Странный аттрактор примеры. Регулярные и странные аттракторы

(к примеру, в задаче о маятнике с трением о воздух), (пример - самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми траекториями внутри (как у странного аттрактора).

Существуют различные формализации понятия стремления, что приводит к различным определениям аттрактора, задающим, соответственно, потенциально различные множества (зачастую - вложенные одно в другое). Наиболее употребительными определениями являются максимальный аттрактор (зачастую - в своей малой окрестности, см. ниже), аттрактор Милнора и неблуждающее множество .

Классификация [ | ]

Аттракторы классифицируют по:

Также, есть известные «именные» примеры аттракторов: Лоренца , Плыкина , соленоид Смейла-Вильямса , гетероклинический аттрактор (пример Боуэна).

Свойства и связанные определения [ | ]

При всех определениях аттрактор полагается замкнутым и (полностью) инвариантным множеством.

С понятием аттрактора также тесно связано понятие меры Синая-Рюэлля-Боуэна : инвариантной меры на нём, к которой стремятся временные средние типичной (в смысле меры Лебега) начальной точки либо временные средние итераций меры Лебега. Впрочем, такая мера существует не всегда (что иллюстрирует, в частности, пример Боуэна).

Виды формализации определения [ | ]

Поскольку всё фазовое пространство в любом случае сохраняется динамикой, формальное определение аттрактора можно давать, исходя из философии, что «аттрактор это наименьшее множество, к которому всё стремится» - иными словами, выкидывая из фазового пространства всё, что может быть выкинуто.

Максимальный аттрактор [ | ]

Пусть для динамической системы задана область U {\displaystyle U} , которая переводится строго внутрь себя динамикой:

f (U) ¯ ⊂ U {\displaystyle {\overline {f(U)}}\subset U}

Тогда максимальным аттрактором системы в ограничении на U называется пересечение всех его образов под действием динамики:

A m a x = ⋂ n = 1 ∞ f n (U) . {\displaystyle A_{max}=\bigcap _{n=1}^{\infty }f^{n}(U).}

То же самое определение можно применить и для потоков: в этом случае, необходимо потребовать, чтобы векторное поле, задающее поток, на границе области было направлено строго внутрь неё.

Это определение часто применяется как для характеризации множества как «естественного» аттрактора («является максимальным аттрактором своей окрестности»). Также его применяют в уравнениях с частными производными .

У этого определения есть два недостатка. Во-первых, для его применения необходимо найти поглощающую область. Во-вторых, если такая область была выбрана неудачно - скажем, содержала отталкивающую неподвижную точку с её бассейном отталкивания - то в максимальном аттракторе будут «лишние» точки, около которых на самом деле несколько раз подряд оказаться нельзя, но текущий выбор области этого «не чувствует».

Аттрактор Милнора [ | ]

По определению, аттрактором Милнора динамической системы называется наименьшее по включению замкнутое множество, содержащее ω-предельные множества почти всех начальных точек по мере Лебега. Иными словами - это наименьшее множество, к которому стремится траектория типичной начальной точки.

Неблуждающее множество [ | ]

Точка x динамической системы называется блуждающей , если итерации некоторой её окрестности U никогда эту окрестность не пересекают:

∀ n > 0 f n (U) ⋂ U = ∅ . {\displaystyle \forall n>0\quad f^{n}(U)\bigcap U=\emptyset .}

Иными словами, точка блуждающая, если у неё есть окрестность, которую любая траектория может пересечь только один раз. Множество всех точек, не являющихся блуждающими, называется неблуждающим множеством.

