Что такое изотопы и изобары. Изотопы и изобары

Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 –14 - 10 –15 м(линейные размеры атома примерно 10 –10 м).

Атомное ядро состоит из элементарных частиц - протонов и нейтронов

Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоя т р = 1,6726*10 –27 кг?1836 т e , где т e - масса электрона. Нейтрон (n ) - нейтральная частица с массой покоя т п = 1,6749*10 –27 кг?1839 т e . Протоны и нейтроны называют­ся нуклонами (от лат. nucleus- ядро). Общее число нуклонов в атомном ядре называ­ется массовым числом А.

Атомное ядро характеризуется зарядом Ze, где Z - зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z = 1 до Z = 107.

Ядро обозначается тем же символом, что и нейтральный атом: a z X , где Х - символ химического элемента,Z атомный номер (число протонов в ядре),А - массовое число (число нуклонов в ядре).

Ядра с одинаковыми Z , но разными А (т. е. с разными числами нейтронов N=A–Z ) называются изотопами, а ядра с одинаковыми А, но разными Z -изобарами. Например, водород (Z =1) имеет три изотопа:Н-протий (Z =1,N =0),Н-дейтерий (Z =1,N =1),Н - тритий (Z =1,N =2), олово-десять, и т. д. Примером ядер-изобар могут служить ядраВе,В,С. В насто­ящее время известно более 2500 ядер, отличающихся либо Z , либо А, либо тем и другим.

Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две: капельную и оболочечную.

  • 1. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами - молекулами в жидкости и нуклонами в ядре, - являются короткодействующими и им свойственно насыщение. Ядра характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре.
  • 2. Оболочечная модель ядра (1949-1950; М. Гепперт-Майери X. Иенсен. Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам и связывает устой­чивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств.

Задание 26.
Изотоп никеля-57 образуется при бомбардировке частицами ядер атомов железа-54. Составьте уравнения ядерной реакции и напишите его в сокращенной форме.
Решение:
Изотоп 28-го элемента – никель-57 был получен бомбардировкой -частицами атомов железа-54. Превращение атомных ядер обуславливается их взаимодействием с элементарными частицами или друг с другом. Ядерные реакции связаны с изменением состава ядер атомов химических элементов. С помощью ядерных реакций можно из атомов одних эле-ментов получить атомы других. Превращение атомных ядер как при естественной, так и при искусственной радиоактивности записывают в виде уравнения ядерных реакций. При этом следует помнить, что суммы массовых чисел (цифры, стоящие у символа элемента вверху слева) и алгебраические суммы зарядов (цифры, стоящие у символа элемента внизу слева) частиц в левой и правой частях равенства должны быть равны. Данную ядерную реакцию выражают уравнением:

Задание 28.
Что такое изотопы? Чем можно объяснить, что у большинства элементов периодической системы атомные массы выражаются дробным числом? Могут ли атомы разных элементов иметь одинаковую массу? Как называются подобные атомы?
Решение:
Атомы, обладающие одинаковым зарядом ядра (и, следовательно, тождественными химическими свойствами), но разным числом нейтронов (а значит, и разным массовым числом), называют изотопами (от греч. слов «изос» - одинаковый и «топос» - место). Установлено, что, как правило, каждый элемент представляет собой совокупность нескольких изотопов. Именно этим объясняются значительные отклонения атомных масс многих элементов от целочисленных величин. Так, природный хлор на 75,53% состоит из изотопа 35Cl и на 24,47% из изотопа 37Cl; в результате средняя атомная масса хлора равна 35,453.

В природе встречается и другое явление, заключающееся в том, что атомы разных элементов обладают одинаковой атомной массой, но разным зарядом ядер. Такие атомы называют изобарами. Например, изотоп калия и изотоп кальция имеют одинаковые атомные массы (40), но разные заряды ядер Соответственно +19 и +20:

Задание 29.
Изотоп кремния-30 образуется при бомбардировке -частицами ядер атомов алюминия-27. Составьте уравнение этой ядерной реакции и напишите его в сокращенной форме.
Решение:

Часто применяют сокращённую форму записи ядерной реакции. Для данной реакции она будет иметь вид:

В скобках пишут бомбардирующую частицу, а через запятую – частицу, образующуюся при данном ядерном процессе. В сокращённых уравнениях частицы

обозначают соответственно , p, d, n, е.

Задание 31.
Изотоп углерода- 11 образуется при бомбардировке протонами ядер атомов азота- 14. Составьте уравнение этой ядерной реакции и напишите его в сокращенной форме.
Решение:
Превращение атомных ядер обуславливается их взаимодействием с элементарными частицами или друг с другом. Ядерные реакции связаны с изменением состава ядер атомов химических элементов. С помощью ядерных реакций можно из атомов одних элементов получить атомы других. Превращение атомных ядер как при естественной, так и при искусственной радиоактивности записывают в виде уравнения ядерных реакций. При этом следует помнить, что суммы массовых чисел (цифры, стоящие у символа элемента вверху слева) и алгебраические суммы зарядов (цифры, стоящие у символа элемента внизу слева) частиц в левой и правой частях равенства должны быть равны. Данную ядерную реакцию выражают уравнением:

Часто применяют сокращённую форму записи ядерной реакции. Для данной реакции она будет иметь вид:

В скобках пишут бомбардирующую частицу, а через запятую – частицу, образующуюся при данном ядерном процессе. В сокращённых уравнениях частицы

обозначают соответственно , p, d, n, е.

