Дрейф заряженных частиц. А

Полная скорость движения заряженной частицы в электрическом поле имеет две составляющие: скорость теплового хаотического движения w и направленную скорость под действием поля u .

. (1.5)

Д

Рис. 1.1. Скорость дрейфа электронов в воздухе в зависимости от приведенной

напряженности электрического поля

ля совокупности заряженных частиц рассматривается средняя скорость всех частиц. Средняя скорость направленного движенияw носит название скорости дрейфа . Как показывают экспериментальные данные, эта скорость зависит от отношения Е /n , где n  плотность молекул газа, и от сорта газа. При этом скорость дрейфа электронов существенно выше скорости дрейфа ионов.

На рис.1.1 приведена зависимость скорости дрейфа электронов в воздухе от значений Е /n .

В общем случае скорость дрейфа

, (1.6)

где k  носит название подвижности . Особенностью этой величины является то, что и для ионов, и для электронов существует широкая область значений напряженности, при которых в воздухе значения подвижности почти постоянны.

Для ионов в области значений поля, соответствующих развитию разряда, и при нормальных условиях газа значения подвижности в воздухе составляют К и  = 2,0 см 2 /Вс и К и  = 2,2 см 2 /Вс.

Для электронов К э = (45)10 2 см 2 /Вс, что, как видно, на два порядка выше, чем у ионов.

1.4. Коэффициент ударной ионизации

Этот коэффициент является самой важной характеристикой, используемой в теории газового разряда и определяющей основную реакцию, приводящую к развитию разряда. Ударная ионизация может быть представлена реакцией вида

e + M  M + + 2e,

где M  атом или молекула газа.

Коэффициент ударной ионизации равен числу актов ионизации, осуществляемых одним электроном на пути в 1 см вдоль поля. Энергия ионизации  W и, для большинства газов составляет 1220 эВ:

Энергия ионизации, эВ

Коэффициент ударной ионизации, обозначаемый обычно и называемый еще первым коэффициентом ударной ионизации Таунсенда, определяется по увеличению тока в промежутке между электродами в результате ионизации молекул газа при столкновениях с электронами. Процесс ионизации ведет к образованию новых свободных электронов. Эти свободные электроны, в свою очередь, приобретают энергию поля, достаточную для ионизации, то есть для образования новых электронов. Ток, протекающий в промежутке с однородным полем, возрастает и дается выражением

, (1.7)

где d  длина промежутка (в сантиметрах), а i 0  начальное значение тока.

Так как ионизация происходит при энергии электрона W W и, а энергия, приобретаемая электроном, зависит от поля и от длины пути свободного пробега, определяемой плотностью газа, то и вероятность ионизации, а следовательно и коэффициент должны зависеть от поля и от концентрации молекул газа n или его давления р . Эксперименты подтверждают, что действительно имеется зависимость /n = f (Е /n ) или /р = f (Е /р ), причем при давлениях газа порядка атмосферного эта зависимость хорошо описывается уравнением вида

, (1.8)

где где А и В  константы, зависящие от газа.

На рис. 1.2 приведена экспериментальная зависимость /n = f (Е /n ) для воздуха. Отношение E /n часто называют приведенной напряженностью поля.

К

Рис. 1.2. Зависимости коэффициентов ионизации и прилипания и эффективного коэффициента ионизации в воздухе от E / n

ак видно по рисунку, возрастание/n с ростом приведенной напряженностиE /n становится менее интенсивным, что связано с двумя факторами: если увеличениеE /n происходит за счет роста напряженности поляЕ при неизменной плотности газаn , то с возрастанием энергии свободных электронов при их движении, уменьшается время взаимодействия при их столкновениях с молекулами, что приводит к уменьшению скорости роста вероятности ионизации; если ростE /n связан с уменьшениемn , то уменьшается число молекул, с которыми сталкивается электрон, а, следовательно, уменьшается и число столкновений, что означает изменение.

