до 9 м.

К сожалению, пегматитовые месторождения очень малы, и добывать там берилл в широких промышленных масштабах не удается. Однако есть и другие источники бериллия, в которых его концентрация гораздо выше. Это так называемые пневмато-гидротермальные месторождения (т.е. месторождения, образовавшиеся в результате взаимодействия высокотемпературных паров и растворов с определенными типами горных пород).

Природный бериллий состоит из единственного устойчивого изотопа 9 Be. Интересно, что бериллий – единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп. Известны еще несколько нестабильных, радиоактивных изотопов бериллия. (О двух из них – 10 Be и 7 Be – будет сказано ниже.)

Бериллий с точки зрения металлурга

Свойства бериллия чаще всего именуются «удивительными», «чудесными» и т.п. Отчасти это справедливо, причем главная «удивительность» заключается в сочетании противоположных, иногда, казалось бы, взаимоисключающих свойств. Бериллий обладает одновременно и легкостью, и прочностью, и теплостойкостью. Этот металл серебристо-серого цвета в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы не утрачивают полезных свойств при температуре 700...800°C и могут работать в таких условиях.

Чистый бериллий очень тверд – им можно резать стекло. К сожалению, твердости сопутствует хрупкость.

Бериллий очень устойчив против коррозии. Как и алюминий, он покрывается при взаимодействии с воздухом тонкой окисной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Лишь за порогом 800°C идет окисление бериллия в массе, а при температуре 1200°C металлический бериллий сгорает, превращаясь в белый порошок BeO.

Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Один из его сплавов – бериллиевая бронза – это материал, позволивший решить многие сложные технические задачи.

Бериллиевыми бронзами называют сплавы меди с 1...3% бериллия. В отличие от чистого бериллия они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. Еще одна примечательная деталь: с течением времени большинство материалов, в том числе и металлы, «устают» и теряют прочность. Бериллиевые бронзы – наоборот. При старении их прочность возрастает! Они немагнитные. Кроме того, они не искрят при ударе. Из них делают пружины, рессоры, амортизаторы, подшипники, шестерни и многие другие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в широком интервале температур, высокие электро- и теплопроводные характеристики. Одним из потребителей этого сплава стала авиационная промышленность: утверждают, что в современном тяжелом самолете насчитывается больше тысячи деталей из бериллиевой бронзы.

Добавки бериллия облагораживают сплавы на основе алюминия и магния. Это понятно: плотность бериллия всего 1,82 г/см 3 , а температура плавления – вдвое выше, чем у этих металлов. Самые небольшие количества бериллия (достаточно 0,005%) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Одновременно улучшается качество отливок, значительно упрощается технология.

Выяснилось, что с помощью бериллия можно увеличивать прочность, жесткость и жаростойкость других металлов, не только вводя его в те или иные сплавы. Чтобы предотвратить быстрый износ стальных деталей, их иногда бериллизуют – насыщают их поверхность бериллием путем диффузии. Делается это так: стальную деталь опускают в бериллиевый порошок и выдерживают в нем при 900...1100°C в течение 10...15 часов. Поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом. Этот прочный панцирь толщиной всего 0,15...0,4мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.

Интересными свойствами отличаются и бериллиды – интерметаллические соединения бериллия с танталом, ниобием, цирконием и другими тугоплавкими металлами. Бериллиды обладают исключительной твердостью и стойкостью против окисления. Лучшей технической характеристикой бериллидов служит тот факт, что они могут проработать более 10 часов при температуре 1650°C.

Бериллий с точки зрения физика

В истории многих элементов есть особые вехи – открытия, после которых значение этих элементов неизмеримо возрастает. В истории бериллия таким событием стало открытие нейтрона.

В начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа частицами, заметили так называемое бериллиевое излучение – очень слабое, но чрезвычайно проникающее. Оно, как было доказано позже, оказалось потоком нейтронов. А еще позже это свойство бериллия легло в основу «нейтронных пушек» – источников нейтронов, применяемых в разных областях науки и техники.

Так было положено начало изучению атомной структуры бериллия. Выяснилось, что его отличают малое сечение захвата нейтронов и большое сечение их рассеяния. Иными словами, бериллий (а также его окись) рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких величин, при которых цепная реакция может протекать более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов.