Задание 328
Назовите три изотопа водорода. Укажите состав их ядер. Что такое тяжелая вода? Как она получается и каковы ее свойства?
Решение:
Для водорода известны три изотопа: - протий Н , - дейтерий D , - тритий Т . Протий и дейтерий встречаются в природе, тритий получен искусственно. Ядро протия состоит из одного протона, ядро дейтерия - из одного протона и одного нейтрона, а ядро трития – из одного протона и двух нейтронов.

Тяжёлая вода D 2 O – соединение дейтерия с кислородом. Тяжёлую воду получают путём электролиза природной воды. При электролизе воды разряд ионов Н + происходит значительно быстрее, чем D + , поэтому в остатке после разложения электролизом большого количества воды концентрируется D 2 O.

Тяжёлая вода D 2 O по физико-химическим свойствам отличается от Н 2 О: t пл. = 3,82 0С, t кип . = 101,42 0 С, р плот, равна 1,1050 г/см 3 (20 0 C). Заметно различаются энтальпии растворения солей в Н 2 O и D 2 O, константы диссоциации кислот и другие характеристики растворов.

Атом – одноядерная, неделимая химическим путем частица химического элемента, носитель свойства вещества.

Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов и N нейтронов, которые не несут на себе заряд. Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны. Масса атома определятся массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается.

Нуклиды вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения.

Нуклиды делятся на стабильные и радиоактивные (радионуклиды, радиоактивные изотопы). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента, либо нуклид другого элемента с тем же массовым числом, либо два или несколько новых нуклидов.

Среди радионуклидов выделяются короткоживущие и долгоживущие. Короткоживущие радионуклиды либо являются членами природные радиоактивных рядов, либо непрерывно образуются в результате ядерных реакций, вызываемых космическим излучением. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими , или примордиальными радионуклидами; такие нуклиды имеют период полураспада. Для каждого элемента были искусственно получены радионуклиды; для элементов с атомным номером (т. е. числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов – 46 – обладает ртуть.

Изотопы – разновидности атомов какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём) и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов.



Изобары – нуклиды разных элементов, имеющие одинаковое массовое число; например, изобарами являются 40 Ar, 40 K, 40 Ca.

Число нуклонов (массовое число) A = N + Z в ядрах-изобарах одинаково, значит, числа протонов Z и нейтронов N различаются: Z 1 ≠ Z 2 , N 1 ≠ N 2. Совокупность нуклидов с одинаковым A, но разным Z называют изобарической цепочкой.

Радиоактивные семейства (ряды) – генетически связанные последовательным радиоактивным распадом цепочки (ряды) ядер естественного происхождения.

Характеристика основных видов ионизирующего излучения. Единицы радиоактивности. Закон радиоактивного распада. Период радиоактивного распада. Понятие об единицах радиоактивности. Дозовые поля облучения.

Ионизирующее излучение - это излучения, взаимодействие которых с веществом вызывает или приводит к образованию в этой среде ионов.

Наиболее разнообразны по видам ионизирующих излучений так называемые радиоактивные излучения, образующиеся в результате самопроизвольного радиоактивного распада атомных ядер элементов с изменением физических и химических свойств последних. Элементы, обладающие способностью радиоактивного распада, называются радиоактивными .

Различные виды ионизирующих излучений сопровождаются высвобождением разного количества энергии и обладают различной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Источники радиации бывают искусственными , созданными человеком, и естественными , присутствующими в природе, и не зависящими от человека. Полностью освободиться от воздействия естественных источников радиации космического и земного происхождения практически невозможно.

Опасность ионизирующего излучения ожидает человека не только из окружающей среды, т.е. при внешнем облучении, но внутри него самого, если источники ионизирующего излучения попали при дыхании, питье воды и потреблении пищи внутрь. Такое облучение называется внутренним .

Установлено, что из всех естественных источников радиации наибольшую опасность представляет радон – невидимый тяжелый газ без вкуса и запаха. Радон высвобождается из земной коры повсеместно, но его концентрация существенно различается для различных точек земного шара. Основное излучение от радона человек получает, находясь в закрытом, изолированном, непроветриваемом помещении.

При радиоактивном распаде имеют место три основных вида ионизирующих излучений: альфа, бета и гамма.

Альфа-излучение задерживается небольшими препятствиями и практически не

способно проникнуть через наружный слой кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма. Пути проникновения могут быть разными: через открытую рану, с пищей, водой, с вдыхаемым воздухом или паром. В этом случае они становятся чрезвычайно опасными.

Бета-излучение представляет собой поток электронов, образующихся при распаде ядер как естественных, так и искусственных радиоактивных элементов. Бета-излучения обладают большей проникающей способностью по сравнению с альфа-частицами, поэтому и для защиты от них требуются более плотные и толстые экраны. Разновидностью бета-излучений, образующихся при распаде некоторых искусственных радиоактивных элементов, являются позитроны . Они отличаются от электронов лишь положительным зарядом, поэтому при воздействии на поток лучей магнитным полем они отклоняются в противоположную сторону.