Лекция № 3.
Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант. Движение в скрещенных электрическом и магнитном полях. Общий случай скрещенных поля любой силы и магнитного поля.
III. Дрейфовое движение заряженных частиц
§3.1. Движение в скрещенных однородных полях.
Рассмотрим движение заряженных частиц в скрещенных полях
в дрейфовом приближении. Дрейфовое приближение применимо в случае, если можно выделить некоторую одинаковую для всех частиц одного сорта постоянную скорость дрейфа, не зависящую от направления скоростей частиц:
, где
- скорость дрейфа. Покажем, что это можно сделать для движения заряженных частиц в скрещенных
полях. Как было показано ранее, магнитное поле не влияет на движение частиц в направлении магнитного поля. Поэтому скорость дрейфа может быть направлена только перпендикулярно магнитному, т. е. пусть:
, причем
, где
. Уравнение движения:
(по-прежнему в СГС пишем множитель ). Тогда для поперечной составляющей скорости:
, подставляем разложение через скорость дрейфа:
, т.е.
. Заменим это уравнение на два для каждой компоненты и с учетом
, т.е.,
, получим уравнение для скорости дрейфа:
. Домножим векторно на магнитное поле, получим:
. С учетом правила , получим
, откуда:

- скорость дрейфа. (3.1)

.
Скорость дрейфа не зависит от знака заряда и от массы, т.е. плазма смещается как целое. Из соотношения (3.1) видно, что при
скорость дрейфа становится больше скорости света, а значит, теряет смысл. И дело не в том, что необходимо учитывать релятивистские поправки. При
будет нарушено условие дрейфового приближения. Условие дрейфового приближения для дрейфа заряженных частиц в магнитном поле заключается в том, что влияние силы, вызывающей дрейф, должно быть незначительно в течение периода обращения частицы в магнитном поле, только в этом случае скорость дрейфа будет постоянна. Это условие можно записать в виде:
, откуда получим условие применимости дрейфового движения в
полях:
.

Для определения возможных траекторий заряженных частиц в
полях рассмотрим уравнение движения для вращающейся компоненты скорости :
, откуда
. Пусть плоскость (x ,y ) перпендикулярна магнитному полю. Вектор вращается с частотой
(электрон и ион вращаются в разные стороны) в плоскости (x ,y ), оставаясь постоянным по модулю.

Если начальная скорость частицы попадет в этот круг, то частица будет двигаться по эпициклоиде.

Область 2. Окружность, задаваемая уравнением
, соответствует циклоиде. При вращении вектора вектор скорости на каждом периоде будет проходит через начало координат, то есть, скорость будет равна нулю. Эти моменты соответсвуют точкам в основании циклоиды. Траектория аналогична той, что описывает точка, находящаяся на ободе колеса радиуса
. Высота циклоиды равна , то есть пропорциональна массе частицы, поэтому ионы будут двигаться по гораздо более высокой циклоиде, чем электроны, что не соответствует схематическому изображению на рис.3.2.

Область 3. Область вне круга, в которой
, соответсвует трохоиде с петлями (гипоциклоида), высота которой
. Петли соответствуют отрицательным значениям компоненты скорости , когда частицы движутся в обратном направлении.

Область 4: Точка
(
) соответсвует прямой. Ели запустить частицу с начальной скоростью
, то сила действие электрической и магнитной силы в каждый момент времени уравновешено, поэтому частица движется прямолинейно. Можно представить, что все эти траектории соответствуют движению точек находящихся на колесе радиуса
, поэтому для всех траекторий продольный пространственный период
. За период
для всех траекторий происходит взаимная компенсация действия электрического и магнитного поля. Средняя кинетическая энергия частицы остается постоянной
. Важно еще раз отметить, что


Рис. 3.2. Характерные траектории частиц в
полях: 1) трохоида без петель; 2) циклоида; 3) трохоида с петлями; 4) прямая.
не зависимо от траектории, скорость дрейфа одинакова, следовательно, плазма в
полях дрейфует как целое в направлении, перпендикулярном полям. В случае невыполнения условия дрейфового приближения, то есть при
действие электрического поля не компенсируется действием магнитного, поэтому частица переходит в режим непрерывного ускорения (рис.3.3). Направляющая движения будет являться параболой. В случае наличия у электрического поля продольной (вдоль магнитного поля) составляющей дрейфовое движение также нарушается, и заряженная частица будет ускоряться в направлении, параллельном магнитному полю. Направляющая движения будет также параболой.

Все выводы, сделанные выше, верны, если вместо электрической силы
использовать произвольную силу , действующую на частицу, причем
. Скорость дрейфа в поле произвольной силы:

(3.2)

зависит от заряда. Например, для гравитационной силы
:
- скорость гравитационного дрейфа.