Кроме того, бериллий может выполнять роль отражателя нейтронов: менять их направление, возвращать нейтроны в активную зону реактора, противодействовать их утечка. Бериллию свойственна также значительная радиационная стойкость, сохраняющаяся и при очень высокой температуре.

На всех этих свойствах основано применение бериллия в атомной технике – он один из самых необходимых ей элементов.

Замедлители и отражатели из бериллия и его окиси позволяют намного уменьшить размеры активной зоны реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Поэтому, несмотря на высокую стоимость бериллия, его использование считают экономически оправданным, особенно в небольших энергетических реакторах для самолетов и морских судов.

Окись бериллия стала важным материалом для изготовления оболочек тепловыделяющих элементов (твэлов) атомных реакторов. В твэлах особенно велика плотность нейтронного потока; в них – самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из BeO.

Большая теплопроводность (в 4 раза выше, чем у стали), большая теплоемкость и жаропрочность позволяют использовать бериллий и его соединения в теплозащитных конструкциях космических кораблей. Из бериллия была сделана внешняя тепловая защита капсулы космического корабля «Фрэндшип-7», на котором Джон Гленн первым из американских космонавтов совершил (после Юрия Гагарина и Германа Титова) орбитальный полет.

В еще большей мере космическую технику привлекают в бериллии легкость, прочность, жесткость, и особенно – необыкновенно высокое отношение прочности к весу. Поэтому бериллий и его сплавы все шире используются в космической, ракетной и авиационной технике.

В частности, благодаря способности сохранять высокую точность и стабильность размеров бериллиевые детали используют в гироскопах – приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.

Элемент №4 применяется и в других областях современной техники, в том числе в радиоэлектронике. В частности, керамика на основе окиси бериллия стала материалом корпусов так называемых ламп бегущей волны – очень эффективных радиоламп, не утративших своего значения под натиском полупроводников.

Рентгенотехнике металлический бериллий дал прекрасные окна для рентгеновских трубок: благодаря малому атомному весу он пропускает в 17 раз больше мягких рентгеновских лучей, чем алюминий такой же толщины.

Бериллий с точки зрения химика

Типично амфотерен, т.е. обладает свойствами и металла, и неметалла. Однако металлические свойства все же преобладают.

С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом. Из галогенидов бериллия наибольшее значение имеют его фторид и хлорид, используемые в процессе переработки бериллиевых руд.

Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.

Окись бериллия (ВеО) обладает ценными свойствами и в некоторых случаях конкурирует с самим бериллием.

Высокая тугоплавкость (температура плавления 2570°C), значительная химическая стойкость и большая теплопроводность позволяют применять окись бериллия во многих отраслях техники, в частности для футеровки бессердечниковых индукционных печей и тиглей для плавки различных металлов и сплавов. Интересно, что окись бериллия совершенно инертна по отношению к металлическому бериллию. Это единственный материал, из которого изготовляют тигли для плавки бериллия в вакууме.

Сравнительно давно используют окись бериллия в производстве стекла. Добавки ее увеличивают плотность, твердость, показатель преломления и химическую стойкость стекол. С помощью окиси бериллия создают специальные стекла, обладающие большой прозрачностью для ультрафиолетовых и инфракрасных лучей.

Стекловолокно, в состав которого входит окись бериллия, может найти применение в конструкциях ракет и подводных лодок.

При горении бериллия выделяется много тепла – 15 тыс. ккал/кг. Поэтому бериллий может быть компонентом высокоэнергетического ракетного горючего.

Некоторые соединения бериллия служат катализаторами химических процессов. Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.

Многие ученые считают, что изотопы бериллия 10 Ве и 7 Be образуются не в недрах земли, а в атмосфере – в результате воздействия космических лучей на ядра азота и кислорода. Незначительные примеси этих изотопов обнаружены в дожде, снеге, воздухе, в метеоритах и морских отложениях.

Однако если собрать воедино весь 10 Ве, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра – около 800 т.

Изотоп 10 Be (период полураспада 2,5·10 6 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10 Ве вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10 Ве во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.

Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10 Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 10 5 ...10 8 лет (из-за большой разницы между периодами полураспада 14 С и долгоживущих изотопов 40 K, 82 Rb, 232 Th, 235 U и 238 U). Изотоп 10 Be как раз «заполняет» этот разрыв.

Жизнь другого радиоизотопа – бериллия-7 – значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7 Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7 Ве, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7 Be в других исследованиях: химики – в качестве радиоактивного индикатора, биологи – для изучения возможностей борьбы с токсичностью самого бериллия.

Бериллий с точки зрения биолога и медика

Бериллий обнаружен в растениях, произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани – это и есть причина болезни.

Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза – специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединений бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.

Допустимые пределы содержания бериллия в воздухе очень малы – всего 0,001 мг/м 3 . Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.

Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.

Три «но» бериллия

Эта глава не означает, что все предыдущее – только «теория». Но, к сожалению, факторы, ограничивающие применение бериллия, вполне реальны, и не учитывать их нельзя.

Это прежде всего хрупкость металла. Она намного усложняет процесс его механической обработки, затрудняет получение больших листов бериллия и сложных профилей, необходимых в тех или иных конструкциях. Предпринимаются упорные попытки устранить этот недостаток. Но, несмотря на некоторые успехи (изготовление металла высокой чистоты, различные технологические усовершенствования), получение пластичного бериллия продолжает оставаться трудной проблемой.

Второе – токсичность бериллия.

Тщательный контроль за чистотой воздуха, особые системы вентиляции, возможно большая автоматизация производства – все это позволяет успешно бороться с токсичностью элемента №4 и его соединений.

И наконец, третье и очень важное «но» бериллия – его высокая стоимость. Цена 1 кг бериллия в США сейчас около 150 долларов, т.е. бериллий в несколько раз дороже титана.

Однако рост потребления всегда приводит к технологическим усовершенствованиям, которые в свою очередь способствуют уменьшению издержек производства и цены. В будущем спрос на бериллий возрастет еще больше: ведь этот металл человечество начало применять чуть больше 40 лет назад. И, конечно, достоинства элемента №4 возьмут верх над его недостатками.

Из документов прошлого

Восьмидесятые годы прошлого века – время оживленных научных споров об атомном весе бериллия.

Д.И. Менделеев писал по этому поводу:

«Недоразумение длилось несколько лет. Не раз мне приходилось слышать о том, что вопрос об атомном весе бериллия грозит поколебать общность периодического закона, может потребовать глубоких в нем преобразований. В научном разноречии, касающемся бериллия, приняли участие многие силы, конечно, потому именно, что дело шло о предмете более многозначительном, чем атомность сравнительно редкого элемента; периодический закон разъяснялся в этих разноречиях, и взаимная связь элементов разных групп стала более очевидной, чем было когда-либо» .

Долгое время главными противниками двух валентности бериллия были шведские химики профессора Л.Ф. Нильсон и О. Петерсон. В 1878 г. они опубликовали статью «О получении и валентности бериллия», в конце которой были такие слова: «...наше мнение об истинном атомном весе и химической природе этого металла противоречит так называемому периодическому закону, который Менделеев предначертал для всех элементов, а именно не только потому, что при Be = 13,8 металл этот едва ли может быть помещен в менделеевскую систему, но и потому, что тогда элемент с атомным весом 9,2, как это требует периодический закон, в системе отсутствовал бы и, по-видимому, еще должен быть открыт».

В защиту периодического закона выступил чешский химик Богуслав Браунер, считавший, что известный закон Дюлонга и Пти, которым пользовались шведские химики, имеет некоторые отступления в области малых атомных весов, к которой собственно и относится бериллий. Кроме того, Браунер советовал Нильсону и Петерсону определить плотность паров хлористого бериллия, считая, что количественное определение этой характеристики поможет точно установить принадлежность элемента к той или иной группе периодической системы. Когда шведские химики повторили свои опыты и проделали то, что советовал им Браунер, они убедились в правоте Менделеева. В статье, отражавшей результаты этой работы, Нильсон и Петерсон написали: «...мы должны отказаться от ранее защищавшегося нами мнения о том, что бериллий трехвалентный элемент... Одновременно мы признаем правильность периодического закона и в этом важном случае».