Статистический аттрактор [ | ]

Статистический аттрактор A s t a t {\displaystyle A_{stat}} , в окрестности которого почти все точки проводят почти всё время: для любой его окрестности U {\displaystyle U} для почти любой (в смысле меры Лебега) точки x {\displaystyle x} выполнено

1 N # { j ≤ N ∣ f j (x) ∈ U } → 1 , N → ∞ . {\displaystyle {\frac {1}{N}}\#\{j\leq N\mid f^{j}(x)\in U\}\to 1,\quad N\to \infty .}

Минимальный аттрактор [ | ]

Минимальный аттрактор определяется как наименьшее по включению замкнутое множество A m i n {\displaystyle A_{min}} , в окрестности которого почти вся мера Лебега проводит почти всё время: для любой его окрестности U {\displaystyle U} выполнено

1 N ∑ j = 0 N − 1 (f ∗ j (L e b)) (U) → 1 , N → ∞ . {\displaystyle {\frac {1}{N}}\sum _{j=0}^{N-1}(f_{*}^{j}(Leb))(U)\to 1,\quad N\to \infty .}

Примеры несовпадений [ | ]

Локальность, минимальность и глобальность [ | ]

Регулярные и странные аттракторы [ | ]

Регулярные аттракторы [ | ]

Притягивающая неподвижная точка [ | ]

(пример: маятник с трением)

Странные аттракторы [ | ]

(примеры: аттрактор Лоренца, аттрактор Рёсслера, соленоид Смейла-Вильямса; комментарий про эффект бабочки и про динамический хаос.)

Странный аттрактор - это притягивающее множество неустойчивых траекторий в фазовом пространстве диссипативной динамической системы . В отличие от аттрактора, не является многообразием , то есть не является кривой или поверхностью. Структура странного аттрактора фрактальна . Траектория такого аттрактора непериодическая (она не замыкается) и режим функционирования неустойчив (малые отклонения от режима нарастают). Основным критерием хаотичности аттрактора является экспоненциальное нарастание во времени малых возмущений. Следствием этого является «перемешивание» в системе, непериодичность во времени любой из координат системы, сплошной спектр мощности и убывающая во времени автокорреляционная функция .

Динамика на странных аттракторах часто бывает хаотической : прогнозирование траектории, попавшей в аттрактор, затруднено, поскольку малая неточность в начальных данных через некоторое время может привести к сильному расхождению прогноза с реальной траекторией. Непредсказуемость траектории в детерминированных динамических системах называют динамическим хаосом , отличая его от стохастического хаоса , возникающего в. Это явление также называют эффектом бабочки , подразумевая возможность преобразования слабых турбулентных потоков воздуха, вызванных взмахом крыльев бабочки в одной точке планеты, в мощное торнадо на другой её стороне вследствие многократного их усиления в атмосфере за некоторое время. Но на самом деле взмах крыла бабочки обыкновенно не создает торнадо, так как на практике наблюдается такая тенденция, что такие маленькие колебания в среднем не меняют динамики таких сложных систем как атмосфера планеты, и сам Лоренц по этому поводу говорил: «Но в целом, я утверждаю, что в течение лет незначительные потрясения ни увеличивают, ни уменьшают частоту возникновения различных погодных явлений, таких как ураганы. Всё, что они могут сделать - это изменить порядок, в котором происходят эти явления.» И это, пожалуй, важная и удивительная вещь, без которой было бы трудно, а то и вообще невозможно изучать хаотическую динамику (динамику, которая чувствительна к малейшим изменениям начальных условий системы).

Среди странных аттракторов встречаются такие, хаусдорфова размерность которых отлична от топологической размерности и является дробной. Одним из наиболее известных среди подобных аттракторов является аттрактор Лоренца .

Именные примеры [ | ]

Аттрактор Лоренца [ | ]

Система дифференциальных уравнений, создающих аттрактор Лоренца, имеет вид:

x ˙ = σ (y − x) {\displaystyle {\dot {x}}=\sigma (y-x)} y ˙ = x (r − z) − y {\displaystyle {\dot {y}}=x(r-z)-y} z ˙ = x y − b z {\displaystyle {\dot {z}}=xy-bz}

Соленоид Смейла-Вильямса [ | ]

Соленоид Смейла-Вильямса - пример обратимой динамической системы , аналогичной по поведению траекторий отображению удвоения на окружности. Более точно, эта динамическая система определена на полнотории , и за одну её итерацию угловая координата удваивается; откуда автоматически возникает экспоненциальное разбегание траекторий и хаотичность динамики. Также соленоидом называют и максимальный аттрактор этой системы (откуда, собственно, и происходит название): он устроен как (несчётное) объединение «нитей», наматывающихся вдоль полнотория .

Аттрактор Плыкина [ | ]

В разд. 5.1 этой главы будет показано, что нелинейные диссипативные динамические системы естественно приводят к понятию странного аттрактора. Затем (разд. 5.2) вводится колмогоровская энтропия как функциональная мера хаотического движения, после чего (разд. 5.3) рассматривается задача о количестве информации, которую можно получить по измеренному случайному сигналу.

В разд. 5.4 обсуждается возникновение странного аттрактора в модели Рюэля - Такенса - Ньюхауза, описывающей переход к турбулентности (во времени) и приводятся некоторые экспериментальные подтверждения этой модели. Следующий раздел содержит ренормгрупповое толкование этой модели перехода к хаосу. Глава заканчивается критическим обзором различных сценариев перехода и набором рисунков странных аттракторов и их фрактальных границ.

5.1. Введение и определение странных аттракторов

В этом разделе мы рассмотрим диссипативные системы, описываемые потоками или отображениями. Рассмотрим вначале диссипативные потоки, описываемые автономной системой дифференциальных уравнений первого порядка:

Здесь термин «диссипативный» означает, что произвольно выбранный в фазовом пространстве элементарный объем V, ограниченный поверхностью S, сжимается. Поверхность S эволюционирует так, что каждая ее точка движется по траектории, определяемой (5.1). Отсюда по теореме о дивергенции:

и тогда по определению диссипативными являются системы с

Примером потока этого типа является модель Лоренца:

для которой из

т. е. элементарный объем сжимается экспоненциально во времени

Если рассматривать траекторию, порождаемую уравнениями модели Лоренца при (рис. 58), оказывается, что а) она притягивается к ограниченной области в фазовом пространстве; б) движение ее блуждающее, т. е. траектория делает один виток направо, затем несколько витков налево, затем направо траектория очень чувствительна к малым изменениям начальных условий, т. е. если вместо условий (0; 0,01; 0) взять близкие условия, то новое решение вскоре отклонится от прежнего и число витков будет другим. На рис. 59 представлен график зависимости максимума переменной от Результирующее отображение является приблизительно треугольным, что соответствует, согласно гл. 2, хаотической последовательности

Рис. 58. Аттрактор Лоренца, вычисленный на ЭВМ (Lanford, 1977).

Рис. 59. Последовательные максимумы переменной Z аттрактора Лоренца (Lorenz, 1963).

Подведем итог: траектория чувствительна к изменениям начальных условий; хаотична; притягивается к ограниченной области в фазовом пространстве; объем этой области (согласно (5.4)) стремится к нулю. Это означает, что поток трехмерной системы Лоренца порождает множество точек, размерность которого меньше 3, т. е. его объем в трехмерном пространстве равен 0. На первый взгляд можно было бы присвоить ему следующую целую, но меньшую размерность - 2. Однако это противоречит теореме Пуанкаре - Бендикссона, утверждающей, что в ограниченной области двумерного пространства хаотический поток не может существовать. Сошлемся, например, на строгое доказательство этой теоремы в монографии (Hirsch, Smale, 1965). Рис. 60 показывает, что непрерывность линий тока и тот факт, что линия тока делит плоскость на две части, ограничивают траекторию так сильно, что единственно возможными аттракторами в ограниченной области являются предельные циклы и неподвижные точки. Разрешение этой проблемы заключается в том, что множество точек, к которому притягивается траектория в системе Лоренца (так называемый аттрактор Лоренца), имеет хаусдорфову размерность не целую, а между 2 и 3 (точное значение Это, естественно, приводит к понятию странного аттрактора, который появляется в разнообразных физических нелинейных системах.

Странный аттрактор обладает следующими свойствами (формальное определение можно найти в обзорных статьях (Eckmann, 1981; Ruelle, 1980):

а) он является аттрактором, т. е. занимает ограниченную область фазового пространства к которой по истечении большого

Рис. 60. Самозахват линии тока в ограниченной области на плоскости. Экспоненциальное разбегание траекторий противоречит непрерывности (отметим противоположные направления стрелок).

интервала времени притягиваются все достаточно близкие траектории из так называемой области притяжения. Отметим, что область притяжения может иметь очень сложную структуру (см. рис. разд. 5.7). Кроме того, сам аттрактор состоит как бы из одной траектории, т. е. траектория с течением времени должна пройти через каждую точку аттрактора. Набор изолированных неподвижных точек не является единым аттрактором;

б) свойство, делающее аттрактор странным, - чувствительность к начальным условиям, т. е., несмотря на сжатие в объеме, не происходит сокращения длин во всех направлениях и расстояния между первоначально сколь угодно близкими точками на аттракторе через достаточно большое время становятся конечными. Как будет показано в следующем разделе, это приводит к положительной колмогоровской энтропии;

в) чтобы описывать физическую систему, аттрактор должен быть структурно устойчивьм и типичным. Другими словами, малые изменения параметра в F (см. (5.1)) изменяют структуру аттрактора непрерывным образом (далее мы будем характеризовать структуру более детально; сейчас имеем в виду, например, хаусдорфову размерность аттрактора) и множество параметров, для которых (5.1) порождает странный аттрактор, не должно быть множеством меры 0 - иначе аттрактор не является типичным и физически значимым.

Все обнаруженные к настоящему времени странные аттракторы имеют дробную хаусдорфову размерность. Так как не существует общепринятого формального определения странного аттрактора (Ruelle, 1980; Mandelbrot, 1982), пока не ясно, всегда ли дробность хаусдорфовой размерности следует из свойств «а» - «в» или необходима дополнительно для странного аттрактора.

Обычно странный аттрактор возникает, когда фазовый поток сжимает элементарный объем в одних направлениях и растягивает его в других. Чтобы оставаться в ограниченной области, элементарный объем одновременно складывается. Этот процесс растяжения и складывания порождает хаотическое движение траектории на странном аттракторе подобно тому, как это было в случае кусочно-линейных отображений (гл. 2).

Так как вышеприведенное определение описывает свойства множества точек, понятие странного аттрактора не ограничено потоками: диссипативные отображения также могут порождать странные аттракторы. Отображение

называется диссипативным, если оно приводит к сжатию объема в фазовом пространстве, т. е. если модуль якобиана J, на который умножается элементарный объем после итерации, меньше 1:

Теорема Пуанкаре - Бендикссона, которая ограничивает размерность порожденных потоками странных аттракторов величинами, большими двух, несправедлива для отображений. Это связано с тем, что отображения порождают дискретные точки и снимаются ограничения, связанные с непрерывностью. Таким образом, диссипативные отображения могут приводить к странным аттракторам, размерность которых меньше 2.

Рассмотрим для иллюстрации два примера, которые из-за меньшей размерности проще представить визуально, чем аттрактор Лоренца.

Преобразование пекаря. На рис. 61 показаны обычное преобразование пекаря - отображение, сохраняющее площадь (напоминает действия пекаря, который раскатывает тесто) и не сохраняющее площадь диссипативное преобразование пекаря. Математическое

Рис. 61. а - Преобразование пекаря; б - диссипативное преобразование пекаря.

выражение для последнего

где а -преобразование, приводящее к сдвигу Бернулли. Его ляпуновский показатель (по х) что приводит к чувствительности к начальным условиям; объект, получающийся путем многократного воздействия этого отображения на единичный квадрат, является странным аттрактором. Этот аттрактор - бесконечная последовательность горизонтальных линий и ее область притяжения включает все точки единичного квадрата. Показатель Ляпунова в направлении и в этом направлении масштабы сокращаются таким образом, что общий результат (растяжения по и сжатия по ) - это уменьшение объема, необходимое для диссипативного отображения.

Хаусдорфову размерность DB странного аттрактора можно вычислить следующим образом. В направлении аттрактор просто одномерный (как и отображение ) в гл. 2). Хаусдорфова размерность в направлении у следует из определения

и из самоподобия аттрактора по вертикали (рис. 61, б). Это дает

Рис. 63. а - Изображение аттрактора Хенона, построенное по 104 точек. Несколько последовательных точек пронумерованы для иллюстрации блуждающего движения на аттракторе; б, в - увеличенные изображения квадратиков с предыдущих рисунков; г - высота каждого столбика - относительная вероятность обнаружения точки в одном из шести листков предыдущего рисунка (Farmer, 1982а, b).

структуру аттрактора. Хаусдорфова размерность аттрактора Хенона!) при . Этот результат получен путем наложения квадратной сетки с ячейкой на плоскость отображения и подсчета числа квадратов, занятых точками и вычислением!) Если на рис. 63, в разрешение позволяет видеть шесть «листков», то относительная вероятность для каждого листка может быть оценена простым подсчетом числа точек на нем. Высота каждого столбика на рис. 63, г - относительная вероятность, а ширина - толщина соответствующего листка.

Различные высоты столбиков на рис. 63, г показывают, что аттрактор Хенона неоднороден. Эта неоднородность не может быть описана одной хаусдорфовой размерностью, поэтому в дальнейшем мы введем бесконечное множество размерностей, характеризующих статическую структуру (т. е. распределение точек)

аттрактора. Однако, прежде чем это сделать, полезно обсудить колмогоровскую энтропию, которая описывает динамическое поведение на странном аттракторе.

В физических системах, n-мерными могут быть, например, две или три координаты, для одного или нескольких физических объектов; в экономических системах они могут быть отдельными переменными, такими как уровень инфляции и уровень безработицы. Если развивающаяся переменная двух-или трехмерная, аттрактор динамического процесса можно представить геометрически в двух или трех измерениях, (как, например, на рисунке).

Если при различных начальных условиях все траектории в фазовом пространстве будут уходить в бесконечность, это будет говорить о том, что у такой системы нет устойчивого состояния.

В случае, когда все они закончатся в одной точке, т. е. система придет к конкретному состоянию, и большее с ней не будет происходить никаких изменений, то такая точка будет являться точкой устойчивого состояния. После выхода из этого состояния, под действием кратковременного возмущения, система всегда вернется в это же состояние.

В этом случае, все траектории заканчиваются в точке, то есть она как бы притягивает к себе со временем все фазовые траектории. Такая точка называется аттрактором (англ. to attract -"притягивать") типа «притягивающая точка ». Понятие аттрактор является обобщением понятия равновесия для сложных систем.

Аттрактор может быть точкой, конечным множеством точек, кривой, разнородностью, или даже сложным комплексом с фрактальной структурой, известным как странный аттрактор . Если переменная является скаляром, аттрактор представляет собой подмножество вещественной числовой прямой. Описывая аттрактор в хаотических динамических системах, он является одним из достижений теории хаоса . Траектория динамической системы в аттракторе не удовлетворяет любым особым ограничениям для оставшихся на аттракторе исключениям, вперед и назад во времени. Траектория может быть периодической и хаотической. Если множество точек является периодическим или хаотичным, но поток в соседней области вдали от множества, набор не является аттрактором, но вместо этого называется отражателем (или репеллером ).

Таким образом, аттрактор - компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка (периодическая траектория (пример - самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми траекториями внутри (как у странного аттрактора).

Динамическая система , как правило, описывается одним или более дифференциальным или разностным уравнением. Уравнения данной динамической системы указывают свое поведение в отношении любого заданного короткого периода времени. Чтобы определить поведение системы в течение более длительного периода, необходимо интегрировать уравнения либо через аналитические средства либо посредством итерации, часто с помощью компьютеров. Динамические системы в физическом мире, как правило, возникают в результате диссипативных систем: если бы не было в течение времени некоторой движущей силы, движение бы прекратилось. Рассеяние может исходить от внутреннего трения, термодинамических потерь или потери материала и других многих причин.

Рассеиваемая и движущая силы, как правило, сбалансированы, убивая начальные переходные процессы и урегулируют систему в ее типичном поведении. Подмножеством фазового пространства динамической системы, соответствующему типичному поведению является аттрактор, также известный как притягивающая секции или attractee. Инвариантные множества и предельные множества аналогичны концепции аттрактора. Инвариантное множество представляет собой набор, который развивается в себе под воздействием динамики. Аттракторы могут содержать инвариантные множества . Предельным множеством является множество точек, для которых существует некоторое начальное состояние, которое заканчивается сколь угодно близко к предельному множеству (т.е. в каждой точке множества) с течением времени к бесконечности. Аттракторы - предельные множества, но не все предельные множества являются аттракторами: при возможности иметь несколько точек системы сходящимся к предельным множествам, но разные точки, возмущенные немного от предельного множества не может на них воздействовать. Например, затухающей маятник имеет две инвариантные точки: точка х0 минимальной высоты и точка x1 максимальной высоты. Точка x0 также предельное множество, как траектории сходятся к ней; точка x1 не является предельным множеством. Из-за рассеивания точка х0 также аттрактор. Если не будет рассеивания, х0 не будет аттрактором.

Математическое определение

Пусть t представляют время и пусть f (т, )-функция, определяет динамику системы. То есть, если это n-мерные точки в фазовом пространстве, представляющих начальное состояние системы, то f (0, а) = а и, при положительном значении t, f (t, а) является результатом эволюции этого положения после t единиц времени. Например, если система описывает эволюцию свободной частицы в одном измерении, то фазовое пространство есть плоскость R2 с координатами (х, v), где х является положением частицы, v это ее скорость, а = (х, v), и эволюция задается

Аттрактор представляет собой подмножество фазового пространства и характеризуется следующими тремя условиями:

А вперед инвариантна относительно t: если есть элемент A и t (t, а) , для всех t > 0 .

Существует соседняя область А, называемая областью притяжения для А и обозначается B (A) , которая состоит из всех точек b, что " введите A в пределе t → ∞ " . Более формально, B (А) есть множество всех точек b в фазовом пространстве со следующим свойством:

Для любой открытой близлежащей области N А, есть положительная постоянная t,

Нет собственного подмножества имеющего первые два свойства.

Поскольку область притяжения содержит открытое множество, содержащее А, каждая точка, что достаточно близка к А притягивается к А. Определение аттрактора использует метрику на фазовом пространстве, но в результате понятие обычно зависит только от топологии фазового пространства.

Существуют многие другие определения аттрактора в литературе. Например, некоторые авторы требуют, чтобы аттрактор имел положительную меру, другие уменьшают силу требования, что B (А)- близлежащая область.

аттракция периодического-3 цикла и его область притяжения. Три самые темные точки являются точками 3-цикла, которые приводят к друг другу в последовательности, и итерации из любой точки в область притяжения приводит к (обычно асимптотической) сходимости этой последовательности в трех точках.

Типы аттракторов

Аттракторы - части или подмножества фазового пространства динамической системы. До 1960-х годов, аттракторы не мыслились как простые геометрические подмножества фазового пространства, как точки, линии, поверхности и объемы. Более сложные аттракторы, которые не могут быть классифицированы как простых геометрические подмножества, такие как топологические множества, были известны в то время, но принимали их за хрупкие аномалии. Стивен Смейл смог показать, что его подкова (Подкова Смейла - предложенный Стивом Смейлом пример динамической системы, имеющей бесконечное число периодических точек (и хаотическую динамику), причём это свойство не разрушается при малых возмущениях системы) была надежной и, что его аттрактор был подобен структуре множества Кантора. Два простых аттрактора - фиксированная точка и предельный цикл. Аттракторы могут принимать множество других геометрических фигур (фазовые подмножества). Но когда эти множества (или движения в них) не могут быть легко описаны как простые комбинации (например пересечение и объединение) фундаментальных геометрических объектов (например, линий, поверхностей, шаров, тороидов, коллекторы), то аттрактор называется странным аттрактором.

Аттракторы классифицируют по:

  1. Формализации понятия стремления: различают максимальный аттрактор, неблуждающее множество, аттрактор Милнора, центр Биркгофа, статистический и минимальный аттрактор.
  2. Регулярности самого аттрактора: аттракторы делят на регулярные (притягивающая неподвижная точка, притягивающая периодическая траектория, многообразие) и странные (нерегулярные - зачастую фрактальные и/или в каком-либо сечении устроенные как канторово множество; динамика на них обычно хаотична).
  3. Локальности («притягивающее множество») и глобальности (здесь же - термин «минимальный» в значении «неделимый»).

Предельным циклом является периодическая орбита системы, которая изолирована. Примеры включают маятник часов, схему настройки радио и сердцебиения во время отдыха. (Предельный цикл идеального маятника не пример аттрактора предельного цикла, потому что ее орбиты не изолированы: в фазовом пространстве идеального маятника, недалеко от любой точки периодической орбиты есть еще один момент, который принадлежит другой периодической орбите.

фазовый портрет Ван-дер-Поля: аттракция предельного цикла

Предельный тор

Может быть больше, чем одна частота периодической траектории системы через состояние предельного цикла. Например, в физике, одна частота может диктовать скорость, с которой планета вращается вокруг звезды в то время как вторая частота описывает колебания расстояния между этими двумя телами. Если две из этих частот образуют иррациональную фракцию (т.е. они несоизмеримы), траектория больше не закрывается, а предельный цикл становится предельным тором. Этот вид аттрактора называется Nt -тор , если есть Nt - несоизмеримые частоты. Например вот 2-тор:

Временной ряд, соответствующий этому аттрактору - квазипериодический серия: дискретность проб сумм Nt- периодических функций (не обязательно синус волны) с несоизмеримыми частотами. Такой временной ряд не имеет строгую периодичность, но его спектр мощности еще состоит только из резких линий.

Странный аттрактор

Аттрактор называется странным , если он имеет фрактальную структуру . Это часто бывает, когда динамика на нем хаотична, но существуют также странные аттракторы, которые не хаотичны. Этот термин был придуман Дэвидом Рюэлем и Флорисом Такенсом, которые описали аттрактор, возникший в результате серии бифуркаций системы, описывающей поток жидкости. Странные аттракторы часто дифференцируемы в нескольких направлениях, но некоторые из них, такие как пыль Кантора, не дифференцируемы. Странные аттракторы также могут быть найдены в присутствии шума, где они могут быть размещены для поддержки инвариантных случайных вероятностных мер типа Синай-Рюэля-Боуэна. Примеры странных аттракторов включают в себя , аттрактор Хенона , Rössler аттрактор , и аттрактор Лоренца .

Дважды прокрученный аттрактор

аттрактор Лоренца

Частные уравнения

Параболические уравнения в частных производных могут иметь конечномерные аттракторы. Диффузная часть уравнения гасит высокие частоты, а в некоторых случаях приводит к глобальному аттрактору. Гинзбурга-Ландау, Курамото-Сивашинского, и двумерные, вынужденные уравнения Навье-Стокса как известно, приводят к глобальным аттракторам конечной размерности. Для трехмерного несжимаемого уравнения Навье-Стокса с периодическими граничными условиями, если оно имеет глобальный аттрактор, то это аттрактор будет конечных размеров.

С вычислительной точки зрения, аттракторы можно естественно рассматривать как самовозбуждающиеся аттракторы или скрытые аттракторы. Самовозбуждающиеся аттракторы могут быть локализованы численно при стандартных вычислительных процедурах, в которых после переходной последовательности, начинается траектория с точки на неустойчивом многообразии в малой области неустойчивого равновесия достигаемого аттрактором (как классических аттракторов в Ван дер Поля, Белоусова-Жаботинского, Лоренца и многих других динамических систем). В противоположность этому, область притяжения скрытого аттрактора не содержит области равновесия, поэтому скрытый аттрактор не может быть локализован с помощью стандартных вычислительных процедур.

Хаотичный скрытый аттрактор (зеленый домен) в системе Чуа. Траектории с начальными данными в окрестности двух точек (синий), как правило (красная стрелка) к бесконечности или, как правило (черная стрелка) к точке равновесия стабильного нуля (оранжевый).

Софтом , генерирующим странные аттрактору по праву можно считать Chaoscope , являющимся 3D –визуализатором странных аттракторов. Является бесплатной, работающих на платформе Windows.

Онлайн генератор странных аттракторов: http://wokos.nethium.pl/attractors_en.net

Обычно говорят, что хаос является более высокой формой порядка, однако более правильно считать хаос другой формой порядка — с неизбежностью в любой динамической системе за порядком в обычном его понимании следует хаос, а за хаосом порядок. Если мы определим хаос как беспорядок, то в таком беспорядке мы обязательно сможем увидеть свою, особенную форму порядка.

Например, дым от сигарет сначала поднимается в виде упорядоченного столба под влиянием внешней среды принимает все более причудливые очертания, а его движения становятся хаотичными. Еще один пример хаотичности в природе — лист с любого дерева . Можно утверждать, что вы найдете много похожих листов, например дуба, однако ни одной пары одинаковых писем. Разница определена температурой, ветром, влажностью и многими другими внешними факторами, кроме чисто внутренних причин (например, генетической разницей).

Теория хаоса

Движение от порядка к хаосу и обратно, по всей видимости, является сущностью Вселенной, способствующие проявлению ее мы не изучали. Даже в человеческом мозгу одновременно присутствует упорядоченное и хаотическое начала.

Первое отвечает левому полушарию мозга, а второе — правому. Левое полушарие отвечает за сознательное поведение человека, за выработку линейных правил и стратегий в поведении человека, где четко определяется «если …, то …». В правом же полушарии царит нелинейность и хаотичность. Интуиция является одним из проявлений правого полушария мозга.

Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.

История теории хаоса

Первые элементы теории хаоса появились еще в XIX веке, однако настоящий научное развитие эта теория получил во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B . Mandelbrot).

Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды.

К работе Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас . Лаплас заявил, что «… если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в или прошлом в будущем ».

Этот его подход был очень похож на известные слова Архимеда: «Дайте мне точку опоры, и я переверну весь мир». Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации о всех частицы во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас полагал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре . В 1903 году он сказал: «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение того же Вселенной в последующий момент.

Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам нужно, и мы могли бы сказать, что явление было предсказано, что оно управляется законами.

Но это не всегда так может случиться, что малые различия в начальных условиях вызывают очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, развивающийся по воле случая ».

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности .

Этот принцип объясняют, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

Инструменты теории хаоса

Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы.

Аттрактор (от англ. To attract — притягивать) — геометрическая структура, характеризующая поведение в фазовом пространстве в конце длительного времени.

То есть аттрактор — это то, к чему стремится прийти система, к чему она притягивается.

Простейшим типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку.

Следующим типом аттрактора является предельный цикл, имеющий вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой.

Третий тип аттрактора — тор. На рисунке 1 тор показан в верхнем правом углу.

Рисунок 1 — Основные типы аттракторов

Вверху показаны три предсказуемых, простых аттрактора. Внизу три хаотических аттрактора.

Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно прогнозировать его. И хотя пребывание системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы.

Аттрактора Лоренца

Первым хаотической аттрактором стал аттрактора Лоренца.

Рисунок 2 — Хаотический аттрактор Лоренца

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы — три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет псевдослучайных (хаотическим) образом.

Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения — разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциального накопления ошибок и соответственно их стохастическом разногласия.

Вместе с тем, любой аттрактор имеет граничные размеры, поэтому экспоненциальная расхождение двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее очень маловероятно. Кстати, совпадение траекторий является правилом поведения простых предсказуемых аттракторов.

Сходимость-расхождение (говорят также, составление и вытягивание соответственно) хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой. При восхождении траектории сближаются и начинает проявляться эффект близорукости — возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации.

В результате постоянной сходимости-расхождения хаотического аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы. То, чем так гордится наука — способностью устанавливать связи между причинами и следствиями — в хаотических системах невозможно. Причинно-следственной связи между прошлым и будущем в хаосе нет.

Здесь же необходимо отметить, что скорость сходимости-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора.



Понравилась статья? Поделитесь с друзьями!