Обратная гравитация. Гравитация – это совсем не «Закон всемирного тяготения

Наверняка вы слышали, что гравитация – это не сила. И это правда. Однако же эта правда оставляет много вопросов. Например, мы обычно говорим, что гравитация «притягивает» объекты. На уроках физики нам говорили, что гравитация притягивает объекты к центру Земли. Но как это возможно? Как гравитация может не быть силой, но при этом притягивать объекты?

Прежде всего, нужно усвоить, что правильный термин - это «ускорение», а не «притяжение». На самом деле, гравитация вовсе не притягивает объекты, она деформирует систему пространства-времени (система, по принципам которой мы живем), объекты следуют за образовавшимися в результате деформации волнами и иногда могут ускоряться.

Благодаря Альберту Эйнштейну и его теории относительности, мы знаем, что пространство-время меняется под воздействием энергии. И самая важная часть этого уравнения - это масса. Энергия массы объекта заставляет пространство-время меняться. Масса сгибает пространство-время, и получившиеся изгибы направляют энергию. Таким образом, вернее думать о гравитации не как о силе, а как об искривлении пространства-времени. Как резиновое покрытие искривляется под шаром для боулинга, так пространство-время искривляется массивными объектами.

Так же, как автомобиль едет по дороге с различными изгибами и поворотами, объекты перемещаются по подобным изгибам и искривлениям в пространстве и времени. И точно так же, как автомобиль ускоряется, когда спускается вниз с холма, массивные объекты создают экстремальные виражи в пространстве и времени. Сила тяжести способна разгонять объекты, когда они входят в глубокие гравитационные колодцы. Этот путь, по которому объекты следуют через пространство-время, называют «геодезической траекторией».

Чтобы лучше понять, как работает гравитация и как она может ускорять объекты, рассмотрим расположение Земли и Луны относительно друг друга. Земля - это довольно массивный объект, по крайней мере, по сравнению с Луной, и наша планета заставляет пространство-время изгибаться. Луна вращается вокруг Земли из-за перекосов в пространстве и времени, которые вызваны массой планеты. Таким образом, Луна просто путешествует вдоль образовавшегося изгиба в пространстве-времени, который мы называем орбитой. Луна не чувствует никакой силы, действующей на нее, она просто следует по определенному возникшему пути.

Дон Деянг

Сила тяжести (или гравитация) прочно держит нас на земле и позволяет земле вращаться вокруг солнца. Благодаря этой невидимой силе дождь падает на землю, а уровень воды в океане каждый день то повышается, то снижается. Гравитация удерживает землю в сферической форме, а также не дает нашей атмосфере улетучиться в космическое пространство. Казалось бы, эта наблюдаемая каждый день сила притяжения должна быть хорошо изучена учеными. Но, нет! Во многом гравитация остается глубочайшей тайной для науки. Эта таинственная сила является замечательным примером того, насколько ограничены современные научные знания.

Что такое гравитация?

Исаак Ньютон интересовался этим вопросом еще в 1686 году и пришел к выводу, что гравитация - это сила притяжения, существующая между всеми предметами. Он понял, что та же самая сила, которая заставляет яблоко падать на землю, на своей орбите. На самом деле сила притяжения Земли служит причиной того, что во время вращения вокруг Земли Луна отклоняется каждую секунду от своего прямого пути примерно на один миллиметр (Рисунок 1). Универсальный Закон Гравитации Ньютона является одним из наибольших научных открытий всех времен.

Гравитация – «веревка», которая удерживает объекты на орбите

Рисунок 1. Иллюстрация орбиты луны, сделанная не в соответствии с масштабом. За каждую секунду луна проходит примерно 1 км. За это расстояние она отклоняется от прямого пути примерно на 1 мм – это происходит вследствие гравитационной тяги Земли (пунктирная линия). Луна постоянно как бы падает за (или вокруг) землей, как падают и планеты вокруг солнца.

Сила тяжести – одна из четырех фундаментальных сил природы (Таблица 1). Обратите внимание на то, что из четырех сил эта сила самая слабая, и все же она является доминирующей относительно крупных космических объектов. Как показал Ньютон, притягательная гравитационная сила между двумя любыми массами становится все меньше и меньше по мере того, как расстояние между ними становится все больше и больше, но она никогда полностью не достигает нуля (смотрите «Замысел гравитации»).

