Постоянная авогадро физика. Постоянная авогадро

Простейшей моделью колебательного движения атомов в двухатомной молекуле может служить система из двух масс т / и ш?, связанных упругой пружиной. Колебание двух атомов относительно центра масс может быть заменено колебанием одной эквивалентной

массы относительно начальной нулевой точки R= 0, где

R - расстояние между массами, R e - положение точки равновесия.

При классическом рассмотрении предполагается, что пружина идеальна - упругая сила F прямо пропорциональна деформации - отклонению от равновесия х = R-R e , по закону Гука:

где к - константа упругости. Таким образом, сила направлена в сторону возвращения к равновесному положению.

Совместно используя законы Гука и Ньютона (F -та), можно записать:

(обозначая ). Решением такого уравнения, как известно,

служат гармонические функции

где хо - амплитуда, а

Используя приведенную массу получаем:

Мерой потенциальной энергии системы V служит работа

В квантовой механике анализ колебательного движения для простой модели гармонического осциллятора достаточно сложен. Он основан на решении уравнения Шредингера

(у/ - колебательная волновая функция, Е - общая энергия частицы) и выходит за рамки нашего изложения.

Для квантового осциллятора возможен только дискретный ряд значений энергии Е и частот в соответствии с формулой E=hv. Кроме того, минимальное значение энергии осциллятора не равно нулю. Эта величина называется нулевой энергией, она соответствует низшему энергетическому уровню осциллятора и равна , её существование можно объяснить, исходя из соотношения неопределенностей Гейзенберга.

Таким образом, в соответствии с квантовой механикой энергия гармонического осциллятора квантуется:

где v - колебательное квантовое число, которое может принимать значение у=0, 1, 2, 3,....

При взаимодействии осциллятора с квантами электромагнитного излучения следует учитывать три фактора: 1) заселенность уровней (вероятность нахождения молекулы на данном энергетическом уровне); 2) правило частот (Бора), согласно которому энергия кванта должна соответствовать разности энергии каких-либо двух уровней;

3) правило отбора для квантовых переходов: вероятность перехода, т.е. интенсивность линий в спектре поглощения определяется величиной дипольного момента перехода (см. теоретическое введение). В случае простейшего гармонического осциллятора правило отбора получается из рассмотрения волновых функций. Оно гласит, что переходы могут осуществляться только между соседними уровнями («на одну ступеньку»): колебательное квантовое число изменяется на единицу Av = 1. Поскольку расстояния между соседними уровнями одинаковы, то в спектре поглощения гармонического осциллятора должна присутствовать только одна линия с частотой

Так как в соответствии с распределением Больцмана при комнатной и более низких температурах заселен самый нижний колебательный уровень, то наиболее интенсивен переход с самого низкого уровня (d=0), и частота этой линии совпадает с частотой более слабых переходов с вышележащих уровней на соседний, более высокий уровень.

Графики волновых функций гармонического осциллятора для разных значений энергии приведены на рисунке 2.3. Они представляют собой решения уравнения Шредингера для гармонического осциллятора

где N, - нормирующий множитель, Н 0 - полиномы Эрмита, х = R-R e - отклонение от положения равновесия.

Дипольный момент перехода для колебательных переходов, R 0 (или М„) равен:

где ju - дипольный момент молекулы; колеба

тельные волновые функции исходного и конечного состоянийсоответственно. Из формулы видно, что переход разрешен ,

если в точке равновесия - дипольный момент молекулы

изменяется вблизи положения точки равновесия, (кривая ju=f(R) в этой точке не проходит через максимум). Интеграл (второй сомножитель в формуле) также должен быть не равным нулю. Можно показать, что это условие соблюдается, если переход совершается между соседними уровнями, отсюда дополнительное правило отбора Аи = 1.

В случае двухатомных молекул колебательные спектры могут наблюдаться только для гетероядерных молекул, у гомоядерных молекул дипольный момент отсутствует и не изменяется при колебаниях. В колебательных спектрах СО2 проявляются колебания (валентные антисимметричные и деформационные), при которых изменяется дипольный момент, но не проявляются симметричные колебания, при которых он неизменен.

Тела, которые при движении совершают гармонические ко­лебания, называют гармоническими осциляторами. Рассмотрим ряд примеров гармонических осциляторов.

Пример1. Пружинный маятник – это тело массой m , способное совершать колебания под действием силы упругости невесомой (m пружины  m тела ) пружины (рис.4.2).

Т

Рис.4.3. Физический маятник.

рением в системе пренебрегаем. При смещении тела на расстояние х от положе­ния равновесия О на него дейст­вует сила уп­ругости пружины, направленная к положению равновесия:
, гдеk - коэффициент упругости (жесткости) пружины. По второму закону Ньютона
. От­сюда
и, если обозначить
, тогда получим
дифференциальное урав­нение гармонических колебаний. Его решения имеют вид
либо
. Таким образом, колебания пружинного маятника - гармонические с циклической час­тотой
и периодом
.

Пример 2. Физический маятник - это твердое тело, совер­шаю­щее колебания под действием силы тяжести вокруг подвижной го­ризон­тальной оси, не совпадающей с его цен­тром тяжести С (рис. 4. 3). Ось проходит через точку О. Если маятник откло­нить от положения равновесия на малый угол  и отпус­тить, он будет совершать ко­лебания, следуя основному уравнению динамики вращательного движения твердого тела
, гдеJ - момент инерции маятника относительно оси, М ‑ момент силы, возвращающей физический маятник в поло­жение равно­весия. Он создается силой тяжести , ее момент равен
(l =ОС). В результате получаем
. Это дифференциальное уравнение колебаний для произвольных углов отклонения. При малых углах, когда
,
или, принимая
, получим дифференциальное уравнение колебания физического маятника
. Его решения имеют вид
или
. Таким образом, при малых отклонениях от положения равновесия физический маят­ник совершает гармонические колебания с циклической частотой
и периодом
.

Пример3. Математический маятник - это материальная точка с массой m (тяжелый шарик малых размеров), подвешенная на невесомой (по сравнению с m шарика), уп­ругой, нерастяжимой нити длинною l . Если вывести шарик из положения равновесия, отклонив его от вертикали на небольшой угол , а затем отпустить, он будет совершать колебания. Если рассматривать данную систему как физический маятник с моментом инерции материальной точки J = ml 2 , то из формул для физического маятника получим выражения для циклической частоты и периода колебаний математического маятника

,
.

4. 4. Затухающие колебания . @

В рассмотренных примерах гармонических колебаний единственной силой, действующей на материальную точку (тело), была квазиупругая сила F и не учитывались силы сопротивления, которые присутству­ют в лю­бой реальной системе. Поэтому рассмотренные колебания можно назвать идеальными незатухающими гармоническими колебаниями.

Наличие в реальной колебательной системе силы сопротивления среды при­во­дит к уменьшению энергии системы. Если убыль энергии не пополнять за счет работы внешних сил, колебания будут затухать. Затухающими называются колеба­ния с уменьшающейся во времени амплитудой.

Рассмотрим свободные затухающие колебания. При небольших скоростях сила сопротивления F C пропорциональна скорости v и обратно пропорциональна ей по направлению
, гдеr - коэффициент сопротивления среды. Используя второй закон Ньютона , получим дифференциальное уравнение затухающих колебаний
,
,
. Обозначим
,
. Тогда дифференциальное уравнение приобретает вид:

Рис.4.4. Зависимость смеще­ния и амплитуды затухаю­щих колебаний от времени.


.

Это дифференциальное уравнение затухающих колебаний. Здесь  0 - собственная частота колеба­ний системы, т.е. частота свободных колебаний при r=0,  - коэффициент зату­хания оп­ределяет скорость убывания амплитуды. Решениями этого уравнения при условии  0 являются

либо
.

График последней функции представлен на рис.4.4. Верхняя пунктирная линия дает график функции
, А 0 - амплитуда в начальный момент времени. Амплитуда во времени убывает по экспоненциальному закону,  - коэффициент зату­хания по величине обратен времени релакса­ции , т.е. вре­мени за которое амплитуда уменьшается в e раз, так как

,
, = 1, . Частота и период затухающих колебаний
,
; при очень малом сопротивлении среды ( 2  0 2) период колебаний практически ра­вен
. С ростом период колебаний увеличивается и при > 0 решение дифференциального уравнения показывает, что колебания не совершаются, а происходит монотонное движение системы к положению равновесия. Такое движение называют апериодическим.

Для характеристики скорости затухания колебаний служат еще два параметра: декремент затухания D и логарифмический декремент . Декремент затуха­ния показывает во сколько раз уменьшается амплитуда колебаний за время од­ного периода Т.

Н

Рис.4.5. Вид резонансных кривых.

атуральный логарифм от декремента затухания есть логарифмический декремент

Так как, то
, гдеN - число колебаний за время.

Гармонический осциллятор

Гармони́ческий осцилля́тор (в классической механике) - система , которая при смещении из положения равновесия испытывает действие возвращающей силы F , пропорциональной смещению x (согласно закону Гука):

где k - коэффициент жёсткости системы.

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), , торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь).

Свободные колебания

Консервативный гармонический осциллятор

В качестве модели консервативного гармонического осциллятора возьмём груз массы m , закреплённый на пружине жёсткостью k .

Пусть x - смещение груза относительно положения равновесия. Тогда, согласно закону Гука, на него будет действовать возвращающая сила:

тогда полная энергия имеет постоянное значение

Простое гармоническое движение - это движение простого гармонического осциллятора , периодическое движение, которое не является ни вынужденным , ни затухающим . Тело в простом гармоническом движении подвергается воздействию единственной переменной силы , которая по модулю прямо пропорциональна смещению x от положения равновесия и направлена в обратную сторону.

Это движение является периодическим: тело колеблется около положения равновесия по синусоидальному закону. Каждое последующее колебание такое же, как и предыдущее, и период , частота и амплитуда колебаний остаются постоянными. Если принять, что положение равновесия находится в точке с координатой, равной нулю, то смещение x тела от положения равновесия в любой момент времени даётся формулой:

где A - амплитуда колебаний, f - частота, φ - начальная фаза.

Частота движения определяется характерными свойствами системы (например, массой движущегося тела), в то время как амплитуда и начальная фаза определяются начальными условиями - перемещением и скоростью тела в момент начала колебаний. Кинетическая и потенциальная энергии системы также зависят от этих свойств и условий.

Простое гармоническое движение может быть математическими моделями различных видов движения, таких как колебание пружины . Другими случаями, которые могут приближённо рассматриваться как простое гармоническое движение, являются движение маятника и вибрации молекул.

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

F - возвращающая сила, x - перемещение груза (деформация пружины), k - коэффициент жёсткости пружины.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

  1. Когда система выведена из состояния равновесия, должна существовать возвращающая сила, стремящаяся вернуть систему в равновесие.
  2. Возвращающая сила должна в точности или приближённо быть пропорциональна перемещению.

Система груз-пружина удовлетворяет обоим этим условиям.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его, и стремящейся вернуть в начальную точку, то есть, в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Пока в системе нет потерь энергии, груз будет колебаться как описано выше; такое движение называется периодическим.

Дальнейший анализ покажет, что в случае системы груз-пружина движение является простым гармоническим.

Динамика простого гармонического движения

Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m  d²x /dt ² ) и закон Гука (F = −kx , как описано выше), имеем линейное дифференциальное уравнение второго порядка:

m - масса тела, x - его перемещение относительно положения равновесия, k - постоянная (коэффициент жёсткости пружины).

Решение этого дифференциального уравнения является синусоидальным ; одно из решений таково:

где A , ω и φ - постоянные величины, и положение равновесия принимается за начальное. Каждая из этих постоянных представляет собой важное физическое свойство движения: A - это амплитуда, ω = 2πf - круговая частота , и φ - начальная фаза.

Универсальное движение по окружности

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерная проекция универсального движения по окружности. Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

Груз как простой маятник

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной с ускорением свободного падения g даётся формулой

Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от ускорения свободного падения g , поэтому при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

I - момент инерции ; в данном случае I = m ℓ 2 .

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

Затухающий гармонический осциллятор

Взяв за основу ту же модель, добавим в неё силу вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Проводя аналогичные действия, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Здесь введено обозначение: . Коэффициент носит название постоянной затухания. Он тоже имеет размерность частоты.

Решение же распадается на три случая.

, где - частота свободных колебаний. , где

Критическое затухание примечательно тем, что именно при критическом затухании осциллятор быстрее всего стремится в положение равновесия. Если трение меньше критического, он дойдёт до положения равновесия быстрее, однако «проскочит» его по инерции, и будет совершать колебания. Если трение больше критического, то осциллятор будет экспоненциально стремиться к положению равновесия, но тем медленнее, чем больше трение.

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы прочитать его показания можно было максимально быстро.

Затухание осциллятора также часто характеризуют безразмерным параметром, называемым добротностью . Добротность обычно обозначают буквой . По определению, добротность равна:

Чем больше добротность, тем медленнее затухают колебания осциллятора.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

Добротность иногда называют коэффициентом усиления осциллятора, так как при некоторых способах возбуждения при совпадении частоты возбуждения с резонансной амплитуда колебаний оказывается примерно в раз больше, чем при возбуждении на низкой частоте.

Также добротность примерно равна количеству колебательных циклов, за которое амплитуда колебаний уменьшается в раз, умноженному на .

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

  • Время жизни колебаний (оно же время затухания , оно же время релаксации ) τ - время, за которое амплитуда колебаний уменьшится в e раз.
Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя формально свободные колебания продолжаются бесконечно долго).

Вынужденные колебания

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.



Понравилась статья? Поделитесь с друзьями!