История развития связи первые линии передачи. История развития связи

Стационарным случайным процессом в узком смысле называется случайный процесс, у которого n -мерная плотность вероятности не изменится, если все отсчеты времени сместить на одну и ту же величину:

Если выбрать , то n -мерная плотность вероятности не будет зависеть от начала отсчета времени

Таким образом, для стационарного процесса одномерная плот­ность вероятности вообще не зависит от времени, а двумерная плот­ность зависит не в отдельности от t 1 и t 2 , а от их разности

В свою очередь, из выражений (2.9) и (2.10) вытекает, что математическое ожидание и дисперсия стационарного процесса не зависят от времени, а корреляционная функция зависит от t :

(2.11)

(2.12)

Из (2.11), (2.12) и (2.13) следует, что математическое ожи­дание постоянно и поэтому для стационарного процесса характе­ризует постоянную составляющую процесса; постоянность харак­теризует то, что в каждой точке времени t средняя удельная мощность флюктуаций (то есть мощность переменной составляющей) одна и та же; зависимость от означает, что для стационарного процесса неважно, в каких точках t 1 и t 2 берутся сечения, важна разность между ними .

Если условие (2.7) не выполняется, то случайный процесс на­зывается нестационарным . Иногда о стационарности судят только по выполнению равенств (2.9), (2.10) и, соответ­ственно, (2.11) - (2.13). Говорят, что, если выполняются равенства (2.9) и (2.10), то процесс является стационарным, не интересуясь при этом, выполняется условие (2.7) или нет. Такой подход дает более широкое толкование стационарности.

Определение стационарного процесса в широком смысле является более приемлемым для решения практических задач, так как проще получать данные об одномерной и двумерной плотностях вероятнос­ти, чем о многомерной.

В строгом смысле физически не существует стационарных слу­чайных процессов, так как любой процесс должен начаться в опреде­ленный момент времени в прошлом и, вероятно, завершиться в неко­торый момент в будущем. Однако есть много физических ситуаций, когда статистические характеристики процесса не изменяются на интервале времени наблюдения. В этих случаях предположение о стационарности приводит к удобной математической модели, которая является достаточно точной аппроксимацией реальной ситуации.

Эргодическое свойство стационарных случайных процессов

Среди всех стационарных процессов имеется часть, которая об­ладает эргодическим свойством. Поясним это свойство. Пусть имеется одна длинная реализация x (t ) случайного процесса (t ). Эта реализация определена на интервале Найдем среднее значение этой реализации путем ее усреднения во времени на достаточно большом интервале:

(2.14)

где черта сверху означает усреднение по времени, среднее значение является постоянной величиной, не зависящей от t .

Аналогично можно найти среднее значение квадрата флюктуаций и среднее значение произведения флюктуаций, смещенных одна отно­сительно другой на интервал :

(2.15)

По своему физическому смыслу величины (2.14) - (2.16) являются числовыми характеристиками, совпадающими со средним зна­чением, дисперсией и корреляционной функцией процесса (t). Одна­ко они получены в результате усреднения во времени одной длин­ной реализации x(t) или функции от нее.

Говорят, что стационарный процесс обладает эргодическим свойством , если с вероятностью, близкой к еди­нице, числовые характеристики, полученные в результате усреднения одной длинной реализации по времени, равны этим же характеристи­кам, полученным в результате усреднения по ансамблю. При этом ус­реднением по ансамблю называют определение числовых характеристик с использованием плотности вероятности, то есть по формулам (2.11) - (2.13), так как плотность вероятности характеризует всю совокупность или ансамбль реализаций.

Таким образом, для эргодического стационарного процесса справедливы равенства:

, (2.17)

Само слово «эргодический»происходит от греческого «эргон», что означает «работа». Эргодическое свойство является удобной рабо­чей гипотезой для расчета числовых характеристик стационарного процесса, когда располагают одной длинной его реализацией. Физи­чески это обосновано тем, что одна длинная реализация может со­держать сведения обо всех реализациях этого случайного процесса.

Заметим, что стационарность процесса является необходимым, но недостаточным условием эргодичности. Это означает, что не все стационарные процессы являются эргодическими. В общем случае трудно, если только вообще возможно, дока­зать, что эргодичность - обоснованное допущение для какого-либо физического процесса, так как может наблюдаться только одна реа­лизация этого процесса. Тем не менее, обычно имеет смысл предполо­жить эргодичность процесса, если только отсутствуют веские доводы физического характера, препятствующие этому.

На практике очень часто встречаются случайные процессы, протекающие во времени приблизительно однородно и имеющие вид непрерывных случайных колебаний вокруг некоторого среднего значения, причем ни средняя амплитуда, ни характер этих колебаний не обнаруживают существенных изменений с течением времени. Такие случайные процессы называются стационарными.

В качестве примеров стационарных случайных процессов можно привести: 1) колебания самолета на установившемся режиме горизонтального полета; 2) колебания напряжения в электрической осветительной сети; 3) случайные шумы в радиоприемнике; 4) процесс качки корабля и т. п.

Каждый стационарный процесс можно рассматривать как продолжающийся во времени неопределенно долго; при исследовании стационарного процесса в качестве начала отсчета можно выбрать любой момент времени. Исследуя стационарный процесс на любом участке времени, мы должны получить одни и те же его характеристики. Образно выражаясь, стационарный процесс «не имеет ни начала, ни конца».

Примером стационарного случайного процесса может служить изменение высоты центра тяжести самолета на установившемся режиме горизонтального полета (рис. 17.1.1).

В противоположность стационарным случайным процессам можно указать другие, явно нестационарные, случайные процессы, например: колебания самолета в режиме пикирования; процесс затухающих колебаний в электрической цепи; процесс горения порохового заряда в реактивной камере и т. д. Нестационарный процесс характерен тем, что он имеет определенную тенденцию развития во времени; характеристики такого процесса зависят от начала отсчета, зависят от времени.

На рис. 17.1.2 изображено семейство реализаций явно нестационарного случайного процесса - процесса изменения тяги двигателя реактивного снаряда во времени.

Заметим, что далеко не все нестационарные случайные процессы являются существенно нестационарными на всем протяжении своего развития. Существуют нестационарные процессы, которые (на известных отрезках времени и с известным приближением) могут быть приняты за стационарные.

Например, процесс наводки перекрестия авиационного прицела на цель есть явно нестационарный процесс, если цель за короткое время с большой и резко меняющейся угловой скоростью проходит поле зрения прицела. В этом случае колебания оси прицела относительно цели не успевают установиться в некотором стабильном режиме; процесс начинается и заканчивается, не успев приобрести стационарный характер. Напротив, процесс наводки перекрестия прицела па неподвижную или движущуюся с постоянной угловой скоростью цель через некоторое время после начала слежения приобретает стационарный характер.

Вообще, как правило, случайный процесс в любой динамической системе начинается с нестационарной стадии - с так называемого «переходного процесса». После затухания переходного процесса система обычно переходит на установившийся режим, и тогда случайные процессы, протекающие в ней, могут считаться стационарными.

Стационарные случайные процессы очень часто встречаются в физических и технических задачах. По своей природе эти процессы проще, чем нестационарные, и описываются более простыми характеристиками. Линейные преобразования стационарных случайных процессов также обычно осуществляются проще, чем нестационарных. В связи с этим на практике получила широкое применение специальная теория стационарных случайных процессов, или, точнее, теория стационарных случайных функций (так как аргументом стационарной случайной функции в общем случае может быть и не время). Элементы этой теории и будут изложены в данной главе.

Случайная функция называется стационарной, если все ее вероятностные характеристики не зависят от (точнее, не меняются при любом сдвиге аргументов, от которых они зависят, по оси ).

В данном элементарном изложении теории случайных функций мы совсем не пользуемся такими вероятностными характеристиками, как законы распределения: единственными характеристиками, которыми мы пользуемся, являются математическое ожидание, дисперсия и корреляционная функция. Сформулируем определение стационарной случайной функции в терминах этих характеристик.

Так как изменение стационарной случайной функции должно протекать однородно по времени, то естественно потребовать, чтобы для стационарной случайной функции математическое ожидание было постоянным:

. (17.1.1)

Заметим, однако, что это требование не является существенным: мы знаем, что от случайной функции всегда можно перейти к центрированной случайной функции , для которой математическое ожидание тождественно равно нулю и, следовательно, удовлетворяет условию (17.1.1). Таким образом, если случайный процесс нестационарен только за счет переменного математического ожидания, это не мешает нам изучать его как стационарный процесс.

Второе условие, которому, очевидно, должна удовлетворять стационарная случайная функция, - это условие постоянства дисперсии:

. (17.1.2)

Установим, какому условию должна удовлетворять корреляционная функция стационарной случайной функции. Рассмотрим случайную функцию (рис. 17.1.3).

Положим в выражении и рассмотрим - корреляционный момент двух сечений случайной функции, разделенных интервалом времени . Очевидно, если случайный процесс действительно стационарен, то этот корреляционный момент не должен зависеть от того, где именно на оси мы взяли участок , а должен зависеть только от длины этого участка. Например, для участков и на рис. 17.1.3, имеющих одну и ту же длину , значения корреляционной функции и должны быть одинаковыми. Вообще, корреляционная функция стационарного случайного процесса должна зависеть не от положения первого аргумента на оси абсцисс, а только от промежутка между первым и вторым аргументами:

. (17.1.3)

Следовательно, корреляционная функция стационарного случайного процесса есть функция не двух, а всего одного аргумента. Это обстоятельство в ряде случаев сильно упрощает операции над стационарными случайными функциями.

Заметим, что условие (17.1.2), требующее от стационарной случайной функции постоянства дисперсии, является частным случаем условия (17.1.3). Действительно, полагая в формуле (17.1.3) имеем

Таким образом, условие (17.1.3) есть единственное существенное условие, которому должна удовлетворять стационарная случайная функция.

Поэтому в дальнейшем мы под стационарной случайной функцией будем понимать такую случайную функцию, корреляционная функция которой зависит не от обоих своих аргументов и , а только от разности между ними. Чтобы не накладывать специальных условий на математическое ожидание, мы будем рассматривать только центрированные случайные функции.

Мы знаем, что корреляционная функция любой случайной функции обладает свойством симметрии:

.

Отсюда для стационарного процесса, полагая , имеем:

, (17.1.5)

т. е. корреляционная функция есть четная функция своего аргумента. Поэтому обычно корреляционную функцию определяют только для положительных значений аргумента (рис. 17.1.4).

На практике, вместо корреляционной функции , часто пользуются нормированной корреляционной функцией

где - постоянная дисперсия стационарного процесса. Функция есть не что иное, как коэффициент корреляции между сечениями случайной функции, разделенными интервалом по времени. Очевидно, что .

В качестве примеров рассмотрим два образца приблизительно стационарных случайных процессов и построим их характеристики.

Пример 1. Случайная функция задана совокупностью 12 реализаций (рис. 17.1.5).

а) Найти ее характеристики , , и нормированную корреляционную функцию . б) Приближенно рассматривая случайную функцию как стационарную, найти ее характеристики.

Решение. Так как случайная функция меняется сравнительно плавно, можно брать сечения не очень часто, например через 0,4 сек. Тогда случайная функция будет сведена к системе семи случайных величин, отвечающих сечениям . Намечая эти сечения на графике и снимая с графика значения случайной функции в этих сечениях, получим таблицу (табл. 17.1.1).

Таблица 17.1.1

№ реализации

На графике рис. 17.1.5 математическое ожидание показано жирной линией.

Далее находим оценки для элементов корреляционной матрицы: дисперсий и корреляционных моментов. Вычисления удобнее всего производить по следующей схеме. Для вычисления статистической дисперсии суммируются квадраты чисел, стоящих в соответствующем столбце; сумма делится на ; из результата вычитается квадрат соответствующего математического ожидания. Для получения несмещенной оценки результат множится на поправку . Аналогично оцениваются корреляционные моменты. Для вычисления статистического момента, отвечающего двум заданным сечениям, перемножаются числа, стоящие в соответствующих столбцах; произведении складываются алгебраически; полученная сумма делится на ; из результата вычитается произведение соответствующих математических ожиданий; для получения несмещенной оценки корреляционного момента результат множится на . При выполнении расчетов на счетной машине или арифмометре промежуточные результаты умножений не записываются, а непосредственно суммируются. Полученная таким способом корреляционно матрица системы случайных величин - она же таблица значений корреляционной функции - приведена в таблице 17.1.2.

Таблица 17.1.2.

По главной диагонали таблицы стоят оценки дисперсий:

Извлекая из этих величин квадратные корни, найдем зависимость среднего квадратического отклонения от времени:

Деля значения, стоящие в табл. 17.1.2, на произведения соответствующих средних квадратических отклонений, получим таблицу значений нормированной корреляционной функции (табл. 17.1.3).

Таблица 17.1.3

Вся история развития кабельных систем связи связана с проблемой увеличения объема информации передаваемой по проводному каналу связи.

В свою очередь объем передаваемой информации определяется полосой пропускания. Установлено, что достижимая скорость передачи информации тем выше, чем выше частота колебаний электрического тока или радиоволны. Для того, чтобы передать в закодированном виде любую букву алфавита, необходимо использовать 7–8 битов. Таким образом, если для передачи текста применять проводную связь с частотой 20 кГц, то стандартную книгу в 400–500 страниц можно будет передать примерно за 1,5–2 часа. При передаче по линии с частотой 32 МГц та же процедура потребует лишь 2–3 секунды.

Рассмотрим как с развитием проводной связи, т.е. с освоением новых частот изменялась пропускная способность канала связи.

Как отмечалось выше, развитие электрических систем передачи информации началось с изобретения П. Л. Шиллингом в 1832 году телеграфной линии с использованием иголок. В качестве линии связи использовался медный провод. Эта линия обеспечивала скорость передачи информации – 3 бит/с (1/3 буквы). Первая телеграфная линия Морзе (1844 г) обеспечивала скорость 5 бит/с (0,5 буквы). Изобретение в 1860 г. печатающей телеграфной системы обеспечивало скорость – 10 бит/с (1 буква). В 1874 г. система шестикратного телеграфного аппарата Бодо уже обеспечивала скорость передачи – 100 бит/с (10 букв). Первые телефонные линии, построенные на основе изобретенного в 1876 году Беллом телефона, обеспечивали скорость передачи информации 1000 бит/с (1кбит/с –100 букв).

Первая практическая телефонная цепь была однопроводной с телефонными аппаратами, включенными на ее концах. Данный принцип требовал большого количества не только соединительных линий, но и самих телефонных аппаратов. Это простое устройство в 1878 году было заменено первым коммутатором, который позволил осуществить соединение нескольких телефонных аппаратов через единое коммутационное поле.

До 1900 года первоначально используемые однопроводные цепи с заземленным проводом были заменены двухпроводными линиями передачи. Несмотря на то, что к этому времени уже был изобретен коммутатор, каждый абонент имел свою линию связи. Необходим был способ, позволяющий увеличить количество каналов без прокладки дополнительных тысяч километров проводов. Однако появление этого способа (системы уплотнения) задержалось до возникновения электроники в начале 1900 года. Первая коммерческая система уплотнения была создана в США, где в 1918 году между Балтиморой и Питсбуром начала работать четырехканальная система с частотным разделением каналов. До второй мировой войны большинство разработок было направлено на увеличение эффективности систем уплотнения воздушных линий и многопарных кабелей, поскольку по этим двум средам передачи были организованы почти все телефонные цепи.

Изобретение в 1920 году шести-двенадцати канальных систем передачи позволили увеличить скорость передачи информации в заданной полосе частот до 10 000бит/с, (10кбит/с – 1000 букв). Верхние граничные частоты воздушных и многопарных кабельных линий составляли соответственно 150 и 600 кГц. Потребности передачи больших объемов информации требовали создания широкополосных систем передачи.

В 30-40 годах ХХ века были внедрены коаксиальные кабели. В 1948 году между городами, находящимися на атлантическом и тихоокеанском побережьях США, фирмой «Bell System» была введена в эксплуатацию коаксиально-кабельная система L1. Эта коаксиально-кабельная система позволила увеличить полосу пропускания частот линейного тракта до 1,3 МГц, что обеспечивало передачу информации по 600 каналам .

После второй мировой войны велись активные разработки по совершенствованию коаксиально-кабельных систем. Если первоначально коаксиальные цепи прокладывались отдельно, то затем начали объединять несколько коаксиальных кабелей в общей защитной оболочке. Например, американская фирма Белл разработала в 60-е годы ХХ века межконтинентальную систему с шириной полосы 17,5 МГц (3600 каналов по коаксиальной цепи или «трубке»). Для этой системы был разработан кабель, в котором 20 «трубок» объединялись в одной оболочке. Общая емкость кабеля составила 32 400 каналов в каждом направлении, а две «трубки» оставались в резерве .

В СССР, примерно в это же время была разработана система К–3600 на отечественном кабеле КМБ 8/6, имеющем 14 коаксиальных цепей в одной оболочке. Затем появляется коаксиальная система с большей шириной полосы пропускания 60 МГц. Она обеспечивала емкость 9000 каналов в каждой паре. В общей оболочке объединены 22 пары.

Коаксиальные кабельные системы большой емкости в конце ХХ века обычно применялись для связи между близко расположенными центрами с высокой плотностью населения. Однако стоимость монтажа таких систем была высока из-за незначительного расстояния между промежуточными усилителями и вследствие большой стоимости кабеля и его прокладки.

6.4.2. История волоконно-оптических систем связи

По современным воззрениям, все электромагнитные излучения, в том числе радиоволны и видимый свет, имеют двойственную структуру и ведут себя то как волнообразный процесс в непрерывной среде то как поток частиц, получивших название фотонов, или квантов. Каждый квант обладает определенной энергией.

Представление о свете как о потоке частиц впервые ввел Ньютон. В 1905 году А. Эйнштейн на основе теории Планка возродил в новой форме корпускулярную теорию света, которая сейчас называется квантовой теорией света. В 1917 году он теоретически предсказал явление вынужденного или индуцированного излучения, на базе использования которого впоследствии и были созданы квантовые усилители. В 1951 году советские ученые В. А. Фабрикант, М. М. Вудынский и Ф. А. Бутаева получили авторское свидетельство на открытие принципа действия оптического усилителя. Несколько позднее, в 1953 году предложение о квантовом усилителе было сделано Вебером. В 1954 г. Н. Г. Басов и А. М. Прохоров предложили конкретный проект молекулярного газового генератора и усилителя с теоретическим обоснованием. Независимо к идее аналогичного генератора пришли Гордон, Цейгер и Таунс, опубликовавшие в 1954 году сообщение о создании действующего квантового генератора на пучке молекул аммиака. Несколько позднее в 1956 г. Бломберген установил возможность построения квантового усилителя на твердом парамагнитном веществе, а в 1957 году такой усилитель был построен Сковелем, Фехером и Зайделем. Все квантовые генераторы и усилители, построенные до 1960 г., работали в СВЧ диапазоне и получили название мазеров. Это название происходит от первых букв английских слов «Microwave amplification by stimulated emission of radiation», что означает «усиление микроволн с помощью вынужденного излучения».

Следующий этап развития связан с перенесением известных методов в оптический диапазон. В 1958 году Таунс и Шавлов теоретически обосновали возможность создания оптического квантового генератора (ОКГ) на твердом теле. В 1960 году Мейман построил первый импульсный ОКГ на твердом теле – рубине. В этом же году вопрос об ОКГ и квантовых усилителях независимо был проанализирован Н. Г. Басовым, О. Н. Крохиным и Ю. М. Поповым.

В 1961 году Джанаваном, Беннетом и Эрриотом был создан первый газовый (гелий-неоновый) генератор. В 1962 г. был создан первый полупроводниковый ОКГ. Оптические квантовые генераторы (ОКГ) получили название лазеров. Термин «Лазер» образовался в результате замены буквы «м» в слове мазер на букву «л» (от английского слова «light – свет»).

После создания первых мазеров и лазеров начались работы, направленные на их использование в системах связи.

Волоконная оптика, как оригинальное направление техники, возникла в начале 50-х годов. В это время научились делать тонкие двухслойные волокна из различных прозрачных материалов (стекло, кварц и др.). Еще раньше было предсказано, что если соответствующим образом выбрать оптические свойства внутренней («сердечника») и наружной («оболочки») частей такого волокна, то луч света, введенный через торец в сердечник, будет только по нему и распространяться, отражаясь от оболочки. Даже если волокно изогнуть (но не слишком резко), луч будет послушно удерживаться внутри сердечника. Таким образом, световой луч – этот синоним прямой линии, – попадая в оптическое волокно, оказывается способным распространяться по любой криволинейной траектории. Налицо полная аналогия с электрическим током, текущим по металлическому проводу, поэтому двухслойное оптическое волокно часто называют светопроводом или световодом. Стеклянные или кварцевые волокна, толщиной в 2–3 раза больше человеческого волоса, очень гибки (их можно наматывать на катушку) и прочны (прочнее стальных нитей того же диаметра). Однако световоды 50-х годов были недостаточно прозрачны, и при длине 5–10 м свет в них полностью поглощался.

В 1966 г. была высказана идея о принципиальной возможности использования волоконных световодов для целей связи. Технологический поиск завершился успехом в 1970 г. – сверхчистое кварцевое волокно смогло пропустить световой луч на расстояние до 2 км. По сути дела, в том же году идеи лазерной связи и возможности волоконной оптики «нашли друг друга», началось стремительное развитие волоконно-оптической связи: появление новых методов изготовления волокон; создание других необходимых элементов, таких как миниатюрные лазеры, фотоприемники, оптические разъемные соединители и т. п.

Уже в 1973–1974 гг. расстояние, которое луч мог пройти по волокну, достигло 20 км, а к началу 80-х годов превысило 200 км. К этому же времени скорость передачи информации по ВОЛС возросла до невиданных ранее значений – в несколько миллиардов бит/с. Дополнительно выяснилось, что ВОЛС имеют не только сверхвысокую скорость передачи информации, но и обладают целым рядом других достоинств.

Световой сигнал не подвержен действию внешних электромагнитных помех. Более того, его невозможно подслушать т. е. перехватить. Волоконные световоды имеют отличные массогабаритные показатели: применяемые материалы имеют малую удельную массу, нет нужды в тяжелых металлических оболочках; простота прокладки, монтажа, эксплуатации. Волоконные световоды можно закладывать в обычную подземную кабельную канализацию, можно монтировать на высоковольтных ЛЭП или силовых сетях электропоездов и вообще совмещать их с любыми другими коммуникациями. Характеристики ВОЛС не зависят от их длины, от включения или отключения дополнительных линий – в электрических же цепях все это не так, и каждое подобное изменение требует кропотливых настроечных работ. В волоконных световодах в принципе невозможно искрение, и это открывает перспективу использования их во взрывоопасных и подобных им производствах.

Очень важен и стоимостной фактор. В конце прошлого века волоконные линии связи, как правило, по стоимости были соизмеримы с проводными линиями, но с течением времени, учитывая дефицит меди, положение непременно изменится. Эта убежденность основана на том, что материал световода – кварц – имеет неограниченный сырьевой ресурс, тогда как основу проводных линий составляют такие теперь уже редкие металлы, как медь и свинец. И дело даже не только в стоимости. Если связь будет развиваться на традиционной основе, то к концу века вся добываемая медь и весь свинец буду расходоваться на изготовление телефонных кабелей – а как развиваться дальше?

В настоящее время оптические линии связи занимают доминирующее положение во всех телекоммуникационных системах, начиная от магистральных сетей до домовой распределительной сети. Благодаря развитию оптико-волоконных линий связи активно внедряются мультисервисные системы, позволяющие довести до конечного потребителя в одном кабеле телефонию, телевидение и Интернет.



Понравилась статья? Поделитесь с друзьями!