§3.2. Дрейфовое движение заряженных частиц в неоднородном магнитном поле.

Если магнитное поле медленно меняется в пространстве, то движущаяся в нем частица совершит множество ларморовских оборотов, навиваясь на силовую линию магнитного поля с медленно меняющимся ларморовским радиусом. Можно рассматривать движение не собственно частицы, а её мгновенного центра вращения, так называемого ведущего центра. Описание движения частицы как движение ведущего центра, т.е. дрейфовое приближение, применимо, если изменение ларморовского радиуса на одном обороте будет существенно меньше самого ларморовского радиуса. Это условие, очевидно, будет выполнено, если характерный пространственный масштаб изменения полей будет значительно превышать ларморовский радиус:
, что равносильно условию:
. Очевидно, это условие выполняется тем лучше, чем больше величина напряженности магнитного поля, так как ларморовский радиус убывает обратно пропорционально величине магнитного поля. Рассмотрим некоторые случаи, представляющие общий интерес, так как к ним можно свести многие виды движения заряженных частиц в неоднородных магнитных полях.


п. 3.2.1. Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.

Рассмотрим задачу о движении заряженной частицы в магнитном поле со скачком, слева и справа от плоскости которого магнитное поле однородно и одинаково направлено, но имеет разную величину (см. рис. 3.5), пусть справа будет H 2 > H 1 . При движении частицы её ларморовская окружность пересекает плоскость скачка. Траектория состоит из ларморовских окружностей с переменным ларморовским радиусом, в результате чего происходит «снос» частицы вдоль плоскости скачка. Как видно из рисунка 3.5, дрейф перпендикулярен направлению магнитного поля и его градиента, причем, разноименно заряженные частицы дрейфуют в разные стороны. Пусть для простоты частица пересекает плоскость скачка по нормали. Тогда за время, равное сумме ларморовских полупериодов




Рис.3.5. Градиентный дрейф на границе со скачком величины магнитного поля.


для области слева и справа:
частица смещается вдоль этой плоскости на длину

.

Скорость дрейфа можно определить как

. где H H 2 H 1  величина скачка магнитного поля, а H  H 2 + H 1   его среднее значение.

Дрейф возникает и том случае, когда слева и справа от некоторой плоскости магнитное поле по величине не меняется, но изменяет направление (см. рис.3.6). Слева и справа от границы частицы вращаются по ларморовским окружностям одинакового радиуса, но с противоположным направлением вращения. Дрейф возникает, когда ларморовская окружность пересекает плоскость раздела. Пусть пересечение плоскости слоя частицей происходит по нормали, тогда ларморовскую окружность следует «разрезать» вдоль






Рис.3.6. Градиентный дрейф при смене направления магнитного поля

вертикального диаметра и затем, правую половину следует отразить зеркально вверх для электрона, и вниз для иона, как это изображено на рис.3.6. При этом за ларморовский период смещение вдоль слоя, очевидно, составляет два ларморовских диаметра, так что скорость дрейфа для этого случая:
.


§3.3. Дрейф в магнитном поле прямого тока.
Дрейф заряженных частиц в неоднородном магнитном поле прямого проводника тока связан, прежде всего с тем, что магнитное поле обратно пропорционально расстоянию от тока, поэтому будет существовать градиентный дрейф движущейся в нем заряженной частицы. Кроме этого дрейф связан с кривизной магнитных силовых линий. Рассмотрим две составляющие этой силы, вызывающей дрейф, и соответственно получим две составляющие дрейфа.
п. 3.3.1. Диамагнитный (градиентный) дрейф.
Механизм градиентного дрейфа состоит в том, что частица имеет различные радиусы вращения в разных точках траектории: часть времени она проводит в более сильном поле, часть в более слабом поле. Изменение радиуса вращения и создает дрейф (рис.3.7). Вращающуюся вокруг силовой линии заряженную частицу можно рассматривать как магнитный диполь эквивалентного кругового тока. Выражение для скорости градиентного дрейфа можно получить из известного выражения для силы, действующей на магнитный диполь в неоднородном поле:
- диамагнитная сила, выталкивающая магнитный диполь из сильного поля, где
,
, где поперечная к магнитному полю составляющая кинетической энергии частицы. Для магнитного поля, как можно показать, справедливо соотношение:
, где R кр - радиус кривизны силовой линии, - единичный вектор нормали.