Поэтому каждая частица во всей вселенной фактически притягивает любую другую частицу. В отличие от сил слабого и сильного ядерного взаимодействия, сила притяжения является дальнодействующей (Таблица 1). Магнитная сила и сила электрического взаимодействия также являются дальнодействующими силами, но гравитация уникальна тем, что она и дальнодействующая и всегда притягательная, а значит, она никогда не может иссякнуть (в отличие от электромагнетизма, в котором силы могут либо притягивать, либо отталкивать).

Начиная с великого ученого-креациониста Майкла Фарадея в 1849 году, физики постоянно искали скрытую связь между силой притяжения и силой электромагнитного взаимодействия. В настоящее время ученые пытаются соединить все четыре фундаментальные силы в одно уравнение или так называемую «Теорию всего», но, безуспешно! Гравитация остается самой загадочной и наименее изученной силой.

Гравитацию невозможно каким-либо образом оградить. Каким бы ни был состав преграждающей перегородки, она не имеют никакого влияния на притяжение между двумя разделенными объектами. Это означает, что в лабораторных условиях невозможно создать антигравитационную камеру. Сила тяжести не зависит от химического состава объектов, но зависит от их массы, известной нам как вес (сила тяжести на объект равна весу этого объекта - чем больше масса, тем больше сила или вес.) Блоки, состоящие из стекла, свинца, льда или даже стирофома, и имеющие одинаковую массу, будут испытывать (и оказывать) одинаковую гравитационную силу. Эти данные были получены в ходе экспериментов, и ученые до сих пор не знают, как их можно теоретически объяснить.

Замысел в гравитации

Сила F между двумя массами m 1 и m 2 , находящимися на расстоянии r, может быть записана в виде формулы F = (G m 1 m 2)/r 2

Где G - это гравитационная постоянная, впервые измеренная Генри Кавендишем в 1798 году.1

Это уравнение показывает, что гравитация снижается по мере того, как расстояние, r, между двумя объектами становится больше, но полностью никогда не достигает нуля.

Подчиняющаяся закону обратных квадратов природа этого уравнения просто захватывает. В конце концов, нет никакой необходимой причины, почему сила притяжения должна действовать именно так. В беспорядочной, случайной и эволюционирующей вселенной такие произвольные степени, как r 1.97 или r 2.3 казались бы более вероятными. Однако точные измерения показали точную степень, по крайней мере, до пяти десятичных разрядов, 2.00000. Как сказал один исследователь, этот результат кажется «слишком уж точным» .2 Мы можем сделать вывод, что сила притяжения указывает на точный, сотворенный дизайн. На самом деле, если бы степень хоть на чуть-чуть отклонилась от 2, орбиты планет и вся вселенная стали бы нестабильными.

Ссылки и примечания

  1. Говоря техническим языком, G = 6.672 x 10 –11 Nm 2 kg –2
  2. Томпсен, Д., «Очень точно о гравитации», Science News 118(1):13, 1980.

Так что же такое в действительности гравитация? Каким образом эта сила способна действовать в таком огромном, пустом космическом пространстве? И зачем она вообще существует? Науке никогда не удавалось ответить на эти основные вопросы о законах природы. Сила притяжения не может появиться медленно путем мутаций или естественного отбора. Она действует с самого начала существования вселенной. Как и всякий другой физический закон, гравитация, несомненно, является замечательным свидетельством запланированного сотворения.

Одни ученые пытались объяснить гравитацию с помощью невидимых частиц, гравитонов, которые движутся между объектами. Другие говорили о космических струнах и гравитационных волнах. Недавно ученым с помощью специально созданной лаборатории LIGO (англ. Laser Interferometer Gravitational-Wave Observatory) удалось только увидеть эффект гравитационных волн. Но природу этих волн, каким образом физически объекты взаимодействуют друг с другом на огромных расстояниях, изменяя их фору, все же остается для всех большим вопросом. Мы просто не знаем природу возникновения силы гравитации и каким образом она удерживает стабильность всей вселенной.

