Спектр электромагнитных излучений и его применение. Спектр электромагнитного излучения

электромагнитного излучения, упорядоченная по длинам совокупность монохроматических волн, на которую разлагается свет или иное электромагнитное излучение. Типичный пример спектра – хорошо известная всем радуга. Возможность разложения солнечного света на непрерывную последовательность лучей разных цветов впервые экспериментально показал И.Ньютон в 1666. Направив на трехгранную призму узкий пучок света, проникавший в затемненную комнату через маленькое отверстие в ставне окна, он получил на противоположной стене изображение окрашенной полоски с радужным чередованием цветов, которая была названа им латинским словом spectrum . Проводя опыты с призмами, Ньютон пришел к следующим важным выводам: 1) обычный «белый» свет является смесью лучей, каждый из которых имеет свой собственный цвет; 2) лучи разных цветов, преломляясь в призме, отклоняются на различные