Силы гравитационного взаимодействия двух однородных шаров массами. Гравитационные взаимодействия

Считается, что любое физическое тело во Вселенной имеет свое гравитационное поле. Это гравитационное поле формируется как совокупность гравитационных полей всех частиц, атомов и молекул, из которых состоит это физическое тело. В зависимости от массы, плотности и других характеристик физического тела гравитационное поле одних физических тел отлично от других. Крупные физические тела обладают более сильным и обширным гравитационным полем и способны притягивать к себе другие, более мелкие физические тела. Значение силы их взаимного притяжения друг к другу определяется законом всемирного тяготения И. Ньютона — гравитацией. Это относится и к любому физическому телу во Вселенной.

Так в чем же заключается физический смысл гравитации физических тел? О чем не успел нам поведать великий гений — И. Ньютон?

Попробуем внести ясность в этот вопрос. В своей теории И. Ньютон рассматривал не частицы, а, прежде всего, планеты и звезды. Мы же, прежде чем перейти к рассмотрению гравитационных взаимодействий между планетами и звездами во Вселенной, уже имея представление о гравитационном взаимодействии частиц, попробуем разобраться в гравитационном взаимодействии между физическими телами на Земле и понять в чем же заключается общий физический смысл гравитации.

Предположение

Полагаю, что физический смысл гравитации в общем виде состоит в постоянном стремлении разреженной эфирной области физического тела перейти в равновесное состояние с окружающей эфирной средой, уменьшая свое напряженное состояние, за счет притяжения других разреженных эфирных областей других физических тел в область своего эфирного разрежения .

Если рассматривать гравитационное взаимодействие нашей планеты и любого другого физического тела, поднятого над землёй или попавшего к нам из космоса, то можно констатировать, что любое другое физическое тело всегда падает на поверхность Земли. Обычно, в этом случае мы говорим, что Земля, благодаря гравитации, притягивает к себе физические тела. Однако, понять и объяснить механизм этого притяжения пока никто не сумел.

Вместе с тем, физическая сущность этого загадочного явления объясняется тем, что разреженная эфирная среда у поверхности земли более разрежена, чем на расстоянии от неё. Другими словами, гравитационное поле и сила притяжения Земли у её поверхности проявляется более мощно, чем на расстоянии от планеты. Заметим, что речь идёт только об эфирной среде, а не об атмосфере Земли, в которой находятся атомы, молекулы и мельчайшие частички различных химических веществ. Именно наполнение эфирной среды этими химическими субстанциями придают разреженной эфирной среде в атмосфере Земли дополнительную плотность.

Сама же эфирная среда составляет не только атмосферу Земли. Она совершенно беспрепятственно пронизывает и всё тело планеты. Все частицы, входящие в состав всего, что имеется на Земле и из чего она состоит, включая её атмосферу, кору, мантию и ядро, вращаются в эфирном вихре, который не останавливается вот уже много миллиардов лет. При этом, вращение планеты, как впрочем и вращение всех планет и звёзд во Вселенной, обеспечивается воздействием их эфирных вихрей. Эфирная среда Земли вращается согласовано с ней и её атмосферой.

Разреженность эфирной среды зависит только от расстояния до центра Земли и не зависит от плотности земной коры или мантии. Поэтому показатели силы притяжения Земли также зависят не от плотности горных пород, воды или воздуха, а только от того на каком расстоянии от центра планеты мы производим измерение этой силы.

Доказать это достаточно просто, используя данные гравитационного ускорения физических тел (ускорения свободного падения) на различных расстояниях от поверхности планеты. Например, на поверхности земли оно будет равно 9,806 м/сек 2 , на высоте 5 км - 9,791 м/сек 2 , на высоте 10 км - 9,775 м/сек 2 , 100 км - 9,505 м/сек 2 , 1000км - 7,36 м/сек 2 ,

10 000 км - 1,5 м/сек 2 , а на высоте 400 000 км - 0,002 м/сек 2 .

Эти данные говорят о том, что с увеличением расстояния от центра Земли увеличивается и плотность эфирной среды, что ведёт к уменьшению ускорения свободного падения и силы притяжения Земли.

Ближе к центру планеты разреженность эфирной среды увеличивается. Увеличение разреженности эфирной среды предопределяет увеличение гравитационного ускорения, а, следовательно, и веса тела. Это подтверждает наше понимание физической сущности гравитации, как таковой.

При попадании какого-либо другого физического тела в гравитационное поле планеты, оно оказывается в положении, когда эфирная среда над падающим телом всегда более плотная, чем эфирная среда под этим телом. Тогда, более плотная эфирная среда будет воздействовать на тело, перемещая его из более плотной среды - в менее плотную. Тело, словно, постоянно теряет опору под собой и «проваливается» в пространстве по направлению к земле.

Известно, что значение показателя ускорения свободного падения тела на экваторе составляет 9,75 м/сек 2 , что меньше значения этого показателя на полюсах Земли, которое достигает 9,81 м/сек 2 . Учёные объясняют эту разницу суточным вращением Земли вокруг своей оси, отклонением формы Земли от сферической и неоднородным распределением плотности земных пород. На самом деле, можно принять во внимание только специфическую форму планеты. Всё остальное, если и имеет своё влияние на значение показателей ускорения свободного падения на экваторе и на полюсах, то очень и очень незначительное.

Однако, наши взгляды на гравитацию и причины её проявления получат хорошее подтверждение, если мы представим себе классическую сферу, самые удалённые точки которой от центра Земли будут находится на экваторе. В этом случае, на полюсах от поверхности этой классической умозрительной сферы до поверхности Земли образуется расстояние равное 21.3 км. Это легко объясняется несколько приплюснутой формой планеты. Поэтому расстояние от поверхности земли на полюсе до центра Земли меньше, чем то же расстояние на экваторе. Но тогда, в соответствии с нашими взглядами эфирная среда на полюсах планеты более разрежена и, следовательно, её гравитационное поле более мощное, что и приводит к более высоким показателям по ускорению свободного падения.

Это происходит потому, что разреженная область более массивного физического тела первоначально захватывает разреженную эфирную область другого физического тела, а, затем, приближает к себе и само физическое тело, которое имеет меньшую массу или меньшее количество уплотненного эфира.

Ввиду того, что снять напряжение эфирной среды привлечением новых физических тел в гравитационное поле массивного физического тела невозможно, так как в этом случае его масса будет только увеличиваться, а, следовательно, гравитационное поле только расширяться, то это стремление будет длиться постоянно, обеспечивая гравитационное постоянство физических тел. Поэтому физическое тело, привлекая к себе другие физические тела, будет лишь увеличивать свою массу, а, следовательно, и свое гравитационное поле.

В эфирном пространстве Вселенной этот процесс будет происходить до того момента, пока гравитационные силы одной планеты или звезды не уравновесятся с гравитационными силами других планет и звезд, а также с ядром своей галактики и ядром Вселенной. При этом, все планеты или звезды будут находиться в напряженном, но равновесном состоянии по отношению друг к другу.

Силы гравитации между физическими телами начинают проявляться с момента соприкосновения гравитационных полей этих тел. Исходя из этого, можно полагать, что гравитация, действительно, обладает дальнодействием . При этом, гравитационное взаимодействие начинает проявляться практически мгновенно и, конечно же, без всякого участия каких-либо гравитонов или других непонятных частиц.

Из всего этого следует, что взаимодействуют не физические тела, а взаимодействуют их гравитационные поля, которые деформируясь, притягивают физические тела друг к другу . Позвольте, но ведь это противоречит положениям законов уважаемого И. Ньютона, которые постулируют силу притяжения масс физических тел и которые добросовестно служили и служат человечеству уже не одно столетие!

Не стал бы так драматизировать ситуацию. Наши утверждения не отвергают законы глубокоуважаемого ученого. Они лишь раскрывают их физическую сущность, оставляя вопрос проявления этих законов абсолютно нетронутым.

И это, именно, так. Но по закону И. Ньютона любое физическое тело имеет свое гравитационное поле и взаимодействует с другими физическими телами в соответствии с их массами и расстояниями между их центрами. При этом, И. Ньютон, прежде всего, имел ввиду взаимодействие планет и звезд. Его научные последователи механически перенесли особенности взаимодействия планет и звезд на взаимодействие любых физических тел, исходя из универсальности закона всемирного тяготения.

Вместе с тем, мимо их внимания не прошел тот факт, что на нашей планете, Земля исправно притягивает любые физические тела, но сами физические тела не очень-то стремятся друг к другу. За исключением, конечно, магнитов. Видимо, чтобы не нарушать научной идиллии и не ставить под сомнение закон всемирного тяготения ученые постулировали, что массы окружающих нас физических тел на нашей планете во вселенском масштабе чрезвычайно малы и поэтому сила гравитации при их приближении друг к другу проявляется очень и очень слабо.

Однако, мы можем попробовать вплотную приблизить добросовестно отполированные физические тела из любого вещества друг к другу, практически исключив наличие расстояния между ними. Казалось бы, что в соответствии с законом, силы гравитации должны вырваться наружу и удивить нас своим безраздельным присутствием и удалой мощью. Но этого не происходит. Силы гравитации скромно и без особого энтузиазма тихо наблюдают за нашими усилиями из самого отдаленного уголка каждого взаимодействующего физического тела. В чем же дело? Как выходить из этого щекотливого положения. Ведь, закон есть? Есть. Действует? Действует. Значит, все нормально?!

Нет, не нормально. Если придерживаться этого утверждения, то многие предметы, расположенные рядом друг с другом, «слиплись» бы в одно мгновение, наполнив нашу жизнь такими проблемами, что человечество, недолго сопротивляясь, давно бы прекратило свое кошмарное существование.