В 1884 г. Нильсон писал Менделееву: «...не могу не выразить Вам моего сердечного поздравления по поводу того, что и в этом случае, как и во многих других, система оправдала себя».

Позднее в одном из изданий «Основ химии» Д.И. Менделеев отметил, что «Нильсон и Петерсон – одни из главных защитников трехатомности бериллия... доставили опытные доказательства в пользу двухатомности бериллия и, громко высказав это, показали, что в науке истина, даже при разноречиях, одинаково дорога всем, хотя бы сперва и отрицалась теми, кто ее утвердил».

Драгоценные бериллы

Основной минерал бериллия – берилл относится, как известно, к полудрагоценным камням. Но когда говорят о четырех его разновидностях – изумруде, аквамарине, воробьевите и гелиодоре, то приставку «полу» отбрасывают. Изумруды, особенно весом больше 5 каратов, ценятся не меньше бриллиантов.

Чем отличаются эти камни от обычного берилла? Ведь формула их та же – Al 2 Be 3 (Si 6 O 18). Но эта формула не учитывает примесей, которые, собственно, и превращают полудрагоценные камни в драгоценные. Аквамарин окрашен ионами двухвалентного железа, в изумруде (он же смарагд) кроме Fe 2+ есть незначительная примесь окиси хрома. Розовый цвет воробьевита объясняется примесью соединений цезия, рубидия и двухвалентного марганца, а золотисто-желтый гелиодор окрашен ионами трехвалентного железа.

Драгоценный металл из полудрагоценного камня

Высокая стоимость бериллия объясняется не только ограниченностью сырьевых ресурсов, но и сложностями технологии получения чистого металла. Основной метод производства бериллия – восстановление его фторида металлическим магнием. Фторид получают из гидроокиси, а гидроокись из бериллового концентрата. Уже первый прогон этой технологической лестницы состоит из нескольких ступеней: концентрат подвергают термообработке, измельчению, затем на него последовательно действуют серной кислотой, водой, растворами аммиака и едкого натра, специальными комплексообразователями.

Получившийся бериллат натрия гидролизуют и на центрифуге отделяют гидроокись.

Гидроокись превращается во фторид тоже лишь после нескольких операций, каждая из которых достаточно сложна и трудоемка. Восстановление магнием идет при температуре 900°C, ход процесса тщательно контролируется. Важная деталь: тепло, выделяющееся в реакции, поглощается с той же скоростью, что и выделяется. Полученный жидкий металл выливают в графитовые изложницы, но он загрязнен шлаком, и поэтому его еще раз переплавляют в вакууме.

Бериллий в быту

Сферы применения бериллия не ограничиваются «высокой» техникой. С изделиями из никель-бериллиевых сплавов (содержание Be не превышает 1,5%) можно встретиться и в повседневной жизни. Из этих сплавов изготавливают хирургические инструменты, иглы для подкожных инъекций, литые металлические зубы. Из сплава «элинвар» (никель, бериллий, вольфрам) в Швейцарии делают пружины для часов. Медно-бериллиевый сплав в США используют для изготовления втулок пишущего механизма шариковых ручек.

Искусственные изумруды

Получить изумруды искусственным путем гораздо труднее, чем большинство других драгоценных камней. Главная причина в том, что берилл – сложное комплексное соединение. Однако ученые смогли имитировать природные условия, в которых происходило образование минерала: изумруды «рождаются» при очень высоком давлении (150 тыс. атм.) и высокой температуре (1550°C). Искусственные изумруды могут использоваться в электронике.

Бериллий и сверхпроводимость

Сейчас известно более тысячи материалов, приобретающих при температуре, близкой к абсолютному нулю, свойство сверхпроводимости. В их числе – металлический бериллий. Будучи сконденсирован в виде тонкой пленки на холодную подложку, бериллий становится сверхпроводником при температуре около 8 К.

Бериллий в целебном средстве

В 1964 г. группа советских химиков во главе с вице-президентом Академии наук Таджикской ССР, доктором химических наук К.Т. Порошиным провела химический анализ древнего целебного средства «мумие». Оказалось, что это вещество сложного состава, причем в числе многих элементов, содержащихся в мумие, есть и бериллий.