Скорость диамагнитного (градиентного) дрейфа, где - бинормаль к силовой линии. Направление дрейфа по бинормали различно для электронов и ионов.

Лекция № 3.

Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант. Движение в скрещенных электрическом и магнитном полях. Общий случай скрещенных поля любой силы и магнитного поля.

III. Дрейфовое движение заряженных частиц

§3.1. Движение в скрещенных однородных полях.

Рассмотрим движение заряженных частиц в скрещенных полях в дрейфовом приближении. Дрейфовое приближение применимо в случае, если можно выделить некоторую одинаковую для всех частиц одного сорта постоянную скорость дрейфа, не зависящую от направления скоростей частиц:
, где
- скорость дрейфа. Покажем, что это можно сделать для движения заряженных частиц в скрещенных
полях. Как было показано ранее, магнитное поле не влияет на движение частиц в направлении магнитного поля. Поэтому скорость дрейфа может быть направлена только перпендикулярно магнитному, т. е. пусть:
, причем
, где
. Уравнение движения:
(по-прежнему в СГС пишем множитель). Тогда для поперечной составляющей скорости:
, подставляем разложение через скорость дрейфа:
, т.е.
. Заменим это уравнение на два для каждой компоненты и с учетом
, т.е.,
, получим уравнение для скорости дрейфа:
. Домножим векторно на магнитное поле, получим:
. С учетом правила, получим
, откуда:

- скорость дрейфа. (3.1)

.

Скорость дрейфа не зависит от знака заряда и от массы, т.е. плазма смещается как целое. Из соотношения (3.1) видно, что при
скорость дрейфа становится больше скорости света, а значит, теряет смысл. И дело не в том, что необходимо учитывать релятивистские поправки. При
будет нарушено условие дрейфового приближения. Условие дрейфового приближения для дрейфа заряженных частиц в магнитном поле заключается в том, что влияние силы, вызывающей дрейф, должно быть незначительно в течение периода обращения частицы в магнитном поле, только в этом случае скорость дрейфа будет постоянна. Это условие можно записать в виде:
, откуда получим условие применимости дрейфового движения в
полях:
.

Для определения возможных траекторий заряженных частиц в
полях рассмотрим уравнение движения для вращающейся компоненты скорости:
, откуда
. Пусть плоскость (x ,y ) перпендикулярна магнитному полю. Векторвращается с частотой
(электрон и ион вращаются в разные стороны) в плоскости (x ,y ), оставаясь постоянным по модулю.

Если начальная скорость частицы попадет в этот круг, то частица будет двигаться по эпициклоиде.

Область 2. Окружность, задаваемая уравнением
, соответствует циклоиде. При вращении векторавектор скорости на каждом периоде будет проходит через начало координат, то есть, скорость будет равна нулю. Эти моменты соответсвуют точкам в основании циклоиды.Траектория аналогична той, что описывает точка, находящаяся на ободе колеса радиуса
. Высота циклоиды равна, то есть пропорциональна массе частицы, поэтому ионы будут двигаться по гораздо более высокой циклоиде, чем электроны, что не соответствует схематическому изображению на рис.3.2.

Область 3. Область вне круга, в которой
, соответсвует трохоиде с петлями (гипоциклоида), высота которой
. Петли соответствуют отрицательным значениям компоненты скорости, когда частицы движутся в обратном направлении.

Область 4: Точка
(
) соответсвует прямой. Ели запустить частицу с начальной скоростью
, то сила действие электрической и магнитной силы в каждый момент времени уравновешено, поэтому частица движется прямолинейно. Можно представить, что все эти траектории соответствуют движению точек находящихся на колесе радиуса
, поэтому для всех траекторий продольный пространственный период
. За период
для всех траекторий происходит взаимная компенсация действия электрического и магнитного поля. Средняя кинетическая энергия частицы остается постоянной
. Важно еще раз отметить, что

Рис. 3.2. Характерные траектории частиц в
полях: 1) трохоида без петель; 2) циклоида; 3) трохоида с петлями; 4) прямая.

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

В плазме, относительно медленное направленное перемещение заряж. ч-ц (эл-нов и ионов) под действием разл. причин, налагающихся на осн. движение (закономерное или беспорядочное). Напр., осн. движение заряж. ч-цы в однородном магн. поле в отсутствии столкновений - вращение с циклотронной частотой. Наличие др. полей искажает это движение; так, совместное действие электрич. и магн. полей приводит к т. н. электрическому Д. з. ч. в направлении, перпендикулярном Е и H, со скоростью не зависящей от массы и заряда ч-цы.

На циклотронное вращение может также накладываться т. н. градиентный дрейф, возникающий из-за неоднородности магн. поля и направленный перпендикулярно H и DH (DH - градиент поля).

Д. з. ч., распределённых в среде неравномерно, может возникать вследствие их теплового движения в направлении наибольшего спада концентрации (см. ДИФФУЗИЯ) со скоростью vD=-Dgradn/n , где gradn - градиент концентраций n заряж. ч-ц; D - коэфф. диффузии.

В случае, когда действует неск. факторов, вызывающих Д. з. ч., напр, электрич. поле и градиент концентраций, скорости дрейфа, вызываемые в отдельности полем, vE и vD складываются.

  • - движение заряж. частиц внутри монокристалла вдоль "каналов", образованных параллельными рядами атомов или плоскостей...

    Физическая энциклопедия

  • - снос корабля с курса под влиянием ветра и течений...

    Словарь ветров

  • - медленное направленное движение заряженных частиц в среде под внеш. воздействием, напр. электрич. полей...
  • - движение протонов, электронов и др. заряженных частиц, попавших в монокристалл, вдоль "каналов", образованных параллельными рядами атомов или кристаллографич. плоскостями...

    Естествознание. Энциклопедический словарь

  • - устройство, предназначенное для получения пучков заряженных частиц высоких энергий; в медицинской радиологии используется для лучевой терапии и производства определенных радиоактивных нуклидов...

    Большой медицинский словарь

  • - установки для получения направл. пучков электронов, протонов, альфа-частиц или ионов с энергией от сотен кэВ до сотен ГэВ. В У. з. ч. ускоряемые заряж...

    Большой энциклопедический политехнический словарь

  • - относительно медленное направленное перемещение заряженных частиц под действием различных причин, налагающееся на основное движение...
  • - в кристаллах, движение частиц вдоль «каналов», образованных параллельными друг другу рядами атомов. При этом частицы испытывают скользящие столкновения с рядами атомов, удерживающих их в этих «каналах» ...

    Большая Советская энциклопедия

  • - кристаллах, движение частиц вдоль «каналов», образованных параллельными друг другу рядами атомов. При этом частицы испытывают скользящие столкновения с рядами атомов, удерживающих их в этих «каналах» ...

    Большая Советская энциклопедия

  • - накопительные кольца, элемент ускорителей заряженных частиц со встречными пучками...

    Большая Советская энциклопедия

  • - приборы для регистрации заряженных частиц. К ним относятся: Счётчик ионов, Гейгера-Мюллера счётчик, Пропорциональный счётчик, Сцинтилляционный счётчик и некоторые др. Детекторы ядерных излучений...

    Большая Советская энциклопедия

  • Большая Советская энциклопедия

  • - Ускорение заряженных частиц в современных ускорителях происходит благодаря взаимодействию заряда частицы с внешним электромагнитным полем...

    Большая Советская энциклопедия

  • - устройства для получения заряженных частиц больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом...

    Большая Советская энциклопедия

  • - медленное направленное движение заряженных частиц в среде под внешним воздействием, напр. электрических полей...

    Большой энциклопедический словарь

  • - ...

    Русский орфографический словарь

"ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ" в книгах

ДРЕЙФ ГЕНОВ

Из книги Эволюция автора Дженкинс Мортон

ДРЕЙФ ГЕНОВ Иногда эта концепция называется «эффект Сьюэлла - Райта», в честь предложивших ее двух популяционных генетиков. После того как Мендель доказал, что гены являются единицами наследственности, а Харди и Вайнберг продемонстрировали механизм их поведения,

ДРЕЙФ МАТЕРИКОВ

Из книги Эволюция автора Дженкинс Мортон

ДРЕЙФ МАТЕРИКОВ В 1912 году немецкий ученый Альфред Вегенер предположил, что около 200 миллионов лет назад все материки Земли составляли единый массив суши, который он назвал Пангеей. В последующие 200 миллионов лет Пангея разделилась на несколько материков, которые стали

48. Дрейф

Из книги Мэрилин Монро. Тайна смерти. Уникальное расследование автора Реймон Уильям

48. Дрейф «Существует только один действенный способ скрыть след укола: достаточно ввести иглу в какую-нибудь гематому, потому что синяк сразу же скроет микроскопический след на коже. В своем отчете о проведении вскрытия доктор Ногуши отметил наличие (…) того, что может

Дрейф?