Можно возразить и сослаться на то, что эти физические тела очень малы. Поэтому они и не притягиваются. Но это не очень убедительно. Почему? Потому что огромный, даже в масштабе Земли, тибетский горный массив давно бы уже собрал на своих суровых вершинах все пролетающие мимо самолеты и не позволил бы неутомимым путешественникам и альпинистам, ввиду мощного проявления своих гравитационных сил, поднять даже самую легкую амуницию. И вряд ли, кто-нибудь может заподозрить суровый Тибет в недостаточности размеров, плотности или массы.

Что же делать? На помощь приверженцам всемогущих формул опять пришли достаточно сомнительные коэффициенты в образе «гравитационной постоянной» — не совсем убедительной госпожи «G», равной примерно 6,67х10 -11 кг -1 м 3 сек -2 . Наличие этой постоянной в формуле И. Ньютона немедленно превращало значение любой силы практически в ничто. Почему именно эта цифра? Просто потому, что сопоставимых с ней показателей массы какого-либо физического тела на нашей планете человечество предоставить просто не может. Поэтому, судя по значению этой постоянной, сила притяжения любых физических тел на Земле будет чрезвычайно мала. И это будет прекрасно объяснять отсутствие видимого взаимодействия физических тел на Земле.

А почему 10 -11 кг -1 ? Да, потому что масса Земли, которая уж совершенно точно притягивает к себе все физические тела без исключения (скрыть это не представляется возможным) составляет примерно 6х10 24 кг. Поэтому только для нее 10 -11 кг -1 легко преодолимо. Вот такое оригинальное решение вопроса.(((

Не сумев объяснить суть проблемы ученые мужи, как часто это бывает, ввели в формулу некую постоянную величину, которая не решая проблемы, позволяла придать физическому процессу или природному явлению некую околонаучную ясность.

Кстати, И. Ньютон к этому, похоже, не имел никакого отношения. В своих работах при разработке закона всемирного тяготения он никогда не упоминал ни о какой гравитационной постоянной. Не упоминали о ней и его современники. Впервые гравитационная постоянная была введена в закон всемирного тяготения лишь в начале ХIХ века французским физиком, математиком и механиком С.Д. Пуассоном. Однако, история не зафиксировала ни одного ученого, который бы взял на себя ответственность и за методику ее вычисления, и за ее общепринятые значения.

История ссылается на английского физика Генри Кавендиша, который в 1798 году поставил уникальный эксперимент с использованием крутильных весов. Но следует заметить, что Г. Кавендиш ставил свой эксперимент лишь с целью определения средней плотности Земли и ни о какой гравитационной постоянной он никогда не говорил и не писал. Тем более, не рассчитывал никаких численных ее значений.

Численный показатель гравитационной постоянной, якобы, был вычислен гораздо позже на основе расчетов Г. Кавендиша средней плотности Земли, но кто и когда его вычислил так и осталось тайной, как и то, для чего все это было нужно.

И, видимо, чтобы совсем запутать человечество и хоть как-то выбраться из леса противоречий и нестыковок, в современном научном мире были вынуждены под видом перехода к единой метрической системе мер принять различные гравитационные постоянные для различных космических систем. Так при расчете орбит, например, спутников относительно Земли используется геоцентрическая гравитационная постоянная равная GE =3,98603х10 14 м 3 сек -2 умноженная на массу Земли, а для вычисления орбит небесных тел относительно Солнца применяют уже другую гравитационную постоянную — гелиоцентрическую, равную GSs =1,32718х10 20 м 3 сек -2 умноженную на массу Солнца. Интересно получается, закон один и универсален, а постоянные коэффициенты — разные! Разве может такая уважаемая «постоянная» быть столь удивительно не постоянной?!!

Так как же быть? Ситуация безвыходная и поэтому надо смириться? Нет. Нужно лишь вернуться к основам и определиться с понятиями. Дело в том, что все, что существует на планете Земля, из нее вышло, является ее принадлежностью и в нее и войдет . Все -горы, моря и океаны, деревья, дома, заводы, машины, да и мы с вами — все это добыто, взращено, воспитано и вскормлено на Земле и из Земли создано. Все это только различные вре менные комбинации огромного количества атомов и молекул, которые являются принадлежностью только нашей планеты.

Земля была создана из частиц и атомов и представляет собой вполне самостоятельную и практически полностью замкнутую систему. При ее формировании каждая частица и каждый атом, создавая единое гравитационное поле планеты, по сути, «передали» ей все свои гравитационные полномочия.

Поэтому на Земле существует единое гравитационное поле, которое добросовестно стоит на страже всех имеющихся земных ресурсов, не выпуская с планеты то, что когда-то было на эту планету привнесено. Поэтому все предметы и всё, что имеется на Земле, не являются самостоятельными гравитационными субстанциями и не могут решать — использовать или не использовать свои гравитационные возможности при общении с другими физическими телами. Поэтому физические тела на Земле падают только вниз, на ее поверхность, а не вверх, влево или вправо, присоединяясь к другим массивным телам. Поэтому никакое физическое тело на Земле, с точки зрения гравитации, нельзя назвать самостоятельным.

А как же ракеты? Можно ли их назвать самостоятельными физическими телами? Пока они находятся здесь на Земле — нет, нельзя. Но если они преодолеют притяжение Земли и выйдут за пределы гравитационного поля планеты, то — да, можно. Только в этом случае они смогут по отношению к Земле стать самостоятельными физическими телами, забирая с собой свою индивидуальную часть гравитационного поля. Земля уменьшится в размерах и в своей массе на размер и массу ракеты. Пропорционально уменьшится и ее гравитационное поле. Гравитационные отношения между ракетой и Землей, конечно же, прервутся.

А различные метеориты, которые достаточно часто посещают нашу Землю? Они - самостоятельные физические тела или нет? Пока они находятся вне гравитационного поля Земли - они самостоятельны. Но при вхождении их в гравитационное поле планеты они, имея менее разреженную собственную эфирную среду, будут взаимодействовать с более разреженной эфирной средой Земли.

Однако, взаимодействие гравитационных полей Земли и метеорита отличается от взаимодействия практически равных друг другу по размерам гравитационных полей эфирных вихревых сгустков. Это обусловлено огромной разницей в размерах гравитационных полей Земли и метеорита. Гравитационное поле метеорита при взаимодействии с гравитационным полем Земли практически не деформируется, а, оставаясь принадлежностью метеорита, поглощается гравитационным полем Земли.

Гравитационное поле метеорита словно проваливается в гравитационное поле Земли, так как по мере приближения к поверхности Земли, её разреженная эфирная среда становится всё более разреженной. И чем ближе к Земле, тем её разреженная среда всё более разрежена и тем быстрее метеорит движется навстречу планете. Земля стремится заместить свою разреженную среду неожиданным пришельцем из космоса, создавая эффект притяжения метеорита к своей поверхности.

Достигнув поверхности Земли, метеорит не теряет своего гравитационного поля и в случае своей транспортировки в космическое пространство, он покинет Землю со своим гравитационным полем. Но на Земле он теряет свою самостоятельность физического тела. Теперь он является принадлежностью Земли, его гравитационное поле суммируется с гравитационным полем Земли, а масса Земли увеличивается на массу метеорита.

Поэтому мы вынуждены констатировать, что, находясь на планетах, все физические тела с гравитационной точки зрения не могут быть самостоятельными физическими телами. Их гравитационные возможности находятся в пределах гравитационных возможностей планет, которые являются главными генераторами гравитационного взаимодействия.

Поэтому закон всемирного тяготения абсолютно справедлив ко всей вселенской системе и не требует никаких дополнительных постоянных, пусть даже и гравитационных.

Предположение

Таким образом, гравитационное поле физического тела — это неравномерно напряженная разреженная эфирная область, являющаяся принадлежностью физического тела и возникшая вследствие концентрации вращающейся эфирной среды в самом физическом теле.

Гравитационное поле любого физического тела для достижения равновесия с окружающей упругой эфирной средой стремится к увеличению своей плотности, притягивая к себе разреженные эфирные области других физических тел. Взаимодействие гравитационных полей физических тел друг с другом создают эффект притяжения физических тел. Этот эффект представляет собой действие сил гравитации или гравитационное взаимодействие самостоятельных физических тел .

Разреженное эфирное пространство всегда стремится к восстановлению начального однородного состояния эфирной среды за счет присоединения эфирной среды других физических тел. При появлении в эфирном гравитационном поле физического тела, какого-либо другого физического тела, также обладающего своим эфирным гравитационным полем, но меньшей массой, первое физическое тело стремится «поглотить» его и удерживать его с силой, зависящей от масс этих тел и расстояния между ними.

Следовательно, в эфирном гравитационном поле при появлении в нем двух или нескольких физических тел возникает процесс их гравитационного взаимодействия, который направляет их друг к другу. Гравитационные силы действуют только для приближения одних физических тел или тела — к другим телам .

Еще раз вынужден признать, что все это возможно только в идеальных условиях, когда физические тела не находятся под влиянием гравитационных сил планеты . На Земле гравитационные поля всех физических тел являются лишь составной частью единого гравитационного поля планеты и не могут проявляться в отношении друг друга.

Поэтому на планете физические тела не имеют своего индивидуального гравитационного поля и имеют гравитационное взаимодействие только с Землей.

Приподнимая физическое тело на какую-либо высоту, мы совершаем какую-то работу и затрачиваем определенную энергию. Некоторые считают, что, подняв тело, мы передаем ему энергию, эквивалентную энергии, затраченной на его подъем на определенную высоту. Падая, физическое тело освобождает эту энергию.

Но это не так.

Мы не передаем ему энергию, а затрачиваем свою энергию на преодоление гравитационной силы Земли. Более того, мы, словно, нарушаем привычных ход событий на Земле, изменяя местоположение физического тела относительно планеты. Земля справедливо реагирует на это несогласованное с ней безобразие и стремится вернуть любой предмет на свою поверхность, немедленно включая свои гравитационные силы.

Гравитационная сила действует на поднятое тело так же, как при нахождении этого тела на Земле, но с увеличением расстояния от поверхности Земли ее величина будет меньше первоначальной силы гравитации. Правда, заметить ее будет не так просто ввиду незначительности изменений параметров этой силы. Если же мы поднимем это тело на высоту 450 километров над Землей, то сила гравитации уменьшится значительно и тело будет находиться в состоянии невесомости.

Здесь мы встречаемся с гравитацией, т.е. с воздействием гравитационной эфирной среды нашей планеты на физическое тело. Поднятое тело находится в гравитационном эфирном поле планеты, вектор которого направлен к центру Земли. Чем ближе физическое тело находится к Земле, тем эффект гравитационного взаимодействия сильнее. Чем дальше, тем меньше. Поэтому на дальних расстояниях гравитационное взаимодействие тоже будет проявляться, но не так явно.

Но, падая на Землю, физическое тело взаимодействует с ней так, как взаимодействуют два тела в пространстве. Гравитационные силы Земли воздействуют на тело, перемещают его в пространстве, возвращая его на бренную землю.

Что же произойдет если мы будем воздействовать на тело длительное время, перемещая все дальше и дальше от Земли, и, наконец, выведем его за пределы Солнечной системы? Значит ли это, что гравитационное взаимодействие между ними исчезнет? Если это так, то существует ли вероятность того, что, при этом, Земля потеряет часть своих гравитационных возможностей?

Да, именно так это и произойдет. Часть гравитационных возможностей Земли покинет ее вместе с физическим телом. Земля станет меньше на величину массы этого тела. А если масса Земли станет меньше, то, вполне очевидно, что и ее гравитационная мощь пропорционально изменится в меньшую строну, а ее гравитационное взаимодействие с этим физическим телом исчезнет.

Но если на поверхность Земли упадет метеорит, то его гравитационное поле «поглотится» гравитационным полем Земли, а сам он, потеряв самостоятельность, станет частью Земли, пропорционально увеличив ее гравитационные возможности.

Поэтому более крупные физические тела, включая планеты и звезды, имеют более сильную гравитацию и притягивают к себе более мелкие, поглощая их. Притянув к себе более мелкие физические тела, они увеличивают свою массу и, соответственно, увеличивают свое гравитационное поле. Между телами будет возникать гравитационное взаимодействие.

Итак, вокруг любого физического тела на нашей планете имеется свое гравитационное поле, но только условно. Это гравитационное поле входит в единое гравитационное поле Земли и вращается вместе с ним. Это обусловлено тем, что любое физическое тело, включая все физические тела, созданные на Земле или прилетевшие из космоса, уже являются или становятся принадлежностью нашей планеты . Любое физическое тело на Земле произошло из нее и в нее и возвратится. Их гравитационное поле — часть единого гравитационного поля Земли, которое вращается вокруг планеты. Поэтому предметы падают на Землю, а не присоединяются друг к другу. Они падают вниз, а не перемещаются параллельно земле. Кроме того, гравитационные возможности Земли несопоставимо более мощные, чем гравитационные возможности любого имеющегося на планете физического тела, какой бы оно не имело размер, объем или плотность. Поэтому любое физическое тело притягивается к Земле, а не к Эвересту.

Гравитационное поле имеется у всех физических тел, но рассматривать его можно лишь в совокупности с общим гравитационным полем Земли. Отделить его от гравитационного поля Земли возможно лишь на расстоянии, находящемся за границами гравитационного поля планеты. На этом расстоянии гравитационное поле физического тела, например, ракеты будет вполне самостоятельно и будет вращаться вокруг физического тела, каких бы размеров оно не было.

Необходимо отметить, что, скорость вращения эфирной среды вблизи поверхности физического тела равна скорости вращения самого физического тела. По отношению к физическому телу окружающая среда является неподвижной. Вблизи физического тела сила гравитации значительно выше, чем в удалении от него. Вспомним наш опыт с резиновым кругом (рис.2). По мере удаления от физического тела уменьшается и скорость вращения эфирной среды, и гравитация.

Вместе с тем, мы понимаем, что концентрация эфира под действием эфирных вихрей и сил гравитации приводит к возникновению разреженной эфирной области вокруг физического тела. Эта разреженная эфирная область тем больше, чем большее количество эфира сосредоточено в физическом теле в виде совокупности фундаментальных эфирных частиц — эфирных вихревых сгустков, из которых соответственно состоят энергетические фракции, фотоны, нейтрино, антинейтрино, позитроны, электроны, протоны, нейтроны, атомы, молекулы и другие физические тела. Разреженная эфирная область, например, планеты Земля по объему гораздо больше разреженной области Луны, так как Земля значительно больше Луны. И каждая разреженная область соответствует количеству эфира сосредоточенному в физическом теле.

Разреженные области эфирной среды чрезвычайно обширны. Они определяют размеры гравитационных полей физических тел, т.е. те области в которых действуют силы гравитации. Действия этих сил начинаются от внешних границ разреженной области физического тела. Так как границы разреженной области находятся достаточно далеко от центра физического тела, эти силы можно характеризовать как дальнодействующие силы или дальнодействующее взаимодействие .

При соприкосновении разреженных областей двух или более физических тел, каждое из них, в соответствии с законом равновесия противоположностей стремится уравновесить свою эфирную разреженную среду, что приводит к притягиванию и сближению тел .

Таким образом, притягивают не массы физических тел, а взаимодействуют друг с другом гравитационные поля этих физических тел, перемещая физические тела навстречу друг к другу .

При этом, чем ближе тела находятся друг к другу, тем это притяжение происходит более выражено и интенсивно. Поэтому при падении, к примеру, тел на землю происходит постоянное ускорение этого падения. Это ускорение получило название ускорения свободного падения и равно примерно 9,806 м/сек 2 .

Суть этого ускорения заключается в том, что чем ближе к телу находится разреженная среда, тем она менее плотная и, следовательно, тем сильнее стремление физического тела уравновесить свою разреженную эфирную среду, тем мощнее сила гравитационного взаимодействия. Мы об этом уже говорили ранее. С приближением к границе разреженной среды с упругим эфирным пространством это напряжение снижается и, наконец, на границе начинает полностью соответствовать плотности эфирного пространства. В этом случае, гравитационное взаимодействие физического тела полностью теряет свою силу, а гравитационное поле данного физического тела исчезает.

Это объясняет тот факт, что ракета с начала своего старта затрачивает огромное количество энергии на преодоление силы притяжения Земли, но по мере своего полета и удаления от планеты она выходит на орбиту и практически не растрачивает свою энергию.

Здесь необходимо понимать, что плотность атмосферы Земли и плотность ее гравитационного поля — это разные понятия. Показатели плотности атмосферы Земли имеют более высокие значения у ее поверхности, чем на высоте. Например, на поверхности земли плотность атмосферы примерно равна 1,225 кг/м 3 , на высоте 2 километра — 1,007 кг/м 3 , а на высоте 3 км — 0,909 кг/ м 3 т.е. с увеличением высоты плотность атмосферы уменьшается.

Но мы утверждаем, что гравитационное поле любого физического тела более разрежено именно у его поверхности и это разрежение уменьшается с увеличением расстояния от физического тела. Противоречие? Вовсе нет. Это — подтверждение наших рассуждений! Дело в том, что разреженное эфирное гравитационное поле будет стремиться втягивать в свое пространство все, что только возможно для снижения своей напряженности. Поэтому гравитационное поле Земли наполнено молекулами азота, кислорода, водорода и т.д. Кроме того, у поверхности земли в атмосфере находятся не только молекулы газов, но и частички пыли, воды, кристаллы льда, морской соли и проч. Чем выше от поверхности Земли, тем меньше разрежено гравитационное поле, тем меньше молекул и частиц оно может удерживать в атмосфере Земли, тем, соответственно, ниже плотность атмосферы планеты. Все соответствует. Все правильно.

В доказательство этого утверждения приведём размышления Аристотеля и опыты Г. Галилея и И. Ньютона. Великий Аристотель утверждал, что более тяжёлые тела падают на землю быстрее лёгких тел и приводил пример падающих с одной высоты камня и птичьего пера. В отличие от Аристотеля Г. Галилей предположил, что причиной разницы скоростей падения предметов является сопротивление воздуха. Как утверждают, он одновременно сбрасывал с Пизанской башни ружейную пулю и артиллерийское ядро, которые достигали земли также практически одновременно, несмотря на существенную разницу в весе.

В подтверждение умозаключений Г. Галилея, И. Ньютон выкачал воздух из длинной стеклянной трубки и одновременно бросил сверху птичье перо и золотую монету. И перо, и монета практически одновременно падали на дно трубки. В дальнейшем, было экспериментально установлено, что и в воздухе, и в вакууме происходило ускорение свободного падения тел на землю.

Однако, учёные, зафиксировав наличие ускорения свободного падения тел на землю, ограничились лишь выведением известных математических зависимостей, которые позволяют достаточно точно измерять величину этого ускорения. Но физическая сущность этого ускорения осталась не раскрытой.

Полагаю, что физическая сущность этого явления заключается в наличии разреженной эфирной среды вокруг Земли. Чем ближе от поверхности Земли находится падающее на неё тело, тем более разрежена эфирная среда планеты и тем быстрее тело падает на её поверхность. Это вполне можно принять как явное подтверждение наших рассуждений о природе гравитационных полей и механизме их взаимодействий во Вселенной.

Безусловно, наше утверждение о взаимодействии гравитационных полей физических тел, а не о взаимовлиянии их масс, противоречит взглядам глубокоуважаемого И. Ньютона и современного научного сообщества. Однако, отдавая дань великому гению, мы однозначно признаем тот факт, что выведенная им формула вполне показательна и совершенно справедливо позволяет рассчитывать силу гравитационного взаимодействия двух физических тел. Следует признать и то, что ньютоновская формула описывает следствие явления, но совершенно не касается его физической сущности.

Таким образом, мы определили, что постоянное стремление разреженной эфирной области любого физического тела перейти в равновесное состояние с окружающей эфирной средой, уменьшая свое напряженное состояние, за счет притяжения других разреженных эфирных областей других физических тел в область своего эфирного разрежениясоставляют общий физический смысл гравитации или гравитационного взаимодействия.

Любое физическое тело имеет свое гравитационное поле , но оно не самостоятельно. Находясь на Земле, это гравитационное поле объединено в единое гравитационное поле планеты. Гравитационное поле любого физического тела можно рассматривать только как часть гравитационного поля планеты.

1. Введение

Все весомые тела взаимно испытывают тяготение, эта сила обуславливает движение планет вокруг солнца и спутников вокруг планет. Теория гравитации - теория созданная Ньютоном, стояла у колыбели современной науки. Другая теория гравитации, разработанная Эйнштейном, является величайшим достижением теоретической физики 20 века. В течении столетий развития человечества люди наблюдали явление взаимного притяжения тел и измеряли его величину; они пытались поставить это явление себе на службу, превзойти его влияние, и наконец, уже в самое последнее время рассчитывать его с чрезвычайной точностью во время первых шагов вглубь Вселенной.

Необозримая сложность окружающих нас тел обусловлена прежде всего такой многоступенчатой структурой, конечные элементы которой - элементарные частицы - обладают сравнительно небольшим числом видов взаимодействия. Но эти виды взаимодействия резко отличаются по своей силе. Частицы, образующие атомные ядра, связаны между собой самыми могучими из всех известных нам сил; для того чтобы отделить эти частицы друг от друга, необходимо затратить колоссальное количество энергии. Электроны в атоме связаны с ядром электромагнитными силами; достаточно сообщить им весьма скромную энергию, (как правило, достаточно энергии химической реакции) как электроны уже отделяются от ядра. Если говорить об элементарных частицах и атомах, то для них самым слабым взаимодействием является гравитационное взаимодействие.

При сопоставлении с взаимодействием элементарных частиц гравитационные силы настолько слабы, что это трудно себе представить. Тем не менее они и только они полностью регулируют движение небесных тел. Это происходит потому, что тяготение сочетает в себе две особенности, из-за которых его действие усиливается, когда мы переходим к крупным телам. В отличие от атомного взаимодействия, силы гравитационного притяжения ощутимы и на больших удаленьях от созидающих их тел. Кроме того гравитационные силы - это всегда силы притяжения, то есть тела всегда притягиваются друг к другу.

Развитие теории гравитации произошло в самом начале `становления современной науки на примере взаимодействия небесных тел. Задачу облегчило то, что небесные тела движутся в вакууме мирового пространства без побочного влияния других сил. Блестящие астрономы - Галилей и Кеплер - подготовили своими трудами почву для дальнейших открытий в этой области. В дальнейшем великий Ньютон сумел придумать целостную теорию и придать ей математическую форму.

2. Ньютон и его предшественники

Среди всех сил, которые существуют в природе, сила тяготения отличается прежде всего тем, что проявляется повсюду. Все тела обладают массой, которая определяется как отношение силы, приложенной к телу, к ускорению, которое приобретает под действием этой силы тело. Сила притяжения, действующая между любыми двумя телами, зависит от масс обоих тел; она пропорциональна произведению масс рассматриваемых тел. Кроме того, сила тяготения характеризуется тем, что она подчиняется закону обратной пропорциональности квадрату расстояния. Другие силы могут зависеть от расстояния совсем иначе; известно немало таких сил.

Один аспект всемирного тяготения - удивительная двойственная роль, которую играет масса, - послужила краеугольным камнем для построения общей теории относительности. Согласно второму закону Ньютона масса является характеристикой всякого тела, которая показывает, как будет вести себя тело, когда к нему прикладывается сила, независимо от того, будет ли это сила тяжести или какая - то другая сила. Так как все тела, по Ньютону, в качестве отклика на внешнюю силу ускоряются (изменяют свою скорость) , масса тела определяет, какое ускорение испытывает тело, когда к нему приложена заданная сила. Если одна и та же сила прикладывается к велосипеду и автомобилю, каждый из них достигнет определенной скорости в разное время.

Но по отношению к тяготению масса играет еще и другую роль, совсем не похожую на ту, какую она играла как отношение силы к ускорению: масса является источником взаимного притяжения тел; если взять два тела и посмотреть, с какой силой они действуют на третье тело, расположенного на одном и том же расстоянии сначала от одного, а затем от другого тела, мы обнаружим, что отношение этих сил равно отношению первых двух масс. Фактически оказывается, что эта сила пропорциональна массе источника. Сходным образом, согласно третьему закону Ньютона, силы притяжения, которые испытывают два различных тела под действием одного и того же источника притяжения (на одном и том же расстоянии от него) , пропорциональны отношению масс этих тел. В инженерных науках и повседневной жизни про силу, с которой тело притягивается к земле, говорят как о весе тела.

Итак, масса входит в связь, которая существует между силой и ускорением; с другой стороны, масса определяет величину силы притяжения. Такая двойственная роль массы приводит к тому, что ускорение различных тел в одном и том же гравитационном поле оказывается одинаковым. Действительно, возьмем два различных тела с массами m и M соответственно. Пусть оба они свободно падают на Землю. Отношение сил притяжения, испытываемых этими телами, равно отношению масс этих тел m/M. Однако ускорение, приобретаемое ими, оказывается одинаковым. Таким образом, ускорение, приобретаемое телами в поле тяготения, оказывается для всех тел в одном и том же поле тяготения одинаковым и совсем не зависит от конкретных свойств падающих тел. Это ускорение зависит только от масс тел, создающих поле тяготения, и от расположения этих тел в пространстве. Двойственная роль массы и вытекающее из нее равенство ускорения всех тел в одном и том же гравитационном поле известно под названием принципа эквивалентности. Это название имеет историческое происхождение, подчеркивающее то обстоятельство, что эффекты тяготения и инерции до известной степени эквивалентны.

На поверхности Земли ускорение силы тяжести, грубо говоря, равно 10 м/сек2. Скорость свободно падающего тела, если не учитывать сопротивление воздуха при падении, возрастает на 10 м/сек. Каждую секунду. Например, если тело начнет свободно падать из состояния покоя, то к концу третьей секунды его скорость будет равна 30 м/сек. Обычно ускорение свободного падения обозначается буквой g. Из-за того, что форма Земли не строго совпадает с шаром, величина g на Земле не везде одинакова; она больше у полюсов, чем на экваторе, и меньше на вершинах больших гор, чем в долинах. Если величина g определяется с достаточной точностью, то на ней сказывается даже геологическая структура. Этим объясняется то, что в геологические методы поисков нефти и других полезных ископаемых входит также точное определение величины g.

То, что в данном месте все тела испытывают одинаковое ускорение, - характерная особенность тяготения; такими свойствами никакие другие силы не обладают. И хотя Ньютону не оставалось ничего лучшего, как описать этот факт, он понимал всеобщность и единство ускорения тяготения. На долю немецкого физика - теоретика Альберта Эйнштейна (1870 - 1955) выпала честь выяснить принцип, на основе которого можно было объяснить это свойство тяготения, принцип эквивалентности. Эйнштейну также принадлежат основы современного понимания природы пространства и времени.

3. Специальная теория относительности

Уже со времен Ньютона считалось, что все системы отсчета представляют собой набор жестких стержней или каких - - то других предметов, позволяющих устанавливать положение тел в пространстве. Конечно, в каждой системе отсчета такие тела выбирались по - своему. Вместе с тем принималось, что у всех наблюдателей одно и то же время. Это предположение казалось интуитивно настолько очевидным, что специально не оговаривалось. В повседневной практике на Земле это предположение подтверждается всем нашим опытом.

Но Эйнштейну удалось показать, что сравнения показаний часов, если принимать во внимание их относительное движение, не требует особого внимания лишь в том случае, когда относительные скорости часов значительно меньше, чем скорость распространения света в вакууме. Итак, первым результатом анализа Эйнштейна явилось установление относительности одновременности: два события, происходящие на достаточном удаления друг от друга, могут оказаться для одного наблюдателя одновременными, а для наблюдателя, движущегося относительно него, происходящими в разные моменты времени. Поэтому предположение о едином времени не может быть оправданно: невозможно указать определенную процедуру, позволяющую любому наблюдателю установить такое универсальное время независимо от того движения, в котором он участвует. В системе отсчета должны присутствовать еще и часы, движущиеся вместе с наблюдателем и синхронизированные с часами наблюдателя.

Следующий шаг, сделанный Эйнштейном, состоял в установлении новых взаимоотношений результатов измерений расстояний и времени в двух различных инерциальных системах отсчета. Специальная теория относительности вместо “абсолютных длин” и “абсолютного времени” явила на свет иную “абсолютную величину” , которую принято называть инвариантным пространственно - временным интервалом. Для двух заданных событий, происходящих на некотором удалении друг от друга, пространственное расстояние между ними не является абсолютной (т.е. не зависящим от системы отсчета) величиной даже в Ньютоновской схеме, если между наступлением этих событий есть некоторый интервал времени. Действительно, если два события происходят не одновременно, наблюдатель, движущийся с некоторой системой отсчета в одном направлении и оказавшийся в той точке, где наступило первое событие, может за промежуток времени, разделяющий два эти события, оказаться в том месте, где наступает второе событие; для этого наблюдателя оба события будут происходить в одном и том же месте пространства, хотя для наблюдателя, движущегося в противоположном направлении, они могут показаться происшедшими на значительном удалении друг от друга.

4. Теория относительности и гравитация

Чем глубже уходят научные исследования в конечные составляющие вещества и чем меньше остается число частиц и сил, действующих между ними, тем настойчивее становятся требования исчерпывающего понимания действия и структуры каждой компоненты материи. Именно по этой причине, когда Эйнштейн и другие физики убедились в том, что специальная теория относительности пришла на смену ньютоновской физике, они занялись снова фундаментальными свойствами частиц и силовых полей. Наиболее важным объектом, требующим пересмотра, была гравитация.

Но почему бы несоответствие между относительностью времени и законом тяготения Ньютона не разрешить столь же просто, как в электродинамике? Следовало бы ввести представление о гравитационном поле, которое распространялось бы примерно так же, как электрическое и магнитное поля, и которое оказалось бы посредником при гравитационном взаимодействии тел, в согласии с представлениями теории относительности. Это гравитационное взаимодействие сводилось бы к ньютоновскому закону тяготения, когда относительные скорости рассматриваемых тел были бы малы по сравнению со скоростью света. Эйнштейн попытался построить релятивистскую теорию тяготения на этой основе, но одно обстоятельство не позволило ему осуществить это намерение: никто ничего не знал о распространении гравитационного взаимодействия с большой скоростью, имелась лишь некоторая информация относительно эффектов, связанных с большими скоростями движения источников гравитационного поля - масс.

Влияние больших скоростей на массы непохоже на влияние больших скоростей на заряды. Если электрический заряд тела остается одним и тем же для всех наблюдателей, масса тел зависит от их скорости относительно наблюдателя. Чем выше скорость, тем больше наблюдаемая масса. Для заданного тела наименьшая масса будет определена наблюдателем, относительно которого тело покоится. Это значение массы называется массой покоя тела. Для всех остальных наблюдателей масса окажется больше массы покоя на величину, равную кинетической энергии тела, деленной на c. Значение массы стало бы бесконечным в той системе отсчета, в которой скорость тела стала бы равной скорости света. О такой системе отсчета можно говорить лишь условно. Поскольку величина источника тяготения столь существенно зависит от системы отсчета, в которой определяется ее значение, порождаемое массой поле должно быть более сложным, чем электромагнитное поле. Эйнштейн заключил поэтому, что гравитационное поле, по - видимому, представляет собой так называемое тензорное поле, описываемое большим числом компонент, чем электромагнитное поле.

В качестве следующего исходного принципа Эйнштейн постулировал, что законы гравитационного поля должны получаться на основе математической процедуры, аналогичной процедуре, приводящей к законам электромагнитной теории; законы гравитационного поля, получаемые таким способом, очевидно, должны быть сходны по форме с законами электромагнетизма. Но даже принимая во внимание все эти соображения, Эйнштейн обнаружил, что он может построить несколько различных теорий, которые в равной степени удовлетворяют всем требованиям. Нужна была иная точка зрения, чтобы однозначно прийти к релятивистской тории тяготения. Эйнштейн нашел такую новую точку зрения в принципе эквивалентности, согласно которому ускорение, приобретаемое телом в поле сил тяготения, не зависит от характеристик этого тела.

5. Относительность свободного падения

В специальной теории относительности, как и в ньютоновской физике, постулируется существование инерциальных систем отсчета т.е. систем относительно которых тела движутся без ускорения, когда на них не действуют внешние силы. Экспериментальное нахождение такой системы зависит от того, сможем ли мы поставить пробные тела в такие условия, когда на них не действуют никакие внешние силы, причем должно быть экспериментальное подтверждение отсутствия таких сил. Но если наличие, например, электрического (или любого другого силового) поля может быть обнаружено по различию в действии, которые эти поля оказывают на различные пробные частицы, то все пробные частицы, помещенные в одно и то же поле тяготения, приобретают одно и то же ускорение.

Однако даже при наличии гравитационного поля существует некоторый класс систем отсчета, который может быть выделен чисто локальными экспериментами. Так как все гравитационные ускорения в данной точке (малой области) у всех тел одинаковы как по величине, так и по направлению, все они окажутся равными нулю по отношению к системе отсчета, которая ускоряется вместе с другими физическими объектами, которые находятся под действием только силы тяготения. Такая система отсчета называется свободно падающая система отсчета. Такую систему нельзя неограниченно продолжить на все пространство и на все моменты времени. Она может быть однозначно определена лишь в окрестности мировой точки, в ограниченной области пространства и для ограниченного промежутка времени. В этом смысле свободно падающие системы отсчета можно назвать локальными системами отсчета. По отношению свободно падающим системам отсчета материальные тела, на которые не действуют никакие силы, кроме сил тяготения, не испытывают ускорения.

Свободно падающие системы отсчета в отсутствие гравитационных полей тождественны с инерциальными системами отсчета; в этом случае они неограниченно продолжимы. Но такое неограниченное распространение систем становится невозможным, когда появляются гравитационные поля. То, что свободно падающие системы вообще существуют хотя бы только как локальные системы отсчета, есть прямое следствие принципа эквивалентности, которому подчиняются все гравитационные эффекты. Но тот же самый принцип ответственен за то, что никакими локальными процедурами невозможно построить инерциальные системы отсчета при наличии гравитационных полей.

Эйнштейн рассматривал принцип эквивалентности как самое фундаментальное свойство тяготения. Он понял, что от представления о неограниченно продолжимых инерциальных системах отсчета следует отказаться пользу локальных свободно падающих систем отсчета; и лишь поступив таким образом, можно принять принцип эквивалентности как основную часть фундамента физики. Такой подход дал возможность физикам глубже заглянуть в природу тяготения. Наличие гравитационных полей оказывается равносильным невозможности распространения в пространстве и времени локальной свободно падающей системы отсчета; таким образом, при изучении гравитационных полей следует фокусировать внимание не столько на локальной величине поля, сколько на неоднородности гравитационных полей. Ценность такого подхода, который в конечном счете отрицает универсальность существования инерциальных систем отсчета, состоит в том, что он ясно показывает следующее: нет никаких оснований принимать без размышлений возможность построения инерциальных систем отсчета, несмотря на то, что такие системы использовались на протяжении нескольких столетий.

6. Тяготение во времени и пространстве

В теории тяготения Ньютона ускорение тяготения, вызываемое заданной большой массой, пропорционально этой массе и обратно пропорционально квадрату расстояния от этой массы. Тот же самый закон можно сформулировать немного иначе, но при этом мы сможем выйти на релятивистский закон тяготения. Эта иная формулировка опирается на представление о гравитационном поле как о чем - то таком, что впечатано в окрестность большой гравитирующей массы. Поле можно полностью описать, задавая в каждой точке пространства вектор, величина и направление которого соответствуют тому гравитационному ускорению. Которое приобретает любое пробное тело, помещенное в эту точку. Можно описать поле тяготения графически, проводя в нем кривые, касательная к которым в каждой точке пространства совпадает с направлением локального поля тяготения (ускорения) ; эти кривые проводятся с плотностью (определенное число кривых на единицу площади поперечного сечения, рис. 2) , равной величине локального поля. Если рассматривается одна большая масса, такие кривые - их называют силовыми линиями - оказываются прямыми линиями; эти прямые указывают прямо на тело, создающее поле тяготения.

Обратно пропорциональная зависимость от квадрата расстояния выражается графически так: все силовые линии начинаются на бесконечности и заканчиваются на больших массах. Если плотность силовых линий равна величине ускорения, число линий, проходящих через сферическую поверхность, центр которой расположен на большой массе, как раз равно плотности силовых линий, умноженной на площадь сферической поверхности радиуса r; площадь сферической поверхности пропорциональна квадрату его радиуса. В общем случае ньютоновский закон обратной зависимости от квадрата расстояния может быть приведен в такой форме, которая в равной степени пригодна для источника тяготения в виде одной большой массы и для произвольного распределения масс: все силовые линии гравитационного поля начинаются на бесконечности и оканчиваются на самих массах. Полное число силовых линий, оканчивающихся в некоторой области, содержащей массы, пропорционально полной массе, заключенной в этой области. Кроме того, гравитационное поле - поле консервативное: силовые линии не могут принимать форму замкнутых кривых, а перемещение пробного тела вдоль замкнутой кривой не может привести ни к выигрышу, ни к потере энергии.

В релятивистской теории гравитации роль источников отводится комбинациям массы и импульса (импульс выступает связующим звеном между состоянием одного и того же объекта в разных четырехмерных или, лоренцевых, системах отсчета) . Неоднородности релятивистского поля тяготения описываются тензором кривизны. Тензор представляет собой математический объект, полученный обобщением представления о векторах. В многообразии, описываемом с помощью координат, тензорам можно сопоставить компоненты, полностью определяющие тензор. Релятивистская теория связывает тензор кривизны с тензором, описывающим поведение источников тяготения. Эти тензоры пропорциональны друг другу. Коэффициент пропорциональности определяется из требования: закон тяготения в тензорной форме должен сводиться к ньютоновскому закону тяготения для слабых гравитационных полей и при малых скоростях тел; этот коэффициент пропорциональности с точностью до мировых констант равен постоянной тяготения Ньютона. Этим шагом Эйнштейн завершил построение теории тяготения, называемой иначе общей теорией относительности.

7. Заключение

Общая теория относительности дала возможность несколько иначе взглянуть на вопросы, связанные с гравитационными взаимодействиями. Она включила в себя всю ньютонов скую механику только как частный случай при малых скоростях движения тел. При этом открылась широчайшая область для исследования Вселенной, где силы тяготения играют решающую роль.

ЛИТЕРАТУРА:

П. БЕРГМАН “ЗАГАДКА ГРАВИТАЦИИ” ЛОГУНОВ “РЕЛЯТИВИСТСКАЯ ТЕОРИЯ ГРАВИТАЦИИ”

ВЛАДИМИРОВ “ПРОСТРАНСТВО, ВРЕМЯ, ГРАВИТАЦИЯ”

ГРАВИТАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ элементарных частиц, наиболее слабое из всех известных фундаментальных взаимодействий, характеризуемое участием гравитационного поля (поля тяготения). По современным представлениям, любое взаимодействие частиц осуществляется путём обмена между ними виртуальными (или реальными) частицами - переносчиками взаимодействия. В электромагнитном, слабом и сильном взаимодействиях переносчиками являются фотон, промежуточные векторные бозоны и глюоны соответственно. Для гравитационного взаимодействия вопрос о переносчиках не прост, и сама теория гравитационного взаимодействия занимает особое место в физической картине мира.

Согласно закону всемирного тяготения Ньютона, сила взаимодействия двух точечных масс (размеры которых малы по сравнению с расстоянием r между ними)

F g =Gm 1 m 2 /r 2 , (1)

где, m 2 - массы частиц, G = 6,67·10 -11 м 3 /кг?с 2 - гравитационная постоянная. Сила гравитационного взаимодействия двух протонов в 10 36 раз меньше кулоновской силы электростатического взаимодействия между ними. Это соотношение не изменяется и при учёте релятивистских эффектов вплоть до расстояний, равных комптоновской длине волны протона. Величину √Gm можно назвать «гравитационным зарядом». При таком определении «заряда» формула (1) совпадает с законом Кулона для взаимодействия электрических зарядов. Гравитационный заряд пропорционален массе тела, поэтому, согласно второму закону Ньютона (F = ma), ускорение а, вызываемое силой (1), не зависит от массы ускоряемого тела. Этот факт, проверенный с большой точностью, называется эквивалентности принципом. В релятивистской теории гравитационного взаимодействия вследствие соотношения между массой и энергией (Е = mс 2) гравитационный заряд пропорционален энергии, то есть полной массе m, а не массе покоя, как в формуле (1). Это обусловливает универсальность гравитационного взаимодействия. Нет такого вида материи, который имел бы нулевой гравитационный заряд. Именно это свойство гравитационного взаимодействия отличает его от других фундаментальных взаимодействий элементарных частиц. Кроме того, при больших энергиях частиц гравитационное взаимодействие уже нельзя считать слабым. При энергии >10 18 ГэВ гравитационный заряд частицы √GE/c 2 становится равным её электрическому заряду е, и при очень высоких энергиях гравитационного взаимодействия может стать основным.

Важнейшее свойство гравитационного поля состоит в том, что оно определяет геометрию пространства-времени, в котором движется материя. Геометрия мира не может быть задана изначально и изменяется при движении материи, создающей гравитационное поле (смотри Тяготение). А. Эйнштейн сделал такой вывод из свойства универсальности гравитационного взаимодействия и построил релятивистскую теорию гравитации - общую теорию относительности (ОТО). Эксперименты подтверждают справедливость ОТО в случае слабых гравитационных полей (когда гравитационный потенциал по абсолютной величине много меньше с 2). Для сильных полей ОТО ещё не проверена, поэтому возможны и другие теории гравитационного взаимодействия.

ОТО возникла как обобщение специальной теории относительности. Другие теории гравитации возникают как отражение успехов физики элементарных частиц - теоретической и экспериментальной. Например, теория гравитации Эйнштейна-Картана-Траутмана (так называемая гравитация с кручением, Эйнштейн, А. Картан, А. Траутман, 1922-72) расширяет принцип эквивалентности в том смысле, что гравитационное поле в ней взаимодействует не только с энергией (тензором энергии-импульса) частиц, но и с их спином.

В так называемой f-g теории гравитации К. Дж. Айшема, А. Салама и Дж. Стразди (1973) предполагается существование двух гравитационных полей: носителями одного из них являются безмассовые частицы со спином 2 (обычная, «слабая» гравитация ОТО), это поле взаимодействует с лептонами; другое поле переносится массивными частицами (f-мезонами) со спином 2 («сильная» гравитация) и взаимодействует с адронами.

Скалярно-тензорная теория гравитации Бранса-Дикке-Йордана (К. Бранс, Р. Дикке, П. Йордан, 1959-61) явилась развитием идеи П. Дирака об изменении со временем фундаментальных физических констант и констант взаимодействия.

А. Д. Сахаров выдвинул (1967) идею о гравитации как индуцированном взаимодействии, по аналогии с силами Ван дер Ваальса, которые имеют электромагнитную природу. В этой теории гравитационного взаимодействия - не фундаментальное взаимодействие, а результат квантовых флуктуаций всех других полей. Успехи квантовой теории поля (КТП) сделали возможным вычисление индуцированной гравитационной постоянной G, которая в этом случае выражается через параметры этих квантовых полей.

Теория тяготения - классическая теория, квантовая теория гравитации ещё не создана. Необходимость квантования вызвана тем, что элементарные частицы - объекты квантовой природы, и поэтому соединение классического взаимодействия и квантованных источников этого взаимодействия представляется непоследовательным.

Создание квантовой теории гравитации наталкивается на большие математические трудности, возникающие вследствие нелинейности уравнений ноля. Существует несколько методов квантования таких сложных математических объектов; эти методы развиваются и совершенствуются (смотри Квантовая теория тяготения). Как и в квантовой электродинамике (КЭД), при вычислениях появляются расходимости, однако, в отличие от КЭД, квантовая теория гравитации оказывается неперенормируемой. Здесь имеется аналогия с теорией слабого взаимодействия, которая тоже, взятая отдельно, вне связи с другими взаимодействиями, неперенормируема. Но объединение слабого и электромагнитного взаимодействий (на основе идеи о так называемом спонтанном нарушении симметрии) позволило построить единую перенормируемую теорию электрослабого взаимодействия. В этой связи большие надежды возлагаются на супергравитацию - теорию, в которой объединены все взаимодействия на основе суперсимметрии и в которой, кроме гравитонов (безмассовых частиц со спином 2, бозонов), имеются и другие переносчики гравитационного взаимодействия - фермионы, получившие название гравитино.

Интерес к созданию квантовой теории гравитации не является чисто академическим. Связь гравитационного взаимодействия со всеми видами материи и с пространственно-временным многообразием неизбежно приведёт в будущей квантовой теории к квантованию пространства-времени и к изменению наших взглядов не только на пространство и время на сверхмалых расстояниях и промежутках времени, но и на понятие «частицы», на процедуру измерений в микромире, а также к изменению структуры современной теории элементарных частиц.

Некоторые контуры этих изменений уже просматриваются. Это, прежде всего проблема расходимостей в КТП. Расходимость, например, собственной энергии электрически заряженной частицы появляется уже в классической электродинамике. Полная масса М классической заряженной тонкой сферы, имеющей заряд е и размер r 0 , равна

М = М 0 + е 2 /2r 0 с 2 , (2)

где М 0 - затравочная масса. При r 0 → 0 масса М становится бесконечной. Эта расходимость не устраняется и в квантовой теории, она становится только более слабой - логарифмической. Если учесть гравитационное взаимодействие и то, что оно зависит от полной массы М, расходимость собственной энергии исчезает уже в классической теории.

К вопросу о расходимостях можно подойти с другой стороны. Взаимодействие в КТП представляет собой обмен виртуальными частицами сколь угодно больших энергий. Поэтому при интегрировании по этим энергиям получаются расходящиеся выражения. В ОТО частицы не могут быть точечными. Их минимальный размер определяется гравитационным радиусом r g . Чем больше масса (энергия), тем больше гравитационный радиус:

Если тело массы М сжато до размеров, меньших r g , то оно превращается в чёрную дыру размером r g . В квантовой теории также есть предел локализации частицы - её комптоновская длина волны l С = ћ/М с, которая, очевидно, не может быть меньше гравитационного радиуса. Поэтому появляется надежда, что в теории, учитывающей гравитационное взаимодействие, промежуточные состояния со сколь угодно большими энергиями не возникнут и, следовательно, расходимости исчезнут. Максимальная масса (энергия) частиц соответствует равенству l C = r g , и равна М Р | =√ћc/G ≈ 10 -5 г. Эта величина называется планковской массой, и ей соответствует планковская длина l Р| = √ћG/c 3 ≈ 10 -33 см.

М. А. Марков предположил (1965), что могут существовать элементарные частицы массы М Р| и что эти частицы имеют максимально возможную для элементарной частицы массу. Он назвал эти частицы максимонами. Заряженные максимоны с массой М = e/√G ≈ 10 -6 г Марков назвал фридмонами. Фридмоны и максимоны обладают рядом необычных свойств. Так, геометрия внутри этих частиц может существенно отличаться от геометрии снаружи, и можно представить такие фридмоны и максимоны, внутри которых находятся целые вселенные. Вполне возможно, что квантовые образования, подобные максимонам и фридмонам, определяли ранние этапы эволюции Вселенной и задавали начальный вакуум единого взаимодействия, которое при расширении Вселенной расчленилось, например, посредством механизма спонтанного нарушения симметрии, на четыре взаимодействия, известные в настоящее время. Направление развития физики элементарных частиц не исключает, а, скорее, предполагает такую возможность.

Не только квантовая гравитация может оказать существенное влияние на теорию других взаимодействий, несомненно и обратное влияние. Исследования КТП в искривлённом пространстве-времени, исследования испарения чёрных дыр и рождения частиц в космологии показывают, что КТП приводит к видоизменению уравнений Эйнштейна. В современных объединённых теориях взаимодействия элементарных частиц плотность энергии вакуума может быть отлична от нуля и, следовательно, обладать собственным гравитационным полем. Доминантность этой плотности энергии ведёт к ускорению расширения современной Вселенной. Наконец, в моделях многомерной гравитации процессы негравитационных взаимодействий происходят на 4-мерной бране (подпространстве) в многомерном пространстве-времени. При энергиях, подводящих частицу к границе браны, может наблюдаться нарушение лоренц-инвариантности, а гравитационное взаимодействие перестаёт быть слабым.

Всё это свидетельствует о том, что создание квантовой теории гравитационного взаимодействия невозможно без учёта других фундаментальный взаимодействий и, наоборот, теория других взаимодействий не будет полна и свободна от внутренних противоречий без учёта гравитационного взаимодействия. Достигнуть подобного объединения гравитационного взаимодействия с другими взаимодействиями, возможно, удастся в рамках интенсивно развивающейся теории струн. Исследованию такого объединения способствуют методы космомикрофизики, изучающей фундаментальную взаимосвязь микро и макромира в сочетании её физического, космологического и астрофизического проявлений.

Лит.: Марков М. А. О природе материи. М., 1976; Мизнер Ч., Торн К., Уилер Дж. Гравитация. М., 1977. Т. 1-3; А. Эйнштейн и теория гравитации. М., 1979; Гриб А. А., Мамаев С. Г., Мостепаненко В. М. Квантовые эффекты в интенсивных внешних полях. М., 1980; Рубаков В. А. Большие и бесконечные дополнительные измерения // Успехи физических наук. 2001. Т. 171. Вып. 9; Ландау Л. Д., Лифшиц Е. М. Теория поля. 8-е изд. М., 2003; Хлопов М. Ю. Основы космомикрофизики. М., 2004.

В. А. Березин, М. Ю. Хлопов.

Сокол-Кутыловский О.Л.

О силах гравитационного взаимодействия

Если спросить любого студента или профессора физического или механико-математического факультетов любого университета о силах гравитационного взаимодействия, казалось бы, самого изученного из всех известных силовых взаимодействий, то все, что они смогут, – это написать формулы для силы Ньютона и для центробежной силы, что-то припомнят о непонятной силе Кориолиса и о существовании неких таинственных гироскопических сил. И все это притом, что все гравитационные силы можно получить из общих принципов классической физики.

1. Что известно о гравитационных силах

1.1. Известно, что сила, возникающая между телами в гравитационном взаимодействии, прямо пропорционально массе этих тел и обратно пропорционально квадрату расстояния между ними (закон всемирного тяготения или закон Ньютона):

, (1)

где 6.6720Ч 10 -11 НЧ м 2Ч кг -2 - гравитационная постоянная, m , M - массы взаимодействующих тел и r - кратчайшее расстояние между центрами масс взаимодействующих тел. Полагая, что тело массой М на расстоянии r создает гравитационное поле ускорений, направленное к его центру масс,

силу (1), действующую на тело массой m , представляют также в виде:

где w – угловая скорость вращения тела вокруг оси, не проходящей через центр масс тела, v – скорость прямолинейного движения тела и r – радиальный вектор, соединяющий ось вращения с частицей или с центром масс вращающегося тела. Первое слагаемое соответствует гравитационной силе тяготения (1), второе слагаемое в формуле (3) называют силой Кориолиса, а третье слагаемое – центробежной силой. Сила Кориолиса и центробежная сила считаются фиктивными, зависящими от системы отсчета , что абсолютно не соответствует опыту и элементарному здравому смыслу. Как можно считать силу фиктивной, если она может совершать реальную работу? Очевидно, что фиктивными являются не эти физические силы, а имеющиеся в настоящее время знания и представления об этих силах.

Происхождение численного коэффициента «2» в силе Кориолиса сомнительно, так как этот коэффициент получен для случая, когда мгновенная скорость точек тела во вращающейся системе отсчета совпадает со скоростью движущегося тела или направлена против нее, то есть при радиальном направлении силы Кориолиса . Второй случай, когда скорость тела ортогональна мгновенной скорости точек вращающейся системы отсчета, в не рассмотрен. По методу, изложенному в , величина силы Кориолиса во втором случае оказывается равной нулю, в то время как при заданных угловой и линейной скоростях она должна быть одинакова.

1.3. Угловая скорость является аксиальным вектором, то есть характеризуется некоторой величиной и направлена вдоль единственной выделенной оси. Знак направления угловой скорости определяется по правилу правого винта. Угловую скорость вращения определяют, как изменение угла поворота в единицу времени, ω(t ) φ/¶ t . В этом определении φ(t ) – периодическая функция времени с периодом 2π радиан. В то же время угловая скорость является обратной функцией времени. Это следует, в частности, из ее размерности. По этим причинам производная угловой скорости по времени: ¶ ω/¶ t=- ω 2 . Производная угловой скорости по времени соответствует аксиальному вектору углового ускорения. Согласно условному определению, данному в физическом энциклопедическом словаре, аксиальный вектор углового ускорения направлен вдоль оси вращения, причем в ту же сторону, что и угловая скорость, если вращение ускоренное, и против угловой скорости, если вращение замедленное.

2. Гравитационные силы, действующие на центр масс тела

Гравитационные и механические силы различаются между собой по характеру взаимодействия: при «контактном» взаимодействии тел возникают механические силы, а при дистанционном гравитационном взаимодействии тел - гравитационные силы.

2.1. Определим все гравитационные силы, действующие на центр масс материального тела. Вращение тела вокруг собственной оси, проходящей через его центр масс, рассматривать пока не будем. Из общих принципов механики известно, что сила возникает при изменении мгновенного импульса тела. Поступим подобным образом как при определении сил, связанных с прямолинейным движением тела, так и при определении сил, связанных с его вращением относительно внешней оси:

или в развернутом виде:

где r =r ·[cos(ωt)· x + sin(ωt)·y ], x и y – единичные векторы в направлении соответствующих осей координат, r – модуль радиального вектора r , r 1 =r /r – единичный вектор в направлении радиального вектора r , t – время, а ось координат z совпадает с осью вращения. Величина производной единичного вектора r 1 по времени, ¶ r 1 /¶ t=ω·r 1^ , где r 1^ – единичный вектор, лежащий в плоскости вращения и ортогональный радиальному вектору r (Рис. 1).

Принимая во внимание возможные изменения радиального вектора, в соответствии с уравнением (7), формула (6) приобретает вид :

. (8)

Рис. 1. Взаимное расположение радиального вектора r , угловой скоростиω и мгновенной скоростиv m тела массой m , в системе координат (x , y , z ) с осью вращения, направленной по оси z . Единичный вектор r 1 =r /r ортогонален единичному вектору r 1^ .

2.2. Все силы, входящие в уравнение (8), равноправны и складываются по правилу сложения векторов. Сумму сил (8) можно представить в виде четырех слагаемых:

F G =F a + F ω1 + F ω2 +F ω3 .

Сила F а возникает при прямолинейном ускоренном движении тела или при гравитационном статическом взаимодействии тела с другим телом. Сила F ω1 соответствует силе Кориолиса для случая, когда материальное тело движется во вращающейся системе в радиальном направлении (по радиусу вращения). Эта сила направлена в сторону мгновенной скорости тела или против нее. Сила F ω2 – это сила, действующая на любую точку вращающегося тела. Ее называют центробежной силой, но эту же силу называют силой Кориолиса, если тело во вращающейся системе перемещается по направлению мгновенной скорости, не изменяя величину радиуса вращения. Сила F ω2 всегда направлена радиально. Учитывая равенство ¶ r 1 /¶ t=ω·r 1^ , и направление результирующего вектора в векторном произведении, получаем, что при вращении каждой точки тела с угловой скоростью ω на нее действует сила F ω2 =m ·ω 2 ·r , что совпадает с центробежной силой в формуле (3).

Сила F ω3 – это сила инерции вращательного движения . Сила инерции вращательного движения возникает при изменении угловой скорости вращающейся системы и связанных с нею тел и направлена по вектору мгновенной скорости тела при dw /dt <0 и против вектора мгновенной скорости тела при dw /dt >0. Она возникает только при переходных процессах, а при равномерном вращении тела эта сила отсутствует. Направление гравитационной силы инерции вращательного движения

(9)

показано на Рис. 2. Здесь r – радиальный вектор, соединяющий по кратчайшему пути ось вращения с центром масс вращающегося тела, ω – аксиальный вектор угловой скорости.


Рис. 2. Направление гравитационной силы инерции вращательного движения, F ω3 , при перемещении тела из точки 1 к точке 2 при dw / dt <0; r – радиальный вектор, соединяющий ось вращения с центром масс движущегося тела; F T – сила притяжения или сила натяжения каната. Центробежная сила не показана.

Векторная сумма сил F ω1 и F ω2 создает результирующую силу (силу Кориолиса F K ) при движении тела в произвольном направлении во вращающейся системе:

3. Гравитационные и механические силы, возникающие при повороте оси вращения тела

Чтобы определить все гравитационные силы, действующие не только на центр масс, но и на любую другую точку материального тела, в том числе возникающие при повороте оси вращения этого тела вокруг другой оси, необходимо вернуться к формуле (5).

Общая формула для всех гравитационных и механических сил, полученная ранее, остается в силе, но до сих пор все полученные силы считались приложенными к центру масс тела. Влияние поворота собственной оси вращения на отдельные точки тела, не совпадающие с центром масс, не принималось во внимание. Тем не менее, полученная ранее из общих принципов механики формула (5) содержит в себе все силы, действующие на любую точку вращающегося тела, в том числе силы, возникающие при пространственном повороте собственной оси вращения этого тела. Поэтому из формулы (5) можно вывести в явном виде уравнение для силы, действующей на произвольную точку вращающегося материального тела при повороте его собственной оси вращения на некоторый угол в пространстве. Для этого представим уравнение (5) в следующем виде:

(12)
,

где Ѕ rґ w Ѕ – модуль вектора rґ w , а (rґ w ) 1 – единичный вектор, направленный по вектору rґ w . Как было показано, производная по времени от вектора rґ w при изменении величины этого вектора дает гравитационные и механические силы вращения, из которых получаются центробежная сила, сила Кориолиса и сила инерции вращательного движения:

где пятое слагаемое – это и есть сила, а точнее, – это множество сил, возникающих при пространственном повороте оси вращения тела во всех точках этого тела, причем сила, возникающая в каждой точке, зависит от расположения этой точки. В краткой записи полную сумму всех гравитационных сил удобно представить в виде:

, (15)

где F a – сила Ньютона с гравитационным вектором ускорения a , Fw 1 – Fw 3 – силы вращательного движения с гравитационным вектором угловой скорости w и е Fw W i – множество сил, возникающих при повороте оси вращения тела во всех n точках, на которые равномерно разбито тело.

Представим пятое слагаемое в развернутом виде. По определению радиальный вектор r ортогонален вектору угловой скорости w , поэтому модуль вектора rґ w равен произведению модулей составляющих его векторов:

Производная по времени от единичного вектора (rґ w ) 1 при изменении его по направлению на угол j дает другой единичный вектор, r 1 , расположенный параллельно плоскости поворота S (x, z ) и ортогональный вектору rґ w (Рис. 3). Причем у него в качестве сомножителя появляется коэффициент, численно равный производной по времени от угла поворота, W =¶ j /¶ t :

. (16)

Поскольку при повороте оси вращения движение точек материального тела является трехмерным, а поворот оси происходит в некоторой плоскости S (x, z ), то модуль единичного вектора относительно плоскости поворота не постоянен, и при вращении изменяется в пределах от нуля до единицы. Поэтому при дифференцировании такого единичного вектора должна учитываться его величина относительно плоскости, в которой происходит поворот этого единичного вектора. Длиной единичного вектора (rґ w ) 1 относительно плоскости поворота S (x, z ) является проекция этого единичного вектора на плоскость поворота. Производная единичного вектора (rґ w ) 1 в плоскости поворота S (x, z ) может быть представлена следующим образом:

, (17)

где a – угол между векторомrґ w и плоскостью поворота S (x, z ).

Сила, действующая на любую точку вращающегося тела при повороте его оси вращения, приложена не к центру масс этого тела, а непосредственно к каждой данной точке. Поэтому тело необходимо разбить на множество точек, и считать, что каждая такая точка имеет массу m i . Под массой данной точки тела, m i , подразумевается масса, сосредоточенная в малом по отношению ко всему телу объеме V i так, что:

При равномерной плотности тела r масса , а точкой приложения силы является центр масс данного объема V i , занимаемого частью материального тела массой m i . Сила, действующая на i -тую точку вращающегося тела при повороте его оси вращения, приобретает следующий вид:

, (18)

где m i – масса данной точки тела, r i – кратчайшее расстояние от данной точки (в которой определяется сила) до оси вращения тела, w – угловая скорость вращения тела, W – модуль угловой скорости поворота оси вращения, a – угол между векторомrґ w и плоскостью поворота S (x, z ), а r 1 – единичный вектор, направленный параллельно плоскости поворота и ортогональный вектору мгновенной скорости rґ w .


Рис. 3. Направление силы Fw W , возникающей при повороте оси вращения тела в плоскости S (x, z) с угловой скоростью поворота W . В точке а с радиус-вектором, исходящим из точки с оси вращения, сила Fw W =0; в точке b с радиус-вектором, исходящим из центра тела, сила Fw W имеет максимальную величину.

Сумма всех сил (18), действующих на все n точек, на которые равномерно разбито тело,

(19)

создает момент сил, поворачивающих тело в плоскости Y (y, z ), ортогональной плоскости поворота S (x, z ) (Рис. 4).

Из опытов с вращающимися телами само наличие сил (19) известно, но они не была четко определены. В частности, в теории гироскопа силы, действующие на опоры подшипников гироскопа, названы «гироскопическими» силами, но происхождение этих физических сил не раскрывается. В гироскопе при повороте его оси вращения на каждую его точку тела действует сила (18), полученная здесь из общих принципов классической физики и выраженная количественно в виде конкретного уравнения.

Из свойства симметрии следует, что каждой точке тела соответствует другая точка, расположенная симметрично относительно оси вращения, в которой действует такая же по величине, но имеющая противоположное направление, сила (18). Совместное действие таких симметричных пар сил при повороте оси вращающегося тела создает момент сил, поворачивающий это тело в третьей плоскости Y (y, z ), которая ортогональна плоскости поворота S (x, z ) и плоскостям L (x, y) , в которых происходит вращение точек тела:

. (20)

Рис. 4. Возникновение момента сил под действием пар сил в точках тела, расположенных симметрично относительно центра масс. 1 и 2 – две симметричные точки вращающегося с угловой скоростью w тела, в которых, при повороте оси вращения тела с угловой скоростью W , возникают равные по величине силы Fw W 1 и Fw W 2 , соответственно.

При этом для единичных векторов угловых скоростей, характеризующих их направление, в любой из точек тела, не совпадающих с центром симметрии (центром масс), выполняется векторное тождество:

, (21)

где Q 1 – единичный аксиальный вектор угловой скорости, возникающей в момент действия силы (18), w 1 – единичный аксиальный вектор угловой скорости вращения тела и W 1 – единичный аксиальный вектор угловой скорости поворота оси вращения (Рис. 2). Так как ось поворота, совпадающая с вектором угловой скорости поворота W , всегда ортогональна оси вращения, совпадающей с вектором угловой скорости вращения тела, w , то вектор угловой скорости Q всегда ортогонален векторам w и W : .

При помощи поворота системы координат в пространстве задачу нахождения силы (18) всегда можно свести к случаю, аналогичному рассмотренному на Рис. 3. Могут измениться только направление аксиального вектора угловой скорости w и направление аксиального вектора скорости поворота оси вращения, W ,и, как следствие их изменения, может измениться на противоположное направление силы Fw W .

Взаимосвязь абсолютных величин угловых скоростей при свободном вращении тела по трем взаимно ортогональным осям можно найти, применив закон сохранения энергии вращательного движения. В простейшем случае для однородного тела массой m в форме шара с радиусом r имеем:

,

откуда получаем:

.

4. Полная сумма первичных гравитационных и механических сил, действующих на тело

4.1. Принимая во внимание силы (19), возникающие при повороте оси вращения тела, полное уравнение для суммы всех гравитационных сил, действующих на любую точку материального тела, участвующего в прямолинейном и вращательном движении, в том числе с пространственным поворотом собственной оси вращения, имеет следующий вид :


(22)

где a – вектор прямолинейного ускорения тела массой m , r – радиальный вектор, соединяющий ось вращения тела с точкой приложения силы, r – модуль радиального вектораr ,r 1 – единичный вектор, совпадающий по направлению с радиус-вектором r , w – угловая скорость вращения тела, Ѕ rґ w Ѕ – модуль вектора мгновенной скорости rґ w , (rґ w ) 1 – единичный вектор, совпадающий по направлению с вектором rґ w , r 1^ – единичный вектор, расположенный в плоскости вращения и ортогональный вектору r 1 , W – модуль угловой скорости поворота оси вращения, r 1 – единичный вектор, направленный параллельно плоскости поворота и ортогональный вектору мгновенной скорости rґ w , a – угол между вектором rґ w и плоскостью поворота, m i – масса i -той точки тела, сосредоточенная в малом объеме тела V i , центр которого является точкой приложения силы, и n – число точек, на которые разбито тело. В формуле (22) для второй, третьей и четвертой сил знак может быть взят положительным, так как эти силы в общей формуле находятся под знаком абсолютной величины. Знаки сил определяются с учетом направления каждой конкретной силы. С помощью сил, входящих в формулу (22), можно описать механическое движение любой точки материального тела при его движении по произвольной траектории, включая пространственный поворот его оси вращения.

4.2. Итак, в гравитационном взаимодействии имеется всего пять различных физических сил, действующих на центр масс и на каждую из точек материального тела при поступательном и вращательном движении этого тела, и только одна из этих сил (сила Ньютона) может действовать на неподвижное тело со стороны другого тела. Знание всех сил гравитационного взаимодействия позволяет понять причину устойчивости динамических механических систем (например, планетарных), а с учетом электромагнитных сил – объяснить устойчивость атома.

Литература:

1. Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М. Курс общей физики. Механика и молекулярная физика. — М.: Наука, 1969.

2. Савельев И.В. Курс общей физики. Т.1. Механика. Молекулярная физика. 3-е изд., испр. — М.: Наука, 1987.

3. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005 г.

Сокол-Кутыловский О.Л., О силах гравитационного взаимодействия // «Академия Тринитаризма», М., Эл № 77-6567, публ.13569, 18.07.2006




Понравилась статья? Поделитесь с друзьями!