География месторождений бериллия

Бериллиевое сырье имеется во многих странах мира. Наиболее крупные месторождения его находятся в Бразилии и Аргентине. На их долю приходится примерно 40% добычи берилла в капиталистических странах. Значительные запасы бериллиевых руд имеются также в странах Африки и в Индии.

Вплоть до последнего времени крупнозернистый берилл добывали вручную. В Бразилии таким кустарным способом и сейчас ежегодно добывается до 3000 т концентрата.

Лишь недавно были предложены новые методы флотации, позволяющие использовать нерентабельные ранее месторождения мелкозернистого берилла.

Бериллий и «атомная игла»

Теплоизоляционные свойства окиси бериллия могут пригодиться и при исследовании земных глубин. Так, существует проект взятия проб из мантии Земли с глубин до 32 км с помощью так называемой атомной иглы. Это миниатюрный атомный реактор диаметром всего 60 см. Реактор должен быть заключен в теплоизолирующий футляр из окиси бериллия с тяжелым вольфрамовым наконечником.

Принцип действия атомной иглы заключается в следующем: высокие температуры, создаваемые в реакторе (свыше 1100°C), вызовут плавление скальных пород и продвижение реактора к центру Земли. На глубине примерно 32 км тяжелое вольфрамовое острие должно отделиться, а реактор, став более легким, чем окружающие его породы, возьмет пробы с недостижимых пока глубин и «всплывет» на поверхность.

Бериллий (лат. Beryllium), Be, химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп Ве.

Бериллий открыт в 1798 году в виде оксида ВеО, выделенной из минерала берилла Л. Вокленом. Металлический Бериллий впервые получили в 1828 году Ф. Велер и А. Бюсси независимо друг от друга. Так как некоторые соли Бериллия сладкого вкуса, его вначале называли "глюциний" (от греч. glykys - сладкий) или "глиций". Название Glicinium употребляется (наряду с Бериллием) только во Франции. Применение Бериллия началось в 40-х годах 20 века, хотя его ценные свойства как компонента сплавов были обнаружены еще ранее, а замечательные ядерные - в начале 30-х годов 20 века.

Распространение бериллия в природе . Бериллий - редкий элемент. Бериллий - типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Бериллия. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.

Физические свойства . Кристаллическая решетка Бериллия гексагональная плотноупакованная. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), температура плавления 1285оС, температура кипения 2470 oС.

Бериллий был открыт в 1798 году Л. Вокленом в виде берилловой земли (оксида ВеО), когда этот французский химик выяснял общие особенности химического состава драгоценных камней берилла и изумруда. Металлический бериллий был получен в 1828 г. Ф. Велером в Германии и независимо от него А. Бюсси во Франции. Однако из-за примесей его не удавалось сплавить. Лишь в 1898 г. французский химик П. Лебо, подвергнув электролизу двойной фторид калия и бериллия, получил достаточно чистые металлические кристаллы бериллия. Интересно, что из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли "глюциний" (от греческого glykys - сладкий). Из-за сходства свойств бериллия и алюминия считалось, что это трехвалентный металл с атомной массой 13,5. Эту ошибку исправил Д.И. Менделеев, который, исходя из закономерности изменения свойств элементов в периоде, определил бериллию место во второй группе.

Нахождение в природе, получение:

Бериллий относится к редким элементам, его содержание в земной коре 2,6·10 -4 % по массе. В морской воде содержится до 6·10 -7 мг/л бериллия. Основные природные минералы, содержащие бериллий: берилл Be 3 Al 2 (SiO 3) 6 , фенакит Be 2 SiO 4 , бертрандит Be 4 Si 2 O 8 ·H 2 O и гельвин (Mn,Fe,Zn) 4 3 S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла - драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит и другие. В настоящее время их научились синтезировать искусственно.
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:
BeCl 2 +2K=Be+2KCl.
В настоящее время бериллий получают,восстанавливая его фторид магнием:
BeF 2 +Mg=Be+MgF 2
либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.