Из книги Адрес - Лемурия? автора Кондратов Александр Михайлович

Дрейф? И все-таки ни гипотезы о «мостах» суши, связывавших между собою континенты, ни предположение о «внутренних морях» сверхматерика Гондваны не могут ответить на множество вопросов, возникающих в связи с «гондванским оледенением», расселением растений и животных и

Ускорители заряженных частиц

Из книги 100 великих чудес техники автора Мусский Сергей Анатольевич

Ускорители заряженных частиц У современной физики есть испытанное средство проникать в тайны атомного ядра – обстрелять его частицами или облучить и посмотреть, что с ним произойдет. Для самых первых исследований атома и его ядра хватало энергии излучений, возникающих

Каналирование заряженных частиц в

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Дрейф заряженных частиц

Из книги Большая Советская Энциклопедия (ДР) автора БСЭ

Накопители заряженных частиц

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

Счётчики заряженных частиц

Из книги Большая Советская Энциклопедия (СЧ) автора БСЭ

Ускорения заряженных частиц коллективные методы.

БСЭ

Ускорители заряженных частиц

Из книги Большая Советская Энциклопедия (УС) автора БСЭ

Из книги Современный русский язык. Практическое пособие автора Гусева Тамара Ивановна

6.86. Правописание предлогов, союзов и частиц; правописание сложных предлогов и предложных сочетаний; правописание союзов зато, также, тоже, чтобы в отличие от сочетаний за то, так же, то же, что бы; раздельное и дефисное написание частиц; разделение частиц не и ни при

Ускорители заряженных частиц

Из книги 100 знаменитых изобретений автора Пристинский Владислав Леонидович

Ускорители заряженных частиц Для исследования атомного ядра его обстреливали или облучали элементарными частицами, наблюдая за последствиями. Сначала достаточно было и энергии, возникающей при естественном распаде радиоактивных элементов.Вскоре этой энергии

В ДРЕЙФ

Из книги С намерением оскорбить (1998-2001) автора Перес-Реверте Артуро

4.12. ДИНАМИКА СВОБОДНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ И ТЕЛ В ЭМП

Из книги История электротехники автора Коллектив авторов

4.12. ДИНАМИКА СВОБОДНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ И ТЕЛ В ЭМП Длительный период исследования взаимодействия заряженных частиц и ЭМП носили академический характер и представляли интерес только с точки зрения дополнительного развития теории ЭМП. Однако для ТЭ даже эти разработки

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

В плазме, относительно медленное направленное заряж. ч-ц (эл-нов и ионов) под действием разл. причин, налагающихся на осн. (закономерное или беспорядочное). Напр., осн. движение заряж. ч-цы в однородном магн. в отсутствии столкновений - вращение с циклотронной частотой. Наличие др. полей искажает это движение; так, совместное электрич. и магн. полей приводит к т. н. электрическому Д. з. ч. в направлении, перпендикулярном Е и H, со скоростью не зависящей от массы и заряда ч-цы.

На циклотронное вращение может также накладываться т. н. градиентный дрейф, возникающий из-за неоднородности магн. поля и направленный перпендикулярно H и DH (DH - градиент поля).

Д. з. ч., распределённых в среде неравномерно, может возникать вследствие их теплового движения в направлении наибольшего спада концентрации (см. ДИФФУЗИЯ) со скоростью vD=-Dgradn/n , где gradn - градиент концентраций n заряж. ч-ц; D - коэфф. диффузии.

В случае, когда действует неск. факторов, вызывающих Д. з. ч., напр, электрич. поле и градиент концентраций, скорости дрейфа, вызываемые в отдельности полем, vE и vD складываются.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ

- относительно медленное направленное перемещение заряж. частиц под действием разл. причин, налагающееся на их осн. движение (закономерное или беспорядочное). Напр., электрич. в к.-л. среде (металлы , газы, полупроводники, электролиты) происходит под действием сил электрич. поля и обычно накладывается на тепловое (беспорядочное) движение частиц. Тепловое движение не образует макроскопич. потока, даже если средняя v этого движения гораздо больше скорости дрейфа v д. Отношение v д /v характеризует степень направленности движения заряж. частиц и зависит от рода среды, рода заряженных частиц и интенсивности факторов, вызывающих дрейф. Д. з. ч. может возникать и при неравномерном распределении концентрации заряженных частиц ( диффузия), при неравномерном распределении скоростей заряженных частиц (термодиффузия).
Дрейф заряженных частиц в плазме. Для плазмы, обычно находящейся в магн. поле, характерен Д. з. ч. в скрещенных магнитном и к.-л. другом (электрич., гравитационном) полях. Заряж. частица, находящаяся в однородном магн. поле при отсутствии др. сил, описывает т. н. ларморовскую окружность с радиусом r Н =v/ w H =cmv /ZeH. Здесь Н - напряжённость магн. поля, е, т и v - заряд, и скорость частицы, w H =ZeH/mc - ларморовская (циклотронная) частота. Магн. поле считается практически однородным, если оно мало меняется на расстоянии порядка r H . При наличии к.-л. внеш. сил F (электрич. гравитац., градиентных) на быстрое ларморовское вращение накладывается плавное смещение орбиты с пост. скоростью в направлении, перпендикулярном к магн. полю, и действующей силе. Скорость дрейфа

Т. к. в знаменателе выражения стоит заряд частицы, то, если F действует одинаково на ионы и электроны, они будут дрейфовать под действием этой силы в противоположных направлениях (дрейфовыйток). Дрейфовый ток, переносимый частицами данного сорта:В зависимости от рода сил различают неск. типов Д. з. ч.: электрич., поляризац., гравитац., градиентный. Электрическим дрейфом наз. Д. з. ч. в однородном постоянном электрич. поле E, перпендикулярном магн. полю (скрещенные электрич. и магн. поля). Электрич. поле, действующее в плоскости ларморовской окружности, ускоряет движение частицы в тот полупериод ларморовского вращения, когда


Рис. 1. Дрейф заряженной частицы в скрещенных электрическом и магнитном полях. Магнитное поле, направленное в сторону наблюдателя. v дЕ, т. к. составляющая скорости в одном направлении (на рис. 1 движение вниз) больше составляющей скорости при движении в противоположном направлении (движение вверх). Из-за разных радиусов r H на разл. участках орбиты частицы не замкнута в направлении, перпендикулярном Eи H, т. е. в этом направлении возникает дрейф. В случае электрич. дрейфа F=ZeE, отсюда v дЕ =c/H 2 , т. е. скорость электрич. дрейфа не зависит ни от знака и величины заряда, ни от массы частицы и одинакова для ионов и электронов по величине и направлению. Т. о., электрич. Д. з. ч. в магн. поле приводит к движению всей плазмы и не возбуждает дрейфовых токов. Однако такие силы, как , центробежная сила, к-рые в отсутствие магн. поля действуют одинаково на все частицы независимо от их заряда, в магн. поле вызывают не дрейфовое движение плазмы в целом, но, заставляя электроны и ионы дрейфовать в разные стороны, приводят к появлению дрейфовых токов. ускорение, то их движение происходит так, как будто на них действовала . При изменении электрич. поля во времени на частицы действует инерционная сила, связанная с изменением (ускорением) электрич. дрейфа F Е =тv дЕ = тс [ Н]/Н 2 . Используя (1), получим выражение для скорости этого дрейфа, называемого поляризационным, v др =mc 2 Е/ZeH 2 . Направление поляризац. Д. з. ч. совпадает с направлением электрич. поля. Скорость поляризац. дрейфа зависит от знака заряда, и это приводит к появлению дрейфового поляризац. тока В скрещенных гравитац. и магн. полях возникает гравитационный дрейф со скоростью v дG = тс /ZeH 2 , где g - ускорение силы тяжести. Т. к. v дG зависит от массы и знака заряда, то возникают дрейфовые токи, приводящие к разделению зарядов в плазме. В результате гравитац. дрейфового движения возникают неустойчивости. F rр, пропорциональной градиенту магн. поля (т. н. градиентный Д. з. ч.). Если частицу, вращающуюся на ларморовской окружности, рассматривать как "магнитик" с магнитным моментом


Рис. 2. Градиентный дрейф. Магнитное поле возрастает вверх. Дрейфовый ток направлен влево.

Скорость градиентного дрейфа

При движении частицы со скоростью v || вдоль искривлённой силовой линии (рис. 3) с радиусом кривизны R


возникает дрейф, обязанный своим происхождением центробежной силе инерции mv 2 || /R (т. н. центробежный дрейф). Скорость

Скорости градиентного и центробежного Д. з. ч. имеют противоположные направления для ионов и электронов, т. е. возникают дрейфовые токи. Здесь необходимо подчеркнуть, что рассматриваемые дрейфы есть именно смещения центров ларморовских окружностей (мало отличающихся от смещений самих частиц) за счёт сил, перпендикулярных магн. полю. Для системы частиц (плазмы) такое различие существенно. Напр., если и темп-pa частиц не зависят от координат, то потока частиц внутри плазмы нет (в полном соответствии с тем, что магн. поле не влияет на максвелловское ), но поток центров есть, если магн. поле неоднородно (градиентный и центробежный дрейфовые токи).


Рис. 4. Дрейф и плазмы в тороидальной ловушке. удержание плазмы в тороидальной магн.. ловушке. Градиентный и центробежный дрейфы в торе, расположенном горизонтально, вызывают вертикальные дрейфовые токи, разделение зарядов и поляризацию плазмы (рис. 4). Возникающее злектрич. поле заставляет уже всю плазму двигаться к наружной стенке тора (т. н. тороидальный дрейф). Лит.: Франк-Каменецкий Д. А., Плазма - четвертое состояние вещества, 2 изд., М., 1963: Брагинский С. И., Явления в плазме, в сб.: Вопросы теории плазмы, в. 1, М., 1063: О Раевский В. Н., Плазма на Земле и в космосе, , К., 1980. С. С. Моисеев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ" в других словарях:

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внешним воздействием, например электрических полей. * * * ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ, медленное (по … Энциклопедический словарь

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внешним воздействием, напр. электрических полей … Большой Энциклопедический словарь

    дрейф заряженных частиц - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN charged particle drift … Справочник технического переводчика

    Относительно медленное направленное перемещение заряженных частиц под действием различных причин, налагающееся на основное движение. Так, например, при прохождении электрического тока через ионизованный газ электроны, помимо скорости их… … Большая советская энциклопедия

    Медленное (по сравнению с тепловым движением) направленное движение заряженных частиц (электронов, ионов и т. д.) в среде под внеш. воздействием, напр. электрич. полей … Естествознание. Энциклопедический словарь

    В электрическом и магнитном полях перемещение частиц в пространстве под действием сил этих полей. Ниже рассмотрены движения частиц плазмы, хотя нек рые положения являются общими и для плазмы твёрдых тел (металлов, полупроводников). Различают… … Физическая энциклопедия

    - (голланд. drift). 1) отклонение корабля от прямого пути. 2) угол между направлением движения и серединой судна; он зависит от устройства судна. 3) положение судна под парусами, расположенными так, что корабль остается на месте немного наклоняясь… … Словарь иностранных слов русского языка

    Частично или полностью ионизованный газ, в котором плотности положит. и отрицат. зарядов практически одинаковы. При сильном нагревании любое в во испаряется, превращаясь в газ. Если увеличивать темп ру и дальше, резко усилится процесс термич.… … Физическая энциклопедия

    Конфигурации магн. поля, способные длительное время удерживать заряж. частицы или плазму в ограниченном объёме. Естеств. М. л. является, напр., магн. поле Земли, захватившее плазму солнечного ветра и удерживающее её в виде радиац. лоясов Земли.… … Физическая энциклопедия

    ПРОЦЕССЫ в плазме неравновесные процессы, приводящие к выравниванию пространственных распределенийпараметров плазмы концентраций, среднемассовой скорости и парциальныхтемп р электронов и тяжёлых частиц. В отличие от П. п. нейтральных частиц … Физическая энциклопедия



Понравилась статья? Поделитесь с друзьями!