Сила притяжения и Писание

Два места из Библии могут помочь нам понять природу гравитации и физическую науку в целом. Первое место, Колоссянам 1:17, объясняет, что Христос «есть прежде всего, и все Им стоит» . Греческий глагол стоит (συνισταω sunistao ) означает: сцепляться, сохраняться или удерживаться вместе. Греческое использование этого слова за пределами Библии обозначает сосуд, с содержащейся в нем водой . Слово, которое используется в книге Колоссянам, стоит в совершенном времени, что как правило, указывает на настоящее продолжающееся состояние, которое возникло из завершенного прошедшего действия. Один из используемых физических механизмов, о котором идет речь, явно сила притяжения, установленная Творцом и безошибочно поддерживаемая и сегодня. Только представьте: если бы на мгновение перестала действовать сила притяжения, несомненно, наступил бы хаос. Все небесные тела, включая землю, луну и звезды, не удерживались бы больше вместе. Все тот час разделилось бы на отдельные, маленькие части.

Второе место Писания, Евреям 1:3, заявляет, что Христос «держит все словом силы Своей». Слово держит (φερω pherō ) снова описывает поддерживание или сохранение всего, включая гравитацию. Слово держит , используемое в этом стихе, означает намного больше, чем просто удерживание веса. Оно включает контроль над всеми происходящими движениями и изменениями внутри вселенной. Это бесконечное задание выполняется через всемогущее Слово Господа, посредством которого начала существовать сама вселенная. Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной, является одним из проявлений этой потрясающей божественной заботы о вселенной.

Искажения времени и пространства и черные дыры

Общая теория относительности Эйнштейна рассматривает гравитацию не как силу, а как искривление самого пространства вблизи массивного объекта. Согласно предсказаниям, свет, который традиционно следует по прямым линиям, искривляется при прохождении по искривленному пространству. Впервые это было продемонстрировано, когда астроном сэр Артур Эддингтон обнаружил изменение кажущегося положения звезды во время полного затмения в 1919 году, считая, что лучи света изгибаются под действием силы тяжести солнца.

Общая теория относительности также предсказывает, что если тело достаточно плотное, его сила тяжести исказит пространство настолько сильно, что свет вообще не сможет через него проходить. Такое тело поглощает свет и все остальное, что захватила его сильная гравитация, и носит название Черная дыра. Такое тело можно обнаружить только по его гравитационным эффектам на другие объекты, по сильному искривлению света вокруг него и по сильной радиации, излучаемой веществом, которое на него падает.

Все вещество внутри черной дыры сжато в центре, который имеет бесконечную плотность. «Размер» дыры определяется горизонтом событий, т.е. границей, которая окружает центр черной дыры, и ничто (даже свет) не может выйти за ее пределы. Радиус дыры называется радиусом Шварцшильда, в честь немецкого астронома Карла Шварцшильда (1873–1916), и вычисляется по формуле R S = 2GM/c 2 , где c – это скорость света в вакууме. Если бы солнце попало в черную дыру, его радиус Шварцшильда составлял бы всего 3 км.

Существует надежное доказательство, что после того, как ядерное топливо массивной звезды иссякает, она больше не может противостоять коллапсу под своим собственным огромным весом и попадает в черную дыру. Считается, что черные дыры с массой в миллиарды солнц существуют в центрах галактик, включая нашу галактику, Млечный Путь. Многие ученые полагают, что суперяркие и очень отдаленные объекты под названием квазары, используют энергию, которая выделяется, когда вещество падает в черную дыру.

Согласно предсказаниям общей теории относительности, сила тяжести также искажает и время. Это также было подтверждено очень точными атомными часами, которые на уровне моря идут на несколько микросекунд медленнее, чем на территориях выше уровня моря, где сила тяжести Земли немного слабее. Вблизи горизонта событий это явление более заметно. Если наблюдать за часами астронавта, который приближается к горизонту событий, мы увидим, что часы идут медленнее. Находясь в горизонте событий, часы остановятся, но мы никогда не сможем этого увидеть. И наоборот, астронавт не заметит, что его часы идут медленнее, но он увидит, что наши часы идут быстрее и быстрее.

Основной опасностью для астронавта возле черной дыры были бы приливные силы, вызванные тем, что сила тяжести сильнее на тех частях тела, которые находятся ближе к черной дыре, чем на частях дальше от нее. По своей мощи приливные силы возле черной дыры, имеющей массу звезды, сильнее любого урагана и запросто разрывают на мелкие кусочки все, что им попадается. Однако, тогда как гравитационное притяжение уменьшается с квадратом расстояния (1/r 2), приливно-отливное явление уменьшается с кубом расстояния (1/r 3). Поэтому в отличие от принятого мнения, гравитационная сила (включая приливную силу) на горизонтах событий больших черных дыр слабее, чем на маленьких черных дырах. Так что приливные силы на горизонте событий черной дыры в наблюдаемом космосе, были бы менее заметны, чем самый мягкий ветерок.

Растяжение времени под действием силы тяжести вблизи горизонта событий является основой новой космологической модели физика-креациониста, доктора Рассела Хамфриса, о которой он рассказывает в своей книге «Свет звезд и время». Эта модель, возможно, помогает решить проблему того, как мы можем видеть свет отдаленных звезд в молодой вселенной. К тому же на сегодня она является научной альтернативой небиблейской , которая основывается на философских предположениях, выходящих за рамки науки.

Примечание

Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной…

Исаак Ньютон (1642–1727)

Фотография: Wikipedia.org

Исаак Ньютон (1642–1727)

Исаак Ньютон опубликовал свои открытия о гравитации и движении небесных тел в 1687 году, в своей известной работе «Математические начала ». Некоторые читатели быстро сделали вывод, что вселенная Ньютона не оставила места для Бога, так как все теперь можно объяснить с помощью уравнений. Но Ньютон совсем так не думал, о чем он и сказал во втором издании этой известной работы:

«Наша наиболее прекрасная солнечная система, планеты и кометы могут быть результатом только плана и господства разумного и сильного существа».

Исаак Ньютон был не только ученым. Помимо науки он почти всю свою жизнь посвятил исследованию Библии. Его любимыми библейскими книгами были: книга Даниила и книга Откровение, в которых описываются Божьи планы на будущее. На самом деле Ньютон написал больше теологических работ, чем научных.

Ньютон уважительно относился к другим ученым, таким как Галилео Галилей. Кстати Ньютон родился в то же год, когда умер Галилей, в 1642 году. Ньютон писал в своем письме: «Если я и видел дальше других, то потому, что стоял на плечах гигантов». Незадолго до смерти, наверное, размышляя о тайне силы тяжести, Ньютон скромно писал: «Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пестрый, чем другие, или красивую ракушку, в то время как передо мной расстилается огромный океан неисследованной истины».

Ньютон похоронен в Вестминстерском аббатстве. Латинская надпись на его могиле заканчивается словами: «Пусть смертные радуются, что среди них жило такое украшение человеческого рода» .

Гравитация, она же притяжение или тяготение, - это универсальное свойство материи, которым обладают все предметы и тела во Вселенной. Суть гравитации залучается в том, что все материальные тела притягивают к себе все другие тела, находящиеся вокруг.

Земное притяжение

Если гравитация - это общее понятие и качество, которым обладают все предметы во Вселенной, то земное притяжение - это частный случай этого всеобъемлющего явления. Земля притягивает к себе все материальные объекты, находящиеся на ней. Благодаря этому люди и животные могут спокойно перемещаться по земле, реки, моря и океаны - оставаться в пределах своих берегов, а воздух - не летать по бескрайним просторам Космоса, а образовывать атмосферу нашей планеты.

Возникает справедливый вопрос: если все предметы обладают гравитацией, почему Земля притягивает к себе людей и животных, а не наоборот? Во-первых, мы тоже притягиваем к себе Землю, просто, по сравнению с ее силой притяжения наша гравитация ничтожно мала. Во-вторых, сила гравитации прямо пропорционально зависит от массы тела: чем меньше масса тела, тем ниже его гравитационные силы.

Второй показатель, от которого зависит сила притяжения - это расстояние между предметами: чем больше расстояние, тем меньше действие гравитации. В том числе благодаря этому, планеты движутся на своих орбитах, а не падают друг на друга.

Примечательно, что своей сферической формой Земля, Луна, Солнце и другие планеты обязаны именно силе тяготения. Она действует в направлении центра, подтягивая к нему вещество, составляющее «тело» планеты.

Гравитационное поле Земли

Гравитационное поле Земли - это силовое энергетическое поле, которое образуется вокруг нашей планеты благодаря действию двух сил:

  • гравитации;
  • центробежной силе, которая своим появление обязана вращению Земли вокруг своей оси (суточное вращение).

Поскольку и гравитация, и центробежная сила действуют постоянно, то и гравитационное поле является постоянным явлением.

Незначительное воздействие на поле оказывают силы тяготения Солнца, Луны и некоторых других небесных тел, а также атмосферных масс Земли.

Закон всемирного тяготения и сэр Исаак Ньютон

Английский физик, сэр Исаак Ньютон, согласно известной легенде, однажды гуляя по саду днем, увидел на небе Луну. В это же время с ветки упало яблоко. Ньютон тогда занимался изучением закона движения и знал, что яблоко падает под воздействием гравитационного поля, а Луна вращается по орбите вокруг Земли.

И тут в голову гениальному ученому, озаренную инсайтом, пришла мысль, что, возможно, яблоко падает на землю, подчиняясь той же силе, благодаря которой Луна находится на своей орбите, а не носится беспорядочно по всей галактике. Так был открыт закон всемирного тяготения, он же Третий закон Ньютона.

На языке математических формул этот закон выглядит так:

F = GMm/D 2 ,

где F - сила взаимного тяготения между двумя телами;

M - масса первого тела;

m - масса второго тела;

D 2 - расстояние между двумя телами;

G - гравитационная постоянная, равная 6,67х10 -11 .

Каждый человек в своей жизни не раз сталкивался с этим понятием, ведь гравитация это основа не только современной физики, но и ряда других смежных наук.

Изучением притяжения тел занимались многие учёные с античных времен, однако главное открытие приписывается Ньютону и описывается как известная каждому история с упавшим на голову фруктом.

Что такое гравитация простыми словами

Гравитация представляет собой притяжение между несколькими предметами во всей Вселенной. Природа явления бывает разной, так как определяется массой каждого из них и протяженностью между, то есть дистанцией.

Теория Ньютона была основана на том, что и на падающий фрукт, и на спутник нашей планеты действует одна и та же сила — притяжение к Земле. А не упал спутник на земное пространство именно из-за своей массы и удалённости.

Гравитационное поле

Гравитационное поле являет собой пространство, в рамках которого происходит взаимодействие тел по законам притяжения.

Эйнштейновская теория относительности описывает поле, как определенное свойство времени и пространства, характерно проявляющееся при появлении физических объектов.

Гравитационная волна

Это определенного рода изменения полей, которые образуются в результате излучения от движущихся объектов. Они отрываются от предмета и распространяются волновым эффектом.

Теории гравитации

Классической теорией является ньютоновская. Однако, она была несовершенна и впоследствии появились альтернативные варианты.

К ним относятся:

Сегодня существует несколько десятков различных теорий, все они либо дополняют друг друга, либо рассматривают явления с другой стороны.

Стоит отметить: идеального варианта пока не существует, но постоянные разработки открывают больше вариантов ответов в отношении притяжения тел.

Сила гравитационного притяжения

Базовый расчет следующий – сила тяготения пропорциональна умножению массы тела на другую, между которыми она определяется. Эта формула выражена и так: сила обратно пропорциональна дистанции между объектами, возведенными в квадрат.

Гравитационное поле – потенциально, а значит сохраняется кинетическая энергия. Этот факт упрощает решение задач, в которых измеряется сила притяжения.

Гравитация в космосе

Несмотря на заблуждение многих, в космосе есть гравитация. Она ниже, чем на Земле, но все же присутствует.

Что касается космонавтов, которые на первый взгляд летают, то они в действительности находятся в состоянии медленного падения. Визуально, кажется, что их ничего не притягивает, но на практике они испытывают гравитацию.

Сила притяжения зависит от удаленности, но каким бы большим не было расстояние между объектами, они продолжат тянуться друг к другу. Взаимное притяжение никогда не будет равным нулю.

Гравитация в Солнечной системе

В солнечной системе не только Земля обладает гравитацией. Планеты, а также и Солнце, притягивают к себе объекты.

Так как сила определятся массой предмета, то наибольший показатель у Солнца. Например, если у нашей планеты показатель равен единице, то у светила показатель будет почти равен двадцати восьми.

Следующим, после Солнца, по тяжести является Юпитер , поэтому сила притяжения у него в три раза выше, чем у Земли. Наименьший параметр у Плутона.

Для наглядности обозначим так, в теории на Солнце среднестатистический человек весил бы примерно две тонны, а вот на самой маленькой планете нашей системы – всего четыре килограмма.

От чего зависит гравитация планеты

Гравитационная тяга, как уже указывалось выше – это мощь, с которой планета тянет к себе предметы, расположенные на ее поверхности.

Сила притяжения зависит от тяжести объекта, самой планеты и дистанции, находящейся между ними. Если много километров – гравитация низкая, но она все равно удерживает объекты на связи.

Несколько важных и увлекательных аспектов, связанных с гравитацией и ее свойствами, которые стоит объяснить ребенку:

  1. Явление все притягивает, но никогда не отталкивает – это отличает ее от других физических явлений.
  2. Не бывает нулевого показателя. Невозможно смоделировать ситуацию, в которой не действует давление, то есть не работает гравитация.
  3. Земля спадает со средней скоростью 11,2 километра в секунду, достигнув этой скорости можно покинуть притягивающий колодец планеты.
  4. Факт существования гравитационных волн не был доказан научно, это лишь догадка. Если когда-либо они станут видимыми, то человечеству откроются многие загадки космоса, связанные со взаимодействием тел.

В соответствии с теорией базовой относительности такого ученого, как Эйнштейн, гравитация представляет собой искривление базовых параметров существования материального мира, которое представляет собой основу Вселенной.

Гравитация – это взаимное притяжение двух объектов. Сила взаимодействия зависит от тяжести тел и дистанции между ними. Пока не все секреты явления раскрыты, но уже сегодня существует несколько десятков теорий, описывающих понятие и его свойства.

Сложность изучаемых объектов влияет на время исследования. В большинстве случаев просто берется зависимость массы и дистанции.

Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть:

Здесь - гравитационная постоянная , равная примерно 6,6725×10 −11 м³/(кг·с²).

Закон всемирного тяготения - одно из приложений закона обратных квадратов , встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести , потенциально . Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим . Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты - планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация - слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами на космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления - орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так - если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности , более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера .

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы , аттракторы , хаотичность и т. д. Наглядный пример таких явлений - сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса .

Сильные гравитационные поля

В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):

  • изменение геометрии пространства-времени;
    • как следствие, отклонение закона тяготения от ньютоновского;
    • и в экстремальных случаях - возникновение чёрных дыр ;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений ;
    • как следствие, появление гравитационных волн;
  • эффекты нелинейности: гравитация имеет свойство взаимодействовать сама с собой, поэтому принцип суперпозиции в сильных полях уже не выполняется.

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение , наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако существуют весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, в знаменитой системе PSR B1913+16 (пульсаре Халса - Тейлора) - хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами , этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n -польного источника пропорциональна , если мультиполь имеет электрический тип, и - если мультиполь магнитного типа , где v - характерная скорость движения источников в излучающей системе, а c - скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

где - тензор квадрупольного момента распределения масс излучающей системы. Константа (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ. )), предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO , VIRGO , TAMA (англ. ), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna - лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын» республики Татарстан .

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле . В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters . Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения - −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год ).

Классические теории гравитации

См. также: Теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности , и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии . Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем - метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля - с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна - Картана

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского . Благодаря наличию безразмерного параметра в теории Йордана - Бранса - Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана - Бранса - Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация - единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория . При низких энергиях, в духе квантовой теории поля , гравитационное взаимодействие можно представить как обмен гравитонами - калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема , и поэтому считается неудовлетворительной.

В последние десятилетия разработаны три перспективных подхода к решению задачи квантования гравитации: теория струн , петлевая квантовая гравитация и причинная динамическая триангуляция.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги - браны . Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория .

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва , петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели , не требуя для объяснения их масс введения бозона Хиггса .

Основная статья: Причинная динамическая триангуляция

В ней пространственно-временное многообразие строится из элементарных евклидовых симплексов (треугольник , тетраэдр , пентахор) размеров порядка планковских с учётом принципа причинности . Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

См. также

Примечания

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900-1915). - М.: Наука, 1981. - 352c.
  • Визгин В. П. Единые теории в 1-й трети ХХ в. - М.: Наука, 1985. - 304c.
  • Иваненко Д. Д. , Сарданашвили Г. А. Гравитация. 3-е изд. - М.: УРСС, 2008. - 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. - М.: Мир, 1977.
  • Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. - М.: Государственное издательство физико-математической литературы, 2009.

Ссылки

  • Закон всемирного тяготения или «Почему Луна не падает на Землю?» - Просто о сложном
  • Проблемы гравитации (док. фильм BBC , видео)
  • Земля и гравитация ; Релятивиская теория гравитации (телепередачи Гордон «Диалоги» , видео)
Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика
  • Общая теория относительности
    Математическая формулировка общей теории относительности
    Гамильтонова формулировка общей теории относительности

Принципы

  • Геометродинамика (англ. )
Классические

Релятивистские



Понравилась статья? Поделитесь с друзьями!