Физические свойства:

Металлический бериллий - твердый, хрупкий металл серого цвета. На воздухе бериллий, как и алюминий, покрыт оксидной пленкой, придающей ему матовый цвет. Температура плавления 1278°C, температура кипения около 2470°C, плотность 1,816 кг/м 3 . До температуры 1277°C устойчив a -Ве (гексагональная решетка типа магния (Mg), параметры а = 0,22855 нм, с = 0,35833 нм), при температурах, предшествующих плавлению металла (1277-1288°C) - b -Ве с кубической решеткой.

Химические свойства:

Наличие оксидной пленки предохраняет металл от дальнейшего разрушения и обусловливает его невысокую химическую активность при комнатной температуре. При нагревании бериллий сгорает на воздухе с образованием оксида BeO, реагирует с серой и азотом. С галогенами бериллий реагирует при обычной температуре или при слабом нагревании. Все эти реакции сопровождаются выделением большого количества теплоты, так как прочность кристаллических решеток возникающих соединений (BeO, BeS, Be 3 N 2 , ВеCl 2 и др.) довольно велика.
Благодаря образованию на поверхности прочной пленки бериллий не реагирует с водой, хотя находится в ряду стандартных потенциалов значительно левее водорода. Как и алюминий, бериллий реагирует с кислотами и растворами щелочей:
Be + 2HCl = BeCl 2 + H 2 ,
Be + 2NaOH + 2H 2 O = Na 2 + H 2 .
Интересно, что бериллий хорошо растворяется в концентрированных растворах фторидов:
Be + 4NH 4 F + 2H 2 O = (NH 4) 2 + 2NH 3 *H 2 O + H 2
Причина - образование прочных фторидных комплексов.

Важнейшие соединения:

Оксид бериллия , BeO встречается в природе в виде редкого минерала бромеллита. Получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата выше 600°С.
Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С - лишь 0,18%. Оксид бериллия, прокаленный не выше 500°С, легко взаимодействует с кислотами, труднее - с растворами щелочей, а прокаленный выше 727° С - лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.
Оксид бериллия обладает очень высокой теплопроводностью. Считается одним из лучших огнеупорных материалов, используется для изготовления тиглей и других изделий
Гидроксид бериллия , Be(OH) 2 - полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные свойства: Be(OH) 2 + 2КOH = К 2 , Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O.
Действием на гидроксид бериллия Be(OH) 2 растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be 4 O(CH 3 COO) 6 .
Галогениды бериллия , бесцв. крист. вещества, расплываются на воздухе, поглощая влагу. Для получения безводного хлорида используется реакция 2BeO + CCl 4 = 2BeCl 2 + CO 2
Подобно хлориду алюминия BeCl 2 является катализатором в реакции Фриделя – Крафтса. В растворах подвергается гидролизу
...
Бериллаты , в концентрированных растворах и расплавах щелочей присутствуют бериллаты состава M 2 BeO 2 , M 3 BeO 4 , в разбавленных растворах гидроксобериллаты M 2 . Легко гидролизуются до гидроксида бериллия.
...
Гидрид бериллия , BeH 2 - полимерное вещество, его получают реакцией: BeCl 2 + 2LiH = BeH 2 + 2LiCl
Карбид бериллия , Be 2 С - образуется при взаимодействии бериллия с углеродом. Подобно карбиду алюминия гидролизуется водой с образованием метана.

Применение:

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллиевые бронзы (Cu и 3-6% Be) – материал для пружин c большой устойчивостью к механической усталости и совершенно не дающих искр при механических ударах.
Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу).
В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов.
В смесях с некоторыми a -радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и a -частиц возникают нейтроны: 9 Ве(a ,n) 12 C.
Физиологическое действие: в живых организмах бериллий, по-видимому, не несет никакой биологической функции, однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны, канцерогенны (ПДК 0,001 мг/м 3).

Рудакова Анна Валерьевна
ХФ ТюмГУ, 561 группа.

Источники:
Бериллий // Википедия. Дата обновления: 23.01.2019. URL: https://ru.wikipedia.org/?oldid=97664788 (дата обращения: 04.02.2019).

Бериллий — это металл серебристо-серых оттенков с блестящими кристаллическими проявлениями на сломах, который является четвёртым по счёту химическим элементом таблицы Менделеева. Вес атома бериллия составляет 9,0122 в единице исчисления стандартной атомной массы, равной 1/12 массы изотопа углерода. Бериллий - редкоземельный металл, который соотносится к массе земли в процентном отношении 2,6·10-4 %.

Открытие Бериллия

Как и многие химические элементы, бериллий был открыт в связи с изучением свойств благородных металлов и драгоценных камней. В 1798 году известный французский Луи Никола Воклен работал с бериллом - полудрагоценным камнем, ближайшим «родственником» изумруда. В процессе экспериментов активно использовалась так называемая берилловая земля, в которой и содержался оксид бериллия ВеО. Однако в этот раз бериллий как автономный химический элемент не был идентифицирован и назван. Это произошло позже, в 1828 году, когда немецкому учёному Фридриху Вёллеру удалось получить металлический бериллий. А завершил эволюцию познания этого довольно редкого элемента французский химик Лебо, которому с помощью электролиза удалось получить чистые бериллиевые кристаллы.

Кристаллы бериллия имеют сладковатый привкус, поэтому элемент первоначально именовался «глюциний» от греческого «сладкий». С открытием бериллия со временем сформировалась новая отрасль — синтез полудрагоценных и драгоценных камней. Сегодня на основе берилла синтезируются искусственные изумруды, аквамарины, гелиодоры, которые активно используются в ювелирной промышленности. Полудрагоценный камень берилл, послуживший отправной точкой в открытии бериллия, был назван в честь южноиндийского города Веллур, который находился вблизи известных изумрудных копей Индии. Бериллий содержится и в человеческом организме в количестве, не превышающем 0,036 мг. Тем не менее, бериллий в газообразном состоянии и бериллиевая пыль являются высокотоксичными веществами, которые вызывают серьёзные патологи органов дыхания и кровообращения.

Основные физико-химические свойства

Благодаря самой высокой внутренней теплоте правления, этот металл обладает уникальными характеристиками, определяющими его востребованность в ведущих отраслях производства и науки. Вышеупомянутая редкость бериллия в природе делает этот элемент своеобразным дефицитом в мире современных металлических сплавов.

Относительно низкая температура плавления 1284°С позволяет создавать бериллиевые слитки в условиях вакуума, однако чаще всего практикуется производство бериллия в порошкообразном состоянии. Литой бериллий отличает высокая хрупкость структуры, так что наибольший интерес этот металл представляет в деформированном виде. Термическая обработка под давлением позволяет на порядок повысить конструкционную прочность бериллия, который в конечном состоянии, благодаря высокой пластичности становится схожим по многим характеристикам с магнием и алюминием. В частности, бериллий на открытом воздухе также образуют оксидную плёнку, препятствующую коррозии. Этот металл без труда растворяется во многих кислотах и даже щелочах, за исключением концентрированной азотной кислоты.

Получают бериллий путём выделения из алюминиевых сплавов с помощью разнообразных технологий очистки, а также из минералов бериллов, на которые воздействуют концентрированной серной кислотой. Металлический бериллий производится путём обработки бериллиевых оксидов и сульфатов (Ве(ОН)2 или BeSO4). Технологические процессы производства бериллия достаточно сложны и требуют значительных энергозатрат, поэтому этот металл относится к дорогостоящим материалам.

Область применения

Уникальное природное свойство бериллия — не вступать во взаимодействие с рентгеновским излучением определило активное использование этого металла в изготовлении рентгенотехнических приборов и оборудования.

Кроме того, сегодня бериллиевые сплавы применяются для изготовления нейтронных отражателей и замедлителей в ядерных реакторах. Оксид бериллия отличается предельно высокой теплопроводностью и огнеупорностью, которая также используется в производстве оборудования для ядерной энергетики.

Аэрокосмическая и авиационная промышленность — ещё две отрасли, в которых находят успешное применение прочности, антикоррозийности и огнеупорности бериллиевых сплавов. В металлургии бериллий используется в качестве легирующего элемента, увеличивающего антикоррозийную и конструкционную прочность стали.



Понравилась статья? Поделитесь с друзьями!