Решение таблицы 8.11 теорема пифагора. Разные способы доказательства теоремы Пифагора: примеры, описание и отзывы


Теорема Пифагора

Своеобразна судьба иных теорем и задач... Как объяснить, например, столь исключительное внимание со стороны математиков и любителей математики к теореме Пифагора? Почему многие из них не довольствовались уже известными доказательствами, а находили свои, доведя за двадцать пять сравнительно обозримых столетий количество доказательств до нескольких сотен?
Когда речь идет о теореме Пифагора, необычное начинается уже с ее названия. Считается, что сформулировал ее впервые отнюдь не Пифагор. Сомнительным полагают и то, что он дал ее доказательство. Если Пифагор - реальное лицо (некоторые сомневаются даже в этом!), то жил он, скорее всего, в VI-V в. до н. э. Сам он ничего не писал, называл себя философом, что значило, в его понимании, «стремящийся к мудрости», основал пифагорейский союз, члены которого занимались музыкой, гимнастикой, математикой, физикой и астрономией. По-видимому, был он и великолепным оратором, о чем свидетельствует следующая легенда, относящаяся к пребыванию его в городе Кротоне: «Первое появление Пифагора пред народом в Кротоне началось речью к юношам, в которой он так строго, но вместе с тем и так увлекательно изложил обязанности юношей, что старейшие в городе просили не оставить и их без поучения. В этой второй речи он указывал на законность и на чистоту нравов, как на основы семейства; в следующих двух он обратился к детям и женщинам. Последствием последней речи, в которой он особенно порицал роскошь, было то, что в храм Геры доставлены были тысячи драгоценных платьев, ибо ни одна женщина не решалась более показываться в них на улице...» Тем не менее еще во втором столетии нашей эры, т. е. спустя 700 лет, жили и творили вполне реальные люди, незаурядные ученые, находившиеся явно под влиянием пифагорейского союза и относящиеся с большим уважением к тому, что согласно легенде создал Пифагор.
Несомненно также, что интерес к теореме вызывается и тем, что она занимает в математике одно из центральных мест, и удовлетворением авторов доказательств, преодолевших трудности, о которых хорошо сказал живший до нашей эры римский поэт Квинт Гораций Флакк: «Трудно хорошо выразить общеизвестные факты».
Первоначально теорема устанавливала соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника:
.
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: a 2 +b 2 =c 2 . Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что
a 2 + b 2 = c 2 , существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам.
Аналогично, треугольник CBH подобен ABC. Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

или

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке.
2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата.



Что и требовалось доказать.

Доказательства через равносоставленность

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны. Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах. Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK. Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°). Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично. Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах.

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур CAJI и GDAB. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты – стороны, пересекающиеся под прямым углом), а гипотенузу – как «с» (гипотенуза – самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b – это катеты, а с – это гипотенуза.

    • В нашем примере напишите: 3² + b² = 5².
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени – вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения после того, как на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне – свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4.
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни – в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров.
  • Вокруг да около

    История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах. Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии .

    Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором - площадь незакрашенной области равна . Таким образом, . Теорема доказана!

    Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник. И тут! Как гром среди ясного неба

    Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!

    Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так!

    Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.

    Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!

    О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо. Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект. Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла - прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.

    Новая теорема

    Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза . Пришло время нарисовать еще одну картинку.


    На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку). Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды - это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.

    Теорема

    Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны - , и площадь грани-гипотенузы - . Тогда

    Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.

    Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.

    Доказательство

    Выразим площади через длины векторов .

    где .

    Площадь представим как половину площади параллелограмма, построенного на векторах и

    Как известно, векторное произведение двух векторов - это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах.
    Поэтому

    Таким образом,

    Что и требовалось доказать!

    Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз. Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства - до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира. Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.

    Послесловие

    В жизни, все оказалось гораздо проще и прозаичнее. Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году!

    Статья опубликована издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, - просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить!

    Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!

    P.S.

