Расчет тепла токи фуко постоянный магнит. «Поэтому движущиеся в сильном магнитном поле проводники испытывают сильное торможение из-за взаимодействия токов Фуко с магнитным полем

Обмотка лабораторного регулировочного автотрансформатора (ЛАТР) намотана на железном сердечнике, имеющем форму прямоугольного тороида (рис.). Для защиты от вихревых токов Фуко сердечник делают из тонких железных пластин, покрытых изолирующим слоем лака. Такой сердечник можно сделать разными способами:
 а) набирая его из тонких колец, положенных стопкой одно на другое;
 б) свертывая в рулон тонкую длинную ленту шириной h ;
 в) собирая из прямоугольных пластин размером l × h , расположив их вдоль радиусов цилиндра.

Эксперимент.
 Наблюдать возникновение токов Фуко можно с помощью следующей установки. Маятник, состоящий из куска металла, подвешенного на нити между полюсами электромагнита, выведенный из положения равновесия при отсутствии тока в электромагните, совершает слабо затухающие колебания. При включении тока колебания почти мгновенно затухают, и движение маятника до его остановки напоминает движение в вязкой среде. Это объясняется тем, что возникшие при движении маятника в магнитном поле токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника.

 Если сплошной сектор маятника заменить гребенкой с длинными зубцами, то возбуждение токов Фуко будет сильно затруднено. Маятник будет колебаться в магнитном поле почти без затухания. Этот опыт объясняет, почему сердечники электромагнитов и рамы трансформаторов делают не из сплошного куска железа, а из многих листов, наложенных друг на друга. В результате токи Фуко возбуждаются слабо и сильно уменьшается вредное влияние джоулева тепла, выделяемого ими.
Теория.
Токи Фуко индукционные токи, возникающие в массивных проводниках
в переменном магнитном поле, называются токами Фуко. Иногда они играют полезную роль, а иногда вредную.
 Токи Фуко играют полезную роль в роторе асинхронного двигателя, приводимого в движение вращающимся магнитным полем, поскольку само осуществление принципа работы асинхронного двигателя требует возникновения токов Фуко. Являясь токами проводимости, токи Фуко рассеивают часть энергии на выделение джоулевой теплоты. Эта потеря энергии в роторе асинхронного двигателя является бесполезной , но с ней приходится мириться, избегая лишь чрезмерного перегревания ротора. Но одновременно с этим в сердечниках электромагнитов асинхронного двигателя, выполненных обычно из ферромагнетиков, являющихся проводниками, также возникают токи Фуко, которые не имеют никакого значения для принципа работы электромагнитов, но нагревают эти сердечники, ухудшая тем самым их характеристики . С ними необходимо бороться, как с вредным фактором. Борьба заключается в том, что сердечники изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, причем их устанавливают так, чтобы токи Фуко были направлены поперек пластин. Благодаря этому при достаточно малой толщине пластин токи Фуко не могут развиваться и имеют незначительную объемную плотность.
 Джоулева теплота, выделяемая токами Фуко, полезно используется в процессах разогрева или даже плавки металлов , когда это оказывается более выгодным или целесообразным по сравнению с другими методами разогрева. Если производить разогрев металла токами очень высокой частоты, то в результате скин-эффекта раскаляется только поверхностный слой проводника.

(б, в) Сплошной кусок металла , находящийся в переменном магнитном поле, представляет собой проводник сопротивления, вследствие чего сила индукционных токов достигает в нем больших значений.
 Так как ЭДС индукции пропорциональна быстроте изменения потока магнитной индукции, то величина токов Фуко тем больше, чем быстрее меняется то магнитное поле, в которое внесен данный проводник. Поэтому возникновение токов Фуко легче наблюдать, если внести проводник в полость соленоида, по обмотке которого пропускается быстро переменный ток, вызывающий также быстро меняющееся по величине магнитное поле. В этом случае токи Фуко в массивных хорошо проводящих телах достигают такой силы, что выделяющегося тепла оказывается достаточно, чтобы раскалить тело. Этот метод широко используется в вакуумной технике для прогрева внутри откачиваемого прибора металлических частей для их обезгаживания. Этот же способ употребляется для плавки металлов под вакуумом.
В кусках достаточно толстых , т. е. имеющих большие размеры в направлении , перпендикулярном к направлению индукционного тока , вихревые токи вследствие малости сопротивления могут быть очень большими и вызывать очень значительное нагревание . Если, например, поместить внутрь катушки массивный металлический сердечник и пропустить по катушке переменный ток, который 100 раз в секунду изменяет свое направление и силу, доходя до нуля и вновь усиливаясь, то этот сердечник нагреется очень сильно. Нагревание это вызывается индукционными (вихревыми) токами, возникающими вследствие непрерывного изменения магнитного потока, пронизывающего сердечник. Если же этот сердечник сделать из отдельных тонких проволок, изолированных друг от друга слоем лака или окислов, то сопротивление сердечника в направлении, перпендикулярном к его оси, т. е. сопротивление для вихревых токов, возрастет, и нагревание значительно уменьшится. Этим приемом − разделением сплошных кусков железа на тонкие изолированные друг от друга слои − постоянно пользуются во всех электрических машинах для уменьшения нагревания их индукционными токами, возникающими в переменном магнитном поле. С другой стороны, токи Фуко иногда используются в так называемых индукционных печах для сильного нагревания или даже плавления металлов.

Трансформаторы.
 Однако во многих случаях нагревание, вызываемое токами Фуко, является вредным. К таким случаям относится нагревание сердечников трансформаторов и вообще металлических сердечников всякого рода обмоток, по которым идет переменный ток. Чтобы избежать такого нагревания, сердечники делают слоистыми, отделяя слои друг от друга тонкой прослойкой изоляции, расположенной перпендикулярно к направлению токов Фуко.
 Появление ферритов (магнитных материалов с большим электрическим сопротивлением) сделало возможным изготовление сердечников сплошными.
 (в) В трансформаторах малой мощности магнитопровод собирают из пластин П- , Ш- и О- образной формы (рис. а, б, в).


 Широкое применение получили магнитопроводы, навитые из узкой ленты электротехнической стали или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трёхфазных трансформаторов (г, д, е, ж).

Скин-эффект.
 Токи Фуко могут возникать и в самом проводнике, по которому течет переменный ток. Появление таких токов ведет к особому поверхностному эффекту (называемому также скин-эффектом от английского слова skin , что значит кожа). Если переменный ток идет по цилиндрическому проводнику , то в моменты увеличения тока индукционные токи Фуко будут направлены как показано на рисунке.

 Эти токи направлены у поверхности проводника в направлении первичного электрического тока, а у оси проводника − навстречу току. В результате внутри проводника ток ослабнет, у поверхности увеличится. Таким образом, вследствие возникновения индукционных токов Фуко, ток будет распределен неравномерно по сечению проводника.
 При быстропеременных токах плотность тока вблизи оси проводника практически оказывается равной нулю, и весь ток идет по поверхности проводника. Вследствие этого и магнитное поле внутри проводника делается равным нулю. Это явление вызывает увеличение сопротивления проводника, так как по внутренним частям проводника ток не идет. Так как эти внутренние части оказываются бесполезными, то в целях экономии металла провода для быстропеременных токов делаются полыми. Токи Фуко приводят также к уменьшению коэффициента самоиндукции проводника. Это можно пояснить на примере цилиндрического проводника.
 В силу скин-эффекта проводники в высокочастотных схемах не имеет смысла делать сплошными. Для уменьшения сопротивления нужно увеличивать их поверхность, а не сечение, т. е. изготовлять проводники в виде трубок . В электропечах этим обстоятельством пользуются, охлаждая трубки катушки, по которым идет ток высокой частоты, с помощью воды, циркулирующей внутри трубок.

Генераторы.
 Генераторы обычно приводятся в движение сравнительно тихоходными водяными турбинами или двигателями внутреннего сгорания. При работе же с паровыми турбинами, вращающимися с частотой 1500 − 3000 оборотов в минуту, применяется несколько иная конструкция ротора (индуктора). Ротор не имеет выступов, а представляет собой гладкий цилиндр, на наружной поверхности которого в пазах уложена обмотка. При большой частоте вращения это выгоднее, потому что выступы на роторе создают воздушные вихри и увеличивают механические потери.
 Форма полюсных наконечников на выступах ротора специально рассчитывается так, чтобы индуцированная в обмотке ЭДС изменялась со временем по закону синуса, т. е. чтобы форма напряжения и тока, даваемого генератором, была синусоидальной.
 Статор генератора − его неподвижная часть − представляет собой железное кольцо, в пазах которого уложены обмотки якоря. Для уменьшения потерь на токи Фуко это кольцо делается не сплошным, а состоящим из отдельных тонких листов железа, изолированных друг от
друга.

Смотрите еще :

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Токи Фуко (в честь Фуко, Жан Бернар Леон) -- это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786--1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819--1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

В отличие от электрического тока в проводах, текущего по точно определённым путям, вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Эти контуры тока взаимодействуют с породившим их магнитным потоком. Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи. вихревый ток проводник индукция

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть, замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для подвижных частей гальванометров, сейсмографов и др. Тепловое действие токов Фуко используется в индукционных печах -- в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления. С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Проведем следующий эксперимент:

Берем постоянный магнит (1) в руки и быстро водим (3) его вдоль поверхности листа меди/алюминия (2), ориентируя к последнему один из полюсов магнита, так как показано на Рис.1.

Можно отчетливо ощутить возникающее сопротивление такому быстрому движению. Теперь пустим магнит в свободное скольжение по поверхности наклоненного толстого листа меди/алюминия. Можно заметить, что скольжение магнита сильно тормозится, и даже возникает впечатление, что магнит сильнее прижимается к листу проводника. Аналогичный эксперимент - постоянный магнит бросают в вертикальную трубу из меди или алюминия. Стандартное объяснение - движение магнита тормозят вихревые токи Фуко. Но умалчивается что суммарная масса электронов вовлеченных в вихревое движение во много раз меньше массы постоянного магнита. И потом, что мешает смещаться электронному вихрю вслед за скользящим магнитом? Логично предположить что "свободные" электроны, в электрическом проводнике, фактически не являются свободными. Существует некая сетка электропроводных мостиков меж атомами проводника, по которым движутся электроны. Эта-та сетка и привязывает множество вихрей токов Фуко к кристаллической решетке. Но, эксперимент с заменой сплошного листа проводника на опилки, показывает, что торможение движения постоянного магнита становится незаметным. Т.е. электропроводные "мостики" меж атомами проводника это не локальное явление. "Мостики" проявляют себя в макро-масштабах.

Но продолжим эксперимент с тем, что имеется у нас в руках - быстро водим (3) магнитом (1) вдоль поверхности листа меди/алюминия (2), ориентируя к последнему уже его оба полюса, так как показано на Рис.2.

При этом ощущается тоже сопротивление быстрому движению, что и в первом эксперименте.

Но вот если повернем магнит (1) и будем его быстро двигать (3), перпендикулярно прямой меж полюсами магнита (как показано на Рис.3), то мы уже не обнаружим сопротивление его быстрому движению.

Куда же делись токи Фуко? Никуда они не делись, просто их плоскость стала пересекать плоскость нашего листа меди/алюминия, что вызвало появление на поверхности листа электрического заряда как в банальном униполярном генераторе электрического тока. В нашем же случае электрическая цепь оказалась не замкнута, "вихревой" контур разомкнут… в макро-масштабах. Что опять наводит на мысль существования электропроводных "мостиков" меж атомами проводника в макро-масштабах.

Схематическое изображение возникающих вихревых токов в проводнике при изменении пронизывающего его потока вектора магнитной индукции. I - изменяющийся ток обмотки сердечника, вызывающий переменное во времени магнитное поле.

Таким образом, токи Фуко являются индукционными токами, они образуются либо вследствие изменения во времени магнитного поля, в котором находится проводник, либо в результате движения проводящего тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Токи Фуко замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Направления вихревых токов определяются правилом Ленца. Согласно правилу Ленца, магнитное поле вихревого тока направленно так, чтобы противодействовать изменению магнитного потока, индуцирующему эти вихревые токи.

В соответствии с законом Джоуля-Ленца, токи Фуко нагревают проводники, в которых они возникли, что приводит к потерям энергии. Для их уменьшения и снижения эффекта «вытеснения» магнитного поля магнитопроводы изготавливают не из сплошного куска, а из изолированных друг от друга отдельных пластин, заменяют ферромагнитные материалы магнитодиэлектриками и др. Явление нагревания проводников токами Фуко используется для плавки и поверхностной закалки металлов, для обезгаживания элементов арматуры вакуумных приборов и т.д.

Вихревые токи возникают и в самом проводнике, по которому течет переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному току, а у оси проводника - навстречу току. В результате внутри проводника ток уменьшается, а на поверхности увеличивается (ток «вытесняется» на поверхность проводника). Это явление называется электрическим скин-эффектом. Взаимодействие вихревых токов с основным магнитным потоком приводит проводящее тело в движение. Это явление используется в измерительной технике, в машинах переменного тока и т.д.

Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи - токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля-Ленца, большое количество тепла.

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах, для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск. В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона. Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение в электрометаллургии при индукционной плавке металлов и поверхностной закалке токами высокой частоты. Металл помещают в переменное магнитное поле, создаваемое током частотой 500 - 2000 Гц. В результате индуктивного разогрева металл плавится, а тигель, в котором он находится, при этом остается холодным. Например, при подведенной мощности 600 кВт тонна металла плавится за 40-50 минут.

Литература

1. Сивухин Д. В.: Общий курс физики, том 3.

2. Савельев И. В.: Курс общей физики, том 2

3. Неразрушающий контроль: справочник.

Размещено на Allbest.ru

...

Подобные документы

    Понятие гравитационного поля как особого вида материи и его основные свойства. Сущность теории вихревых полей. Определение радиуса действия гравитационного поля. Расчет размеров гравитационных полей планет, их сравнение с расстоянием между ними.

    реферат , добавлен 12.03.2014

    Анализ электрических цепей постоянного тока. Расчёт токов с помощью законов Кирхгофа. Расчёт токов методом контурных токов. Расчёт токов методом узлового напряжения. Исходная таблица расчётов токов. Потенциальная диаграмма для контура с двумя ЭДС.

    курсовая работа , добавлен 02.10.2008

    Электродинамическое взаимодействие электрических токов. Открытие магнитного действия тока датским физиком Эрстедом - начало исследований по электромагнетизму. Взаимодействие параллельных токов. Индикаторы магнитного поля. Вектор магнитной индукции.

    презентация , добавлен 28.10.2015

    Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко - вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация , добавлен 17.11.2010

    Электромагнитная индукция. Закон Ленца, электродвижущая сила. Методы измерения магнитной индукции и магнитного напряжения. Вихревые токи (токи Фуко). Вращение рамки в магнитном поле. Самоиндукция, ток при замыкании и размыкании цепи. Взаимная индукция.

    курсовая работа , добавлен 25.11.2013

    Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа , добавлен 28.09.2014

    Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа , добавлен 10.05.2013

    Понятие и принципы распространения токов Фуко, их характерные особенности. Сущность скин-эффекта. Явление самоиндукции и ее ЭДС. Энергия магнитного поля, критерии и порядок ее измерения. Понятие взаимной индукции, факторы и порядок ее возникновения.

    презентация , добавлен 24.09.2013

    Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Определение токов во всех ветвях методом контурных токов. Расчет однофазных цепей переменного тока. Уравнение мгновенного значения тока источника, баланс мощности.

    реферат , добавлен 05.11.2012

    Трехфазная электрическая цепь с лампами накаливания. Определение токов и показаний амперметра. Векторная диаграмма токов и топографическая диаграмма напряжений. Мощность, измеряемая ваттметрами. Моделирование цепи и расчет пускового режима ее работы.

Электричество окружает нас не только на производстве, но и в быту. Человек может даже не знать, что такое вихревые токи, но с работой, ими совершаемой, ежедневно сталкиваться. Например, люди давно привыкли включать свет простым нажатием клавиши выключателя, не задумываясь о происходящих при этом процессах. Так и случилось в данном случае. Поэтому чтобы понять, что же скрывается под термином «вихревые токи Фуко» и определиться с механизмом их возникновения, необходимо вспомнить свойства электрического тока. Но сначала ответим на вопрос «почему именно Фуко»?

Впервые вихревые токи были упомянуты в трудах французского физика Араго Д. Ф. Он обратил внимание на странное поведение медного диска, над которым располагалась вращающаяся намагниченная стрелка. Без видимых причин диск начинал вращаться вместе с вращением стрелки. В то время (1824 г.) объяснить такое поведение еще не могли, поэтому феномен получил название «явление Араго». Спустя несколько лет другой ученый – М. Фарадей, применив к явлению Араго открытый им закон электромагнитной индукции, пришел к выводу, что в данном случае движение диска легко объяснить с точки зрения упомянутого закона. Согласно предложенному объяснению, вращающееся магнитное поле воздействует на атомы проводника (медного диска) и вызывает появление направленного движения заряженных (поляризованных) частиц в структуре. Одно из свойств электрического тока состоит в том, что вокруг проводника всегда существует магнитное поле. Нетрудно догадаться, что и вихревые токи создают свое поле, вступающее во взаимодействие с основным, их порождающим. Слово «вихревые» характеризует способ распространения таких токов в проводнике: их направления закольцованы. Основываясь на работах Араго и Фарадея, серьезно вихревые токи изучал физик Фуко. Отсюда и полученное название.

Эти токи мало чем отличаются от индукционных, вырабатываемых генераторами. Если есть вихревое магнитное поле (переменное, вращающееся) и находящийся рядом проводник, то в нем благодаря действию электромагнитных полей наводятся токи. Чем больше и массивнее проводник, тем выше действующее значение создающихся токов. Причем, вихревые токи всегда создают такое магнитное поле, которое противится изменению потока. С ростом тока-первопричины возрастает направленная встречно ЭДС, а при снижении, наоборот, поле вихревых токов поддерживает основной поток. Вышесказанное следует из закона Ленца.

В других случаях некоторые свойства вихревых токов оказываются востребованными. Например, работа индукционных сталеплавильных печей основана на нагревающем массивный проводник действии вихревых токов, наведенных специальным генератором. Кроме того, их используют для определения наличия незаметных деффектов в структуре металла.

Что такое вихревые токи

Вихревые токи считаются одним из наиболее удивительных явлений, встречающихся в электротехнике. Поразительно, что человечество научилось использовать негативные аспекты действия вихревых токов во благо.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни - их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

Что такое токи Фуко, их полезное использование, в каких случаюх с ними приходится бороться?

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) - вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Полезное использование
....Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.
Тепловое действие токов Фуко используется в индукционных печах - в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Юрий Масалыга

При прохождении тока по проводнику создаётся магнитное поле препендикулярное протекающему току (правило буравчика) . Это поле порождает токи Фуко. При достаточной силе тока и толщине проводника токи Фуко становятся значительными и вызывают нагрев проводника. Поэтому провода делают многожильными, а магнитопроводы трансформаторов набирают из отдельных изолированных пластин - это предотвращает перегрев.

Кирилл Грибков

ВИХРЕВЫЕ ТОКИ (токи Фуко) - замкнутые индукционные токи в массивных проводниках, которые возникают под действием вихревого электрического поля, порождаемого переменным магнитным полем. Вихревые токи приводят к потерям электроэнергии на нагрев проводника, в котором они возникли; для уменьшения этих потерь магнитопроводы машин и аппаратов переменного тока изготовляют из изолированных стальных пластин.

Sergey x

Вихревые токи, токи Фуко, применяются для плавки и поверхностной закалки металлов, а их силовое действие используется в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов) и т. п.

Вихревые или цикличные токи имеют как позитивное, так и негативное значение для человека. С одной стороны, они являются причиной утрат энергии в массивном проводнике или катушке. В то же время явление вихревого тока можно применять и с пользой – например,создание индукционных печей. Но обо всем по порядку.

Открытие вихревых токов

Вихревые электрические токи были открыты французским ученым Араго Д.Ф. Ученый экспериментировал с медным диском и стрелкой, которая была намагничена.

Она крутилась вокруг диска, в какой-то момент времени он начал повторять движения стрелки. Тогдашние ученые объяснение явлению не нашли – это странное движение назвали «явление Араго». Загадка ждала своего времени.

Через несколько лет вопросом заинтересовался Максвелл Фарадей, на тот момент, открывший свой знаменитый закон электромагнитной индукции.

Согласно закону, М. Фарадей выдвинул предположение, что движимое магнитное поле имеет влияние на атомную металлическую решетку медного проводника.

Электрический ток, возникший в результате направленного движения электронов, всегда создает магнитное поле по всему периметру проводника. Детально описал вихревые токи, опираясь на работы Араго и Фарадея – физик-экспериментатор Фуко, откуда они и получили свое второе название.

Какова природа вихревых токов?

Замкнутые циклические токи способны возникать в проводниках, в тех случаях, когда магнитное поле вокруг этих проводников не стабильно, то есть постоянно меняющееся во времени или динамично вращающееся.

Таким образом, сила вихревого тока прямо зависит от скорости изменения магнитного потока, пронзающего проводник. Известно, что электроны в проводнике двигаются линейно вследствие разницы потенциалов, таким образом электрический ток прямо направлен.

Токи Фуко проявляют себя иначе и замыкаются прямо в теле проводника, образуя вихреобразные цикличные контуры. Они способны взаимодействовать с магнитным полем, вследствие действия которого они и возникли. (рис 1)

Вихревые токи в проводнике

На рисунке можно хорошо рассмотреть, как интересующие нас токи увеличиваются при повышении уровня индукции (показаны пунктирными направляющими) в середине катушки, которая подключена к переменному току.

Исследуя вихревые токи Фуко русский ученый Ленц сделал вывод, что собственное магнитное поле этих токов не дает магнитному потоку, причиной коих они и являются, изменится. Характер направления силовых линий вихревого электрического тока совпадает с вектором направления индукционного тока.

Значение и применение

В момент движения тела в создаваемых магнитных полях токи Фуко являются причиной физического замедления тела в этих полях. Эта способность давно реализована в конструкции бытового электросчетчика. Суть заключается в том, что замедляется алюминиевый диск, вращающийся под действием магнита. (рис2)

Рисунок изображает диск счетчика электрической энергии, где сплошной стрелкой указано направление вращения самого диска, а пунктирными – вихревые потоки


Эти же взаимодействия помогли реализовать идею создания насоса для перекачки расплавленных металлов. Токи Фуко провоцируют возникновение скин - эффекта. В результате их действия КПД проводника уменьшается, поскольку посредине сечения проводника ток фактические отсутствует, а преобладает на его периферии.

Для уменьшения потерь электроэнергии, особенно при передаче на длительные дистанции, используют многоканальный кабель, каждая жила в котором имеет свою изоляцию. Вихревые токи, а именно индукционные печи, сконструированные на их основе, нашли широкое применение в металлургии.

Их использую для плавки металлов, их перекачивания и закалки поверхности. А также свойства вихревых токов используются для замедления и остановки металлического диска в индукционных тормозах. В современных вычислительных приборах и аппаратах токи Фуко способствуют замедлению движущихся частиц.

Токами Фуко (или вихревыми токами) называют токи, имеющие индукционную природу, которые появляются в массивных проводниках в переменном магнитном поле. Замкнутые цепи вихревых токов появляются в глубине самого проводника. Электросопротивление массивного проводника невелико, следовательно, токи Фуко могут достигнуть большого значения. Сила вихревых токов зависит от формы и свойств материала проводника, направления переменного магнитного поля, скорости, с которой изменяется магнитный поток. Распределение токов Фуко в проводнике может быть очень сложным.

Количество тепла, которое выделяется за $1 с$ токами Фуко пропорционально квадрату частоты изменения магнитного поля.

По закону Ленца, токи Фуко выбирают такие направления, чтобы своим воздействовать причину, которая их вызывает. Значит, если проводник движется в магнитном поле, то он должен испытывать сильное торможение, которое вызвано взаимодействием токов Фуко и магнитного поля.

Приведем пример возникновения оков Фуко. Медный диск диаметром $5 см$, толщиной $6 мм$ заставим падать в узком зазоре между полюсами электромагнита. Если магнитное поле отключено, диск быстро падает. Включим электромагнит. Поле должно быть большим (порядка $0,5Тл$). Падение диска станет медленным и будет напоминать движение в очень вязкой среде.

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку - проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита. Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева. Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления. Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Проблемы, которые вызывают вихревые токи. Скин - эффект

Токи Фуко могут играть не только полезную роль. Вихревые токи являются токами проводимости, и часть энергии рассеивают на выделение джоулевой теплоты. Такая энергия, например, в роторе асинхронного двигателя, который изготавливается, обычно из ферромагнетиков, нагревает сердечники, тем самым ухудшаются их характеристики. Для борьбы с таким явлением сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора и устанавливают пластины так, чтобы токи Фуко имели направление поперек пластин. При небольшой толщине пластин вихревые токи имеют малую объемную плотность. С появлением ферритов и веществ с большим магнитосопротивлением стало возможным изготовление сердечников сплошными.

Вихревые токи возникают в проводах, в которых текут переменные токи, причем направление токов Фуко таково, что они ослабляют ток внутри провода и усиливают его около поверхности. Следовательно, быстро изменяющийся ток распределен по сечению провода неравномерно. Такое явление называется скин - эффектом (поверхностным эффектом). Из-за этого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой используют трубки в качестве проводников. Скин - эффект может применяться для разогрева поверхностного слоя металла, что позволяет использовать это явление для закалки металла, причем, изменяя частоту поля, можно проводить закалку на любой необходимой глубине.

Приближенные формулы, которыми можно описать скин-эффект в однородном цилиндрическом проводнике:

Рисунок 1.

где $R_w$ - эффективное сопротивление проводника радиусом $r$ переменному току с циклической частотой $w$. $R_0$ - сопротивление проводника постоянному току.

где эффективная глубина проникновения переменного тока ($\delta $) (расстояние от поверхности проводника, на котором плотность тока уменьшается в $e=2,7\ $раз в сравнении с плотностью на его поверхности) равна:

$\mu $ - относительная магнитная проницаемость, ${\mu }_0$ - магнитная постоянная, $\sigma $ - удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее скин - эффект, тем меньше величины $w$ и $\sigma $, при которых его следует учесть.

Пример 1

Задание: В опыте с центробежной машиной к ней прикрепили массивный медный диск, привели этот диск во вращение с большой скоростью. Над диском подвесили (без соприкосновения) магнитную стрелку. Что будет происходить со стрелкой, почему?

Решение:

Магнитная стрелка выступает в роли магнита, который создает магнитное поле, в этом поле вращается медный проводник. Следовательно, в проводнике возникают индукционные токи - токи Фуко. По правилу Ленца вихревые токи, взаимодействуя с магнитным полем, стремятся остановить вращение диска или в соответствии с третьим законом Ньютона увлечь за собой магнитную стрелку. Значит, магнитная стрелка, которая висит над диском, будет поворачиваться вслед за ним и закрутит подвес (нить).

Ответ: Магнитная стрелка будет вращаться, причина - вихревые токи.

Пример 2

Задание: Объясните, почему подземный кабель, по которому передается переменный ток нельзя прокладывать вблизи от металлических газовых и водопроводных труб?

Решение:

Под действием переменного тока вокруг кабеля возникает переменное магнитное поле, если в это поле попадает проводник (металлическая труба), то возникнут индукционные вихревые токи. Эти токи вызывают коррозию металлических труб. Кроме того наличие токов в трубах опасно, так как возникает возможность поражения током.

Пример 3

Задание: Маятник, изготовленный из толстой листовой меди, имеет форму усеченного сектора. Он подвешен на стержне и может совершать свободные колебания вокруг горизонтальной оси в магнитном поле между полюсами сильного электромагнита. В отсутствии магнитного поля маятник совершает колебания практически без затухания. Опишите колебания маятника в магнитном поле электромагнита. Как заставить маятник колебаться почти без затухания в присутствии магнитного поля?

Решение:

Если описанный массивный маятник, осуществляющий колебания, поместить в сильное магнитное поле, то в маятнике возникают токи Фуко. Эти токи по правилу Ленца тормозят движения маятника, амплитуда колебаний уменьшается, и сами колебания скоро прекращаются.

Для того чтобы уменьшить вихревые индукционные токи в маятнике, осуществляющем колебания в магнитном поле, можно его сплошной сектор заменить гребенкой с удлинёнными зубцами. Токи Фуко будут уменьшены, и маятник будет совершать колебания практически без затухания.



Понравилась статья? Поделитесь с друзьями!