Единицы измерения радиоактивности – это единицы измерения активности радиоактивных элементов в препаратах и в различных средах. Активность радиоактивного препарата в международной системе единиц (СИ) измеряется числом атомов распада в секунду (расп/сек). Допускается применение внесистемных единиц: расп/мин и кюри. Для смеси нескольких радиоактивных элементов (или изотопов) указывается активность каждого из них. Удельная активность измеряется в:

расп/сек ∙ м 3 или расп/сек ∙ кг (внесистемные единицы: Ки/см 3 , Ки/г). С единицами радиоактивности тесно связаны единицы радиоактивных излучений, характеризующие выход излучений из источника и их поле. В этих единицах в системе СИ – измеряются плотность потока частиц – частица/сек ∙ м 2 ; интенсивность излучения – Вт/м 2 , поглощенная доза излучения – Дж/кг; мощность поглощенной дозы излучения – Вт/кг; экспозиционная доза рентгеновского и γ-излучений – Кл/кг; мощность экспозиционной дозы рентгеновского и γ-излучений – А/кг.

Закон радиоактивного распада – физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией.

Радиоактивный распад – спонтанное изменение состава (заряда Z, массового

числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Радиоактивность – неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения – радиацией.

Воздействие радиации на человека называют облучением . Причиной воздействия является передача энергии излучения клеткам организма. Облучение вызывает нарушение обмена веществ, лейкоз и злокачественные опухоли, изменение структуры клеток, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Последствия облучения сильнее сказываются на делящихся клетках, в связи с чем, для детей облучение гораздо опаснее, чем для взрослых.

Естественная радиоактивность – самопроизвольный распад атомных ядер, встречающихся в природе.

Искусственная радиоактивность – самопроизвольный распад атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.

Дозовые поля облучения – величина, используемая для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани. Единица экспозиционной дозы в системе СИ – кулон на килограмм (Кл/кг). Кулон на килограмм равен экспозиционной дозе, при которой все электроны и позитроны, освобожденные фотонами в объеме воздуха массой 1 кг, производят в воздухе ионы, несущие электрический заряд каждого знака 1 Кл.

В рентгенах измеряют количество генерированного излучения или экспозиционную дозу.

Единица поглощенной дозы в системе СИ – грей (Гр). Грей равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения, равная 1 Дж.

6. Радиоактивные превращения. Взаимодействие ˠ-квантов с веществом. Альфа и бета распад радионуклидов. Понятие о РИР и ПИР.

Радиоактивные превращения – самопроизвольные превращения одних ядер в другие ядра. Радиоактивные превращения сопровождаются испусканием различных частиц. Видами радиоактивных превращений являются альфа-распад и бета-распад.

Альфа-распад – вид самопроизвольного радиоактивного превращения тяжелых атомных ядер, который сопровождается испусканием альфа-частиц из ядра. В результате альфа-распада исходный элемент смещается на два номера к началу периодической системы Менделеева.

Бета-распад – тип радиоактивного превращения нестабильных атомных ядер, обусловленный слабым взаимодействием и связанный со взаимным превращением нейтронов и протонов в атомных ядрах. Различают: 1) бета-минус-распад, при котором из ядра вылетает электрон и заряд ядра увеличивается на единицу; 2) бета-плюс-распад, при котором из ядра вылетает позитрон и заряд ядра уменьшается на единицу.

Гамма- и рентгеновское излучения представляют собой электромагнитные волны. Рентгеновское излучение возникает при взаимодействии заряженных частиц с атомами вещества, а гамма-излучение испускается при переходе атомных ядер из возбуждённых состояний в состояние с меньшей энергией. Длина волны гамма-излучения обычно менее 0,2 нанометров. Для этих видов излучения не существует понятий пробега, потерь энергии на единицу пути. Гамма-лучи, проходя через вещество, взаимодействуют как с электронами, так и с ядрами атомов среды (вещества). В результате взаимодействия интенсивность лучей уменьшается.

Поглощение гамма-квантов веществом обусловлено в основном тремя процессами: фотоэффектом, комптоновским рассеянием и рождением в кулоновском поле ядра электрон-позитронных пар.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-

Еще в V веке до нашей эры греческие мыслители Левкипп и Демокрит сформулировали результаты своих размышлений о структуре материи в виде атомистической гипотезы: вещество невозможно бесконечно делить на все более мелкие части, существуют «окончательные», неделимые частицы вещества. Все материальные предметы состоят из разнообразных атомов

(от греч. atomos -- «неделимый», «неразрезаемый»). Соединяясь, различные типы атомов, образуют все новые вещества.

По легенде, Демокрит, сидя у моря на камне, держал в руке яблоко и размышлял: «Если я буду резать это яблоко ножом на все более мелкие части, всегда ли у меня в руках будет оставаться часть, которая все еще имеет свойства яблока?» Обдумав эту гипотезу, Демокрит пришел к следующим выводам: «Начало Вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров - бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия, не разрешается в небытие. И атомы бесчисленны по величине и множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля… Атомы же не поддаются никакому воздействию и неизменяемы вследствие твердости».

На начало 19 века приходится становление теории атомно-молекулярного строения мира. Доказать экспериментально, что каждый химический элемент состоит из одинаковых атомов, удалось лишь в 1808 г.

Сделал это английский химик и физик Джон Дальтон, вошедший в историю как создатель химического атомизма. Дальтон представлял атомы в виде упругих шариков и настолько верил в их реальное существование, что даже рисовал на бумаге атомы кислорода и азота.

В 1811 г. итальянский физик и химик Амедео Авогадро выдвинул гипотезу, согласно которой молекулы простых газов состоят из одного или нескольких атомов. На основе этой гипотезы Авогадро дал формулировку одного из основных законов идеальных газов и способ определения атомных и молекулярных масс.

Он открыл один из газовых законов, названный его именем. На его основе был разработан метод определения молекулярного и атомного весов. Итак, все вещества в природе состоят из атомов. Их принято делить на простые, состоящие из атомов одних и тех же элементов (О2, N2, H2 и т.д.), и сложные, в состав которых входят атомы различных элементов (H2O, NaCl, H2SO4 и др.).

Атом - это наименьшее структурное образование любого из простейших химических веществ, называемых элементами.

Хотя понятие атома, как и сам термин, имеет древнегреческое происхождение, только в ХХ веке была твердо установлена истинность атомной гипотезы строения веществ.

Размер и масса атомов чрезвычайно малы. Так, диаметр самого легкого атома (водорода) составляет всего 0,53 . 10-8 см, а его масса 1,67 . 10-24 г.

Развитие исследований радиоактивного излучения, с одной стороны, и квантовой теории - с другой, привели к созданию квантовой модели атома Резерфорда - Бора . После открытия электрона в 1897 г. Джозефом Джоном Томсоном он обнаружил, что от атомов под действием сильного электрического поля отрываются заряженные частицы. По его оценкам, масса «атома электричества» примерно в тысячу раз меньше массы атома водорода, а заряд точно совпадает с зарядом иона водорода.

Позднее, уже в 1910 и 1913 г.г., Роберт Милликен намного повысил точность измерений заряда и массы электрона. Так, несмотря на отдельные мнения, к концу XIX века стало понятно, что частицы, еще меньшие, чем атомы, существуют реально, и что, скорее всего, они входят в состав атомов и являются носителями некоторого наименьшего количества электричества.

Джозеф Томсон, развивая модель У.Томсона, в 1903 г. предлагает свою модель атома («пудинга с изюмом»): в положительную сферу вкраплены электроны. Они удерживаются внутри положительно заряженной сферы упругими силами. Те из них, которые находятся на поверхности, могут довольно легко «выбиваться», оставляя ионизованный атом рис. 1.

Рис. 1.

В многоэлектронных атомах электроны располагаются по устойчивым конфигурациям, рассчитанным Томсоном. Он считал каждую такую конфигурацию определяющей химические свойства атомов. Дж. Томсон предпринял попытку теоретически объяснить периодическую систему элементов Д.И. Менделеева.

Позднее Нильс Бор указал, что со времени этой попытки идея о разделении электронов в атоме на группы сделалась исходным пунктом. В 1911 г. Джозеф Томсон разработал так называемый метод парабол для измерения отношения заряда частицы к её массе, который сыграл большую роль в исследовании изотопов.

В 1903 г. с идеей о планетарной модели строения атома в Токийском физико-математическом обществе выступил японский теоретик Хантаро Нагаока, назвавший эту модель «сатурноподобной».

Х.Нагаока представил строение атома аналогичным строению солнечной системы: роль Солнца играет положительно заряженная центральная часть атома, вокруг которой по установленным кольцеобразным орбитам движутся «планеты» - электроны. При незначительных смещениях электроны возбуждают электромагнитные волны. Но его работа, о которой Э. Резерфорд не знал, не получила дальнейшего развития.

Но вскоре оказалось, что новые опытные факты опровергают модель Джозефа Томсона и, наоборот, свидетельствуют в пользу планетарной модели. Эти факты были открыты выдающимся английским физиком Э. Резерфордом. В первую очередь следует отметить открытие им ядерного строения атома.

Ученик Джозефа Томсона Эрнест Резерфорд в результате знаменитых экспериментов по рассеянию золотой фольгой б-частиц «разделил» атом на маленькое положительно заряженное ядро и окружающие его электроны (рис. 2).

В 1908-1909 г.г. работавшие в университете Виктории (Манчестер, Англия) у Резерфорда Ханс Гейгер, который незадолго до этого сконструировал совместно с ним счетчик альфа-частиц, и Эрнест Марсден установили, что при прохождении альфа-частиц сквозь тонкие пластинки из золотой фольги подавляющее их большинство пролетает навылет, но единичные частицы отклоняются на углы больше 90о, т.е. полностью отражаются.


Рис. 2.

Большинство альфа-частиц пролетало сквозь фольгу, отражалась лишь их малая часть, и Э. Резерфорд понял, что альфа-частицы отражаются, когда налетают на маленькие массивные объекты, и что эти объекты расположены далеко друг от друга. Так были открыты атомные ядра. Объем ядра оказался в миллионы миллиардов раз меньше объема атома, и в этом ничтожно малом объеме находилось практически все вещество атома.

К этому времени уже знали, что электрический ток представляет собой поток частиц, эти частицы назвали электронами. И здесь Резерфорд обратился к планетарной модели строения атома.

Согласно ей он напоминал миниатюрную солнечную систему, в которой «планеты» - электроны вращаются вокруг «Солнца» - ядра (рис. 3).

Рис. 3.

Благодаря работам Резерфорда стало ясно, как устроены атомы: в середине атома находится крохотное массивное ядро, а вокруг ядра «роятся» электроны и образуют легкую оболочку атома. При этом электроны, располагаясь и вращаясь в разных плоскостях, создают отрицательный суммарный заряд, а ядро - положительный. В целом атом же остается электронейтральным, так как положительный заряд ядра полностью компенсируется отрицательным зарядом электронов.

Однако, согласно законам классической механики и электродинамики, вращение электрона вокруг ядра должно сопровождаться электромагнитным излучением с непрерывным спектром.

Но это противоречило известным еще с 1880 г. линейчатым спектрам газов и паров химических элементов.

Противоречие разрешил в 1913 г. ученик Резерфорда датский физик Нильс Бор, разработав квантовую модель строения атома на основе квантовой теории излучения и поглощения света, созданной Максом Планком и Альбертом Эйнштейном.

(14 декабря 1900 г.) Планк продемонстрировал вывод этой формулы, основанный на предположении, что энергия осциллятора есть целое кратное величины hv, где v - частота излучения, a h -- новая универсальная постоянная, названная Максом Планком элементарным квантом действия (сейчас - это постоянная Планка). Введение этой величины было началом эпохи новой, квантовой физики.

Нильс Бор выдвинул предположение, что атом водорода (система протон-электрон) может находиться только в определенных стационарных энергетических состояниях (электрон - на определенных орбитах), причем одно из них соответствует минимуму энергии и является основным (невозбужденным). Испускание или поглощение атомом энергии может происходить, согласно теории Бора, только при переходах электрона из одного энергетического состояния в другое (с одной орбиты на другую).

На основании этого Бор сформулировал свои постулаты:

  • 1. Электрон в атоме находится в «стационарном» состоянии (движется по стационарной орбите) и никакой энергии не излучает.
  • 2. Будучи выведенным из стационарного состояния (переведенным на другую орбиту), электрон, возвращаясь, излучает квант света hn = Е2 - Е1.
  • 3. Электрон в атоме может находиться только на тех «разрешенных» орбитах, для которых момент количества движения (mvr) принимает некие дискретные значения, а именно mvr = nh/2p , где n - целое число 1, 2, 3…

Заряд ядра оказался важнейшей характеристикой атома. В 1913 г. было показано, что заряд ядра совпадает с номером элемента в таблице Менделеева.

Теория Бора позволяла очень точно вычислить положение линий в спектре испускания атомарного водорода. Однако она не могла предсказать соотношение интенсивностей линий даже в этой простейшей системе.

Для систем, содержащих более одного электрона, например атома гелия, теория Бора уже не давала точных значений спектральных линий.

Поэтому в 1923-26 г.г. Луи де Бройлем (Франция), Вернером Гейзенбергом (Германия) и Эрвином Шрёдингером (Австрия) была разработана новая теория квантовой (волновой) механики.

Блестящая идея, высказанная Гейзенбергом, состояла в том, чтобы рассматривать квантовые события как явления на совершенно ином уровне, чем в классической физике. Он подошел к ним как к явлениям, не допускающим точного наглядного представления, например с помощью картины вращающихся по орбитам электронов.

Через несколько месяцев Э.Шрёдингер предложил другую формулировку квантовой механики, описывающей эти явления на языке волновых понятий.

Подход Шрёдингера брал начало в работах Луи де Бройля, высказавшего гипотезу о так называемых волнах материи: подобно тому, как свет, традиционно считавшийся волнами, может обладать корпускулярными свойствами (фотоны или кванты излучения), частицы могут обладать волновыми свойствами. Позднее было доказано, что матричная и волновая механики, по существу, эквивалентны. Взятые вместе, они образуют то, что ныне называется квантовой механикой. Вскоре эта механика была расширена английским физиком-теоретиком XX века Полем Дираком (Нобелевская премия по физике, 1933), включившим в волновое уравнение элементы теории относительности Эйнштейна с учетом спина электрона.

В основе современной теории строения атома лежат следующие основные положения:

1). электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна. Подобно частице, электрон обладает определенной массой и зарядом. В то же время, движущийся электрон проявляет волновые свойства, т.е. например, характеризуется способностью к дифракции. Длина волны электрона л и его скорость v связаны соотношением де Бройля:

где m - масса электрона;

  • 2). для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение: ?x m ?v > ћ/2, где?х - неопределенность положения координаты; ?v -- погрешность измерения скорости;
  • 3). электрон в атоме не движется по определенным траекториям, а может

находиться в любой части околоядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью;

4). ядра атомов состоят из протонов и нейтронов (общее название - нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.

В 1932 г. наш отечественный физик Дмитрий Дмитриевич Иваненко и немецкий ученый Вернер Гейзенберг (Хайзенберг) независимо друг от друга высказали предположение, что нейтрон является наряду с протоном структурным элементом ядра.

Однако, протонно-нейтронная модель ядра была встречена большинством физиков скептически. Даже Э. Резерфорд полагал, что нейтрон - это лишь сложное образование протона и электрона.

В 1933 г. Дмитрий Иваненко выступил с докладом о модели ядра, в котором он защищал протонно-нейтронную модель, сформулировав основной тезис: в ядре имеются только тяжелые частицы. Иваненко отверг идею о сложной структуре нейтрона и протона. По его мнению, обе частицы должны обладать одинаковой степенью элементарности, т.е. и нейтрон, и протон способны переходить друг в друга.

В дальнейшем протон и нейтрон стали рассматриваться как два состояния одной частицы - нуклона, и идея Иваненко стала общепринятой, а в 1932 г. в составе космических лучей была открыта еще одна элементарная частица - позитрон.

В настоящее время существует гипотеза о делимости ряда элементарных частиц на субчастицы кварки.

Кварки - это гипотетические частицы, из которых, как предполагается, могут состоять все известные элементарные частицы, участвующие в сильных взаимодействиях (адроны).

Гипотеза о существовании кварков была высказана в 1964 г. независимо друг от друга американским физиком Мари Гелл-Манном и австрийским (а впоследствии американским) ученым Георгом (Джорджем) Цвейгом с целью объяснения закономерностей, установленных для адронов.

Кстати, у термина «кварк» нет точного перевода. Он имеет чисто литературное происхождение: был заимствован Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где означал «нечто неопределенное», «мистическое». Такое название для частиц, очевидно, было выбрано потому, что кварки проявляли ряд необычных свойств, выделяющих их из всех известных элементарных частиц (например, дробный электрический заряд) .

На рисунке 4 изображена современная модель строения атома.

Рис. 4.

Итак, атомы состоят из трех видов элементарных частиц. В центре атома имеется ядро, образованное протонами и нейтронами. Вокруг него быстро вращаются электроны, образуя так называемые электронные облака. Количество протонов в ядре равно количеству электронов, движущихся вокруг него. Масса протона примерно равна массе нейтрона. Масса электрона гораздо меньше их масс (1836 раз).

) A = N + Z в ядрах-изобарах одинаково, числа протонов Z и нейтронов N различаются: Z_1 \ne Z_2, N_1 \ne N_2. Совокупность нуклидов с одинаковым A , но разным Z называют изобарической цепочкой. В то время как массовое число изобаров одинаково, их атомные массы совпадают лишь приближённо. Зависимость атомной массы (или избытка массы) от Z в изобарической цепочке показывает направление возможных бета-распадов . Эта зависимость в первом приближении представляет собой параболу (см. формула Вайцзеккера) - сечение долины стабильности плоскостью A = const .

Примордиальные изобарные пары и триады

Существуют 59 примордиальных изобарных пар и 9 примордиальных изобарных триад, которые в основном включают в себя стабильные изотопы элементов с чётными Z, отличающимися на 2 единицы. Если учитывать только стабильные нуклиды, то существуют 48 изобарных пар и 1 изобарная триада:

Примордиальные изобарные пары

Массовое число Изобарная пара Массовое число Изобарная пара Массовое число Изобарная пара
1 36 \mathsf{_{16}S \ \ _{18}Ar} 21 104 \mathsf{_{44}Ru \ \ _{46}Pd} 41 150 \mathsf{_{60}Nd} (2β −) \mathsf{_{62}Sm}
2 46 \mathsf{_{20}Ca \ \ _{22}Ti} 22 106 \mathsf{_{46}Pd \ \ _{48}Cd} 42 152 \mathsf{_{62}Sm \ \ _{64}Gd} (α)
3 48 \mathsf{_{20}Ca} (2β −) \mathsf{_{22}Ti} 23 108 \mathsf{_{46}Pd \ \ _{48}Cd} 43 154 \mathsf{_{62}Sm \ \ _{64}Gd}
4 54 \mathsf{_{24}Cr \ \ _{26}Fe} 24 110 \mathsf{_{46}Pd \ \ _{48}Cd} 44 156 \mathsf{_{64}Gd \ \ _{66}Dy}
5 58 \mathsf{_{26}Fe \ \ _{28}Ni} 25 112 \mathsf{_{48}Cd \ \ _{50}Sn} 45 158 \mathsf{_{64}Gd \ \ _{66}Dy}
6 64 \mathsf{_{28}Ni \ \ _{30}Zn} 26 113 \mathsf{_{48}Cd} (β −)\mathsf{_{49}In} 46 160 \mathsf{_{64}Gd \ \ _{66}Dy}
7 70 \mathsf{_{30}Zn \ \ _{32}Ge} 27 114 \mathsf{_{48}Cd \ \ _{50}Sn} 47 162 \mathsf{_{66}Dy \ \ _{68}Er}
8 74 \mathsf{_{32}Ge \ \ _{34}Ge} 28 115 \mathsf{_{49}In} (β −) \mathsf{_{50}Sn} 48 164 \mathsf{_{66}Dy \ \ _{68}Er}
9 76 \mathsf{_{32}Ge} (2β −) \mathsf{_{34}Se} 29 116 \mathsf{_{48}Cd} (2β −) \mathsf{_{50}Sn} 49 168 \mathsf{_{68}Er \ \ _{70}Yb}
10 78 \mathsf{_{34}Se \ \ _{36}Kr} 30 120 \mathsf{_{50}Sn \ \ _{52}Te} 50 170 \mathsf{_{68}Er \ \ _{70}Yb}
11 80 \mathsf{_{34}Se \ \ _{36}Kr} 31 122 \mathsf{_{50}Sn \ \ _{52}Te} 51 174 \mathsf{_{70}Yb \ \ _{72}Hf} (α)
12 82 \mathsf{_{34}Se} (2β −) \mathsf{_{36}Kr} 32 123 \mathsf{_{51}Sb \ \ _{52}Te} 52 184 \mathsf{_{74}W \ \ _{76}Os}
13 84 \mathsf{_{36}Kr \ \ _{36}Sr} 33 126 \mathsf{_{52}Te \ \ _{54}Xe} 53 186 \mathsf{_{74}W \ \ _{76}Os} (α)
14 86 \mathsf{_{36}Kr \ \ _{38}Sr} 34 128 \mathsf{_{52}Te} (2β −) \mathsf{_{54}Xe} 54 187 \mathsf{_{75}Re} (β − , α) \mathsf{_{76}Os}
15 87 \mathsf{_{37}Rb} (β −) \mathsf{_{38}Sr} 35 132 \mathsf{_{54}Xe \ \ _{56}Ba} 55 190 \mathsf{_{76}Os \ \ _{78}Pt} (α)
16 92 \mathsf{_{40}Zr \ \ _{42}Mo} 36 134 \mathsf{_{54}Xe \ \ _{56}Ba} 56 192 \mathsf{_{76}Os \ \ _{78}Pt}
17 94 \mathsf{_{40}Kr \ \ _{42}Mo} 37 142 \mathsf{_{58}Ce \ \ _{60}Nd} 57 196 \mathsf{_{78}Pt \ \ _{80}Hg}
18 98 \mathsf{_{42}Mo \ \ _{44}Ru} 38 144 \mathsf{_{60}Nd} (α) \mathsf{_{62}Sm} 58 198 \mathsf{_{78}Pt \ \ _{80}Hg}
19 100 \mathsf{_{42}Mo} (2β −) \mathsf{_{44}Ru} 39 146 \mathsf{_{60}Nd \ \ _{62}Sm} (α) 59 204 \mathsf{_{80}Hg \ \ _{82}Pb}
20 102 \mathsf{_{44}Ru \ \ _{46}Pd} 40 148 \mathsf{_{60}Nd \ \ _{62}Sm} (α)
Примордиальные изобарные триады
Массовое число Изобарная триада
1 40 \mathsf{_{18}Ar \ \ _{19}K} (β + , β − , ε) \mathsf{_{20}Ca}
2 50 \mathsf{_{22}Ti \ \ _{23}V} (β + , β −) \mathsf{_{24}Cr}
3 96 \mathsf{_{40}Zr} (2β −) \mathsf{_{42}Mo \ \ _{44}Ru}
4 124 \mathsf{_{50}Sn \ \ _{52}Te \ \ _{54}Xe}
5 130 \mathsf{_{52}Te} (2β −) \mathsf{_{54}Xe \ \ _{56}Ba} (2ε)
6 136 \mathsf{_{54}Xe} (2β −) \mathsf{_{56}Ba \ \ _{58}Ce}
7 138 \mathsf{_{56}Ba \ \ _{57}La} (ε, β −) \mathsf{_{58}Ce}
8 176 \mathsf{_{70}Yb \ \ _{71}Lu} (β −) \mathsf{_{72}Hf}
9 180 \mathsf{_{72}Hf \ \ _{73}Ta} (изомер) \mathsf{_{74}W} (α)

В масс-спектрометрии

В масс-спектрометрии изобарами называются как ядра с одинаковым массовым числом, так и молекулы с (приблизительно) одинаковой молекулярной массой. Так, молекулы 16 O 1 H 2 H (полутяжёлой воды) являются молекулярными изобарами к атому 19 F . Ионы таких молекул и атомов имеют почти одинаковое отношение масса/заряд (при равном заряде) и, следовательно, движутся в электромагнитных полях масс-спектрометра по почти одинаковой траектории, являясь источником фона для своих изобар.

См. также

Напишите отзыв о статье "Изобары"

Примечания

Литература

  • Б. М. Яворский, А. А. Детлаф, А. К. Лебедев. Справочник по физике. - М .: «ОНИКС», «Мир и Образование», 2006. - 1056 с. - 7 000 экз. - ISBN 5-488-00330-4 .

Отрывок, характеризующий Изобары

– Нездорова, что ли? От страха министра, как нынче этот болван Алпатыч сказал.
– Нет, mon pere. [батюшка.]
Как ни неудачно попала m lle Bourienne на предмет разговора, она не остановилась и болтала об оранжереях, о красоте нового распустившегося цветка, и князь после супа смягчился.
После обеда он прошел к невестке. Маленькая княгиня сидела за маленьким столиком и болтала с Машей, горничной. Она побледнела, увидав свекора.
Маленькая княгиня очень переменилась. Она скорее была дурна, нежели хороша, теперь. Щеки опустились, губа поднялась кверху, глаза были обтянуты книзу.
– Да, тяжесть какая то, – отвечала она на вопрос князя, что она чувствует.
– Не нужно ли чего?
– Нет, merci, mon pere. [благодарю, батюшка.]
– Ну, хорошо, хорошо.
Он вышел и дошел до официантской. Алпатыч, нагнув голову, стоял в официантской.
– Закидана дорога?
– Закидана, ваше сиятельство; простите, ради Бога, по одной глупости.
Князь перебил его и засмеялся своим неестественным смехом.
– Ну, хорошо, хорошо.
Он протянул руку, которую поцеловал Алпатыч, и прошел в кабинет.
Вечером приехал князь Василий. Его встретили на прешпекте (так назывался проспект) кучера и официанты, с криком провезли его возки и сани к флигелю по нарочно засыпанной снегом дороге.
Князю Василью и Анатолю были отведены отдельные комнаты.
Анатоль сидел, сняв камзол и подпершись руками в бока, перед столом, на угол которого он, улыбаясь, пристально и рассеянно устремил свои прекрасные большие глаза. На всю жизнь свою он смотрел как на непрерывное увеселение, которое кто то такой почему то обязался устроить для него. Так же и теперь он смотрел на свою поездку к злому старику и к богатой уродливой наследнице. Всё это могло выйти, по его предположению, очень хорошо и забавно. А отчего же не жениться, коли она очень богата? Это никогда не мешает, думал Анатоль.
Он выбрился, надушился с тщательностью и щегольством, сделавшимися его привычкою, и с прирожденным ему добродушно победительным выражением, высоко неся красивую голову, вошел в комнату к отцу. Около князя Василья хлопотали его два камердинера, одевая его; он сам оживленно оглядывался вокруг себя и весело кивнул входившему сыну, как будто он говорил: «Так, таким мне тебя и надо!»
– Нет, без шуток, батюшка, она очень уродлива? А? – спросил он, как бы продолжая разговор, не раз веденный во время путешествия.
– Полно. Глупости! Главное дело – старайся быть почтителен и благоразумен с старым князем.
– Ежели он будет браниться, я уйду, – сказал Анатоль. – Я этих стариков терпеть не могу. А?
– Помни, что для тебя от этого зависит всё.
В это время в девичьей не только был известен приезд министра с сыном, но внешний вид их обоих был уже подробно описан. Княжна Марья сидела одна в своей комнате и тщетно пыталась преодолеть свое внутреннее волнение.
«Зачем они писали, зачем Лиза говорила мне про это? Ведь этого не может быть! – говорила она себе, взглядывая в зеркало. – Как я выйду в гостиную? Ежели бы он даже мне понравился, я бы не могла быть теперь с ним сама собою». Одна мысль о взгляде ее отца приводила ее в ужас.
Маленькая княгиня и m lle Bourienne получили уже все нужные сведения от горничной Маши о том, какой румяный, чернобровый красавец был министерский сын, и о том, как папенька их насилу ноги проволок на лестницу, а он, как орел, шагая по три ступеньки, пробежал зa ним. Получив эти сведения, маленькая княгиня с m lle Bourienne,еще из коридора слышные своими оживленно переговаривавшими голосами, вошли в комнату княжны.
– Ils sont arrives, Marieie, [Они приехали, Мари,] вы знаете? – сказала маленькая княгиня, переваливаясь своим животом и тяжело опускаясь на кресло.
Она уже не была в той блузе, в которой сидела поутру, а на ней было одно из лучших ее платьев; голова ее была тщательно убрана, и на лице ее было оживление, не скрывавшее, однако, опустившихся и помертвевших очертаний лица. В том наряде, в котором она бывала обыкновенно в обществах в Петербурге, еще заметнее было, как много она подурнела. На m lle Bourienne тоже появилось уже незаметно какое то усовершенствование наряда, которое придавало ее хорошенькому, свеженькому лицу еще более привлекательности.
– Eh bien, et vous restez comme vous etes, chere princesse? – заговорила она. – On va venir annoncer, que ces messieurs sont au salon; il faudra descendre, et vous ne faites pas un petit brin de toilette! [Ну, а вы остаетесь, в чем были, княжна? Сейчас придут сказать, что они вышли. Надо будет итти вниз, а вы хоть бы чуть чуть принарядились!]
Маленькая княгиня поднялась с кресла, позвонила горничную и поспешно и весело принялась придумывать наряд для княжны Марьи и приводить его в исполнение. Княжна Марья чувствовала себя оскорбленной в чувстве собственного достоинства тем, что приезд обещанного ей жениха волновал ее, и еще более она была оскорблена тем, что обе ее подруги и не предполагали, чтобы это могло быть иначе. Сказать им, как ей совестно было за себя и за них, это значило выдать свое волнение; кроме того отказаться от наряжения, которое предлагали ей, повело бы к продолжительным шуткам и настаиваниям. Она вспыхнула, прекрасные глаза ее потухли, лицо ее покрылось пятнами и с тем некрасивым выражением жертвы, чаще всего останавливающемся на ее лице, она отдалась во власть m lle Bourienne и Лизы. Обе женщины заботились совершенно искренно о том, чтобы сделать ее красивой. Она была так дурна, что ни одной из них не могла притти мысль о соперничестве с нею; поэтому они совершенно искренно, с тем наивным и твердым убеждением женщин, что наряд может сделать лицо красивым, принялись за ее одеванье.
– Нет, право, ma bonne amie, [мой добрый друг,] это платье нехорошо, – говорила Лиза, издалека боком взглядывая на княжну. – Вели подать, у тебя там есть масака. Право! Что ж, ведь это, может быть, судьба жизни решается. А это слишком светло, нехорошо, нет, нехорошо!
Нехорошо было не платье, но лицо и вся фигура княжны, но этого не чувствовали m lle Bourienne и маленькая княгиня; им все казалось, что ежели приложить голубую ленту к волосам, зачесанным кверху, и спустить голубой шарф с коричневого платья и т. п., то всё будет хорошо. Они забывали, что испуганное лицо и фигуру нельзя было изменить, и потому, как они ни видоизменяли раму и украшение этого лица, само лицо оставалось жалко и некрасиво. После двух или трех перемен, которым покорно подчинялась княжна Марья, в ту минуту, как она была зачесана кверху (прическа, совершенно изменявшая и портившая ее лицо), в голубом шарфе и масака нарядном платье, маленькая княгиня раза два обошла кругом нее, маленькой ручкой оправила тут складку платья, там подернула шарф и посмотрела, склонив голову, то с той, то с другой стороны.

Понравилась статья? Поделитесь с друзьями!