    Эрудированный читатель в комментариях прислал ссылку
    Теорема де Гуа

    Выдержка из Википедии

    В 1783 году теорема была представлена Парижской академии наук французским математиком Ж.-П. де Гуа, однако ранее она была известна Рене Декарту и до него Иоганну Фульгаберу (англ.), который, вероятно, первым открыл её в 1622 году. В более общем виде теорему сформулировал Шарль Тинсо (фр.) в докладе Парижской академии наук в 1774 году

    Так что я опоздал не на 18 лет, а как минимум на пару веков!

    Источники

    Читатели указали в комментариях несколько полезных ссылок. Вот эти и некоторые другие ссылки:

    Различные способы доказательства теоремы Пифагора

    учащаяся 9 «А» класса

    МОУ СОШ №8

    Научный руководитель:

    учитель математики,

    МОУ СОШ №8

    ст. Новорождественской

    Краснодарского края.

    Ст. Новорождественская

    АННОТАЦИЯ.

    Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы .

    В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

    Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

    Введение. Историческая справка 5 Основная часть 8

    3. Заключение 19

    4. Используемая литература 20
    1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

    Суть истины вся в том, что нам она - навечно,

    Когда хоть раз в прозрении ее увидим свет,

    И теорема Пифагора через столько лет

    Для нас, как для него, бесспорна, безупречна.

    На радостях богам был Пифагором дан обет:

    За то, что мудрости коснулся бесконечной,

    Он сто быков заклал, благодаря предвечных;

    Моленья и хвалы вознес он жертве вслед.

    С тех пор быки, когда учуят, тужась,

    Что к новой истине людей опять подводит след,

    Ревут остервенело, так что слушать мочи нет,

    Такой в них Пифагор вселил навеки ужас.

    Быкам, бессильным новой правде противостоять,

    Что остается? - Лишь глаза закрыв, реветь, дрожать.

    Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора - свойства треугольника со сторонами 3, 4 и 5 - был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «...и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

    Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе , например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

    Сказка «Дом».

    «Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город - город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

    (Из книги А. Окунева «Спасибо за урок, дети»).

    Шутливая формулировка теоремы:

    Если дан нам треугольник

    И притом с прямым углом,

    То квадрат гипотенузы

    Мы всегда легко найдем:

    Катеты в квадрат возводим,

    Сумму степеней находим –

    И таким простым путем

    К результату мы придем.

    Изучая алгебру и начала анализа и геометрию в 10 классе , я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
    2. ОСНОВНАЯ ЧАСТЬ.

    Теорема. В прямоугольном треугольнике квадрат

    гипотенузы равен сумме квадратов катетов.

    1 СПОСОБ.

    Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

    Доказательство.

    а, в и гипотенузой с (рис.1, а).

    Докажем, что с²=а²+в² .

    Доказательство.

    Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с ² = 2ав + с ².

    Таким образом,

    (а + в )² = 2ав + с ²,

    с²=а²+в² .

    Теорема доказана.
    2 СПОСОБ.

    После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

    Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

    Доказательство.

    На основании утверждения о катете прямоугольного треугольника:

    АС = , СВ = .

    Возведем в квадрат и сложим полученные равенства:

    АС² = АВ * АD, СВ² = АВ * DВ;

    АС² + СВ² = АВ * (АD + DВ), где АD+DB=AB, тогда

    АС² + СВ² = АВ * АВ,

    АС² + СВ² = АВ².

    Доказательство закончено.
    3 СПОСОБ.

    К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

    Доказательство:

    Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.

    По определению косинуса угла:

    cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²

    Аналогично,

    cos В = ВD/ВС = ВС/АВ.

    Отсюда АВ * ВD = ВС² .

    Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:

    АС ² + ВС ² = АВ (АD + DВ) = АВ ²

    Доказательство закончено.
    4 СПОСОБ.

    Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

    Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с . (рис. 4).

    Докажем, что с²=а²+в².

    Доказательство.

    sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:

    sin²В= в²/с²; cos²В = а²/с².

    Сложив их, получим:

    sin²В + cos²В= в²/с²+ а²/с², где sin²В + cos²В=1,

    1= (в²+ а²) / с², следовательно,

    с²= а² + в².

    Доказательство закончено.

    5 СПОСОБ.

    Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

    6 СПОСОБ.

    Для доказательства на катете ВС строим BCD ABC (рис.6). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

    Вычитая из первого равенства второе, получим

    с2 = а2 + b2.

    Доказательство закончено.

    7 СПОСОБ.

    Дано (рис. 7):

    ABС, = 90°, ВС = а, АС= b, АВ = с.

    Доказать: с2 = а2 + b2 .

    Доказательство.

    Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD < АС, то прямые CD и AM не параллельны. Следова­тельно, AMDC - прямоугольная трапеция.

    В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° - 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

    (a+b)(a+b)

    Разделив все члены неравенства на , получим

    а b + с2 + а b = (а + b) , 2 ab + с2 = а2 + b + b2,

    с2 = а2 + b2.

    Доказательство закончено.

    8 СПОСОБ.

    Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC. Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

    Доказательство.

    1) DBC = FBA = 90°;

    DBC + ABC = FBA + ABC, значит, FBC = DBA.

    Таким образом, FBC =ABD (по двум сторонам и углу между ними).

    2) , где AL DE, так как BD - общее основание, DL - общая высота.

    3) , так как FB –снование, АВ - общая высота.

    4)

    5) Аналогично можно доказать, что

    6) Складывая почленно, получаем:

    , ВС2 = АВ2 + АС2 . Доказательство закончено.

    9 СПОСОБ.

    Доказательство.

    1) Пусть ABDE - квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а, АС = b).

    2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

    Значит, ABC = BDK (по гипотенузе и острому углу).

    3)Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b). Тогда КС = СМ = ML = LK = а - b.

    4) SKB = 4S + SKLMC = 2ab + (a - b), с 2 = 2ab + a2 - 2ab + b2, c2 = a2 + b2 .

    Доказательство закончено.

    10 СПОСОБ.

    Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

    ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN. Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC – это параллелограмм AKNB.

    Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.

    Произведем преобразование для квадрата, построенно­го на катете а (рис. 11,а):

    а) квадрат преобразуется в равновеликий параллелог­рамм (рис. 11,6):

    б) параллелограмм поворачивается на четверть оборо­та (рис. 12):

    в) параллелограмм преобразуется в равновеликий пря­моугольник (рис. 13): 11 СПОСОБ.

    Доказательство:

    PCL – прямая (Рис. 14);

    KLOA = ACPF = ACED = а2;

    LGBO = СВМР = CBNQ = b2;

    AKGB = AKLO + LGBO = с2;

    с2 = а2 + b2.

    Доказательство окончено.

    12 СПОСОБ.

    Рис. 15 иллюстрирует еще одно ориги­нальное доказательство теоремы Пифагора.

    Здесь: треугольник ABC с прямым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикулярен АС и равен ему; точки F, С, D принадлежат одной пря­мой; четырехугольники ADFB и АСВЕ равновели­ки, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики; отнимем от обоих равновеликих четырехугольников общий для них тре­угольник ABC, получим

    , с2 = а2 + b2.

    Доказательство закончено.

    13 СПОСОБ.

    Площадь данного пря­моугольного треугольни­ка, с одной стороны, равна , с другой, ,

    3. ЗАКЛЮЧЕНИЕ.

    В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы её доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

    Собранный мною материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение. В завершении хотелось бы сказать: причина популярности теоремы Пифагора триедина - это красота, простота и значимость!

    4. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.

    1. Занимательная алгебра. . Москва «Наука», 1978.

    2. Еженедельное учебно-методическое приложение к газете «Первое сентября», 24/2001.

    3. Геометрия 7-9. и др.

    4. Геометрия 7-9. и др.

    Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

    Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI в. до н.э.). Но изучение вавилонских клинописных таблиц и древних китайских рукописей (копий еще более древних манускриптов) показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетие до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

    Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Достаточно взглянуть на мозаику из черных и светлых треугольников, изображенную на рис. 1, чтобы убедиться в справедливости теоремы для треугольника : квадрат, построенный на гипотенузе, содержит 4 треугольника, а на каждом катете построен квадрат, содержащий 2 треугольника. Для доказательства общего случая в Древней Индии располагали двумя способами: в квадрате со стороной изображали четыре прямоугольных треугольника с катетами длин и (рис. 2,а и 2,б), после чего писали одно слово «Смотри!». И действительно, взглянув на эти рисунки, видим, что слева свободна от треугольников фигура, состоящая из двух квадратов со сторонами и , соответственно ее площадь равна , а справа - квадрат со стороной - его площадь равна . Значит, , что и составляет утверждение теоремы Пифагора.

    Однако в течение двух тысячелетий применяли не это наглядное доказательство, а более сложное доказательство, придуманное Евклидом, которое помещено в его знаменитой книге «Начала» (см. Евклид и его «Начала»), Евклид опускал высоту из вершины прямого угла на гипотенузу и доказывал, что ее продолжение делит построенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах (рис. 3). Чертеж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

    В наши дни известно несколько десятков различных доказательств теоремы Пифагора. Одни из них основаны на разбиении квадратов, при котором квадрат, построенный на гипотенузе, состоит из частей, входящих в разбиения квадратов, построенных на катетах; другие - на дополнении до равных фигур; третьи - на том, что высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на два подобных ему треугольника.

    Теорема Пифагора лежит в основе большинства геометрических вычислений. Еще в Древнем Вавилоне с ее помощью вычисляли длину высоты равнобедренного треугольника по длинам основания и боковой стороны, стрелку сегмента по диаметру окружности и длине хорды, устанавливали соотношения между элементами некоторых правильных многоугольников. С помощью теоремы Пифагора доказывается ее обобщение, позволяющее вычислить длину стороны, лежащей против острого или тупого угла:

    Из этого обобщения следует, что наличие прямого угла в является не только достаточным, но и необходимым условием для выполнения равенства . Из формулы (1) следует соотношение между длинами диагоналей и сторон параллелограмма, с помощью которого легко найти длину медианы треугольника по длинам его сторон.

    На основании теоремы Пифагора выводится и формула, выражающая площадь любого треугольника через длины его сторон (см. Герона формула). Разумеется, теорему Пифагора применяли и для решения разнообразных практических задач.

    Вместо квадратов на сторонах прямоугольного треугольника можно строить любые подобные между собой фигуры (равносторонние треугольники, полукруги и т.д.). При этом площадь фигуры, построенной на гипотенузе, равна сумме площадей фигур, построенных на катетах. Другое обобщение связано с переходом от плоскости к пространству. Оно формулируется так: квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений (длины, ширины и высоты). Аналогичная теорема верна и в многомерном и даже бесконечномерном случаях.

    Теорема Пифагора существует только в евклидовой геометрии. Ни в геометрии Лобачевского, ни в других неевклидовых геометриях она не имеет места. Не имеет места аналог теоремы Пифагора и на сфере. Два меридиана, образующие угол 90°, и экватор ограничивают на сфере равносторонний сферический треугольник, все три угла которого прямые. Для него , а не , как на плоскости.

    С помощью теоремы Пифагора вычисляют расстояние между точками и координатной плоскости по формуле

    .

    После того как была открыта теорема Пифагора, возник вопрос, как отыскать все тройки натуральных чисел, которые могут быть сторонами прямоугольных треугольников (см. Ферма великая теорема). Они были открыты еще пифагорейцами, но какие-то общие методы отыскания таких троек чисел были известны еще вавилонянам. Одна из клинописных табличек содержит 15 троек. Среди них есть тройки, состоящие из настолько больших чисел, что не может быть и речи о нахождении их путем подбора.

    ГИППОКРАТОВЫ ЛУНОЧКИ

    Гиппократовы луночки - фигуры, ограниченные дугами двух окружностей, и притом такие, что по радиусам и длине общей хорды этих окружностей с помощью циркуля и линейки можно построить равновеликие им квадраты.

    Из обобщения теоремы Пифагора на полукруги следует, что сумма площадей розовых луночек, изображенных на рисунке слева, равна площади голубого треугольника. Поэтому, если взять равнобедренный прямоугольный треугольник, то получатся две луночки, площадь каждой из которых будет равна половине площади треугольника. Пытаясь рещить задачу о квадратуре круга (см. Классические задачи древности), древнегреческий математик Гиппократ (V в. до н.э.) нашел еще несколько луночек, площади которых выражены через площади прямолинейных фигур.

    Полный перечень гиппокраювых луночек был получен лишь в XIX-XX вв. благодаря использованию методов теории Галуа.



    Понравилась статья? Поделитесь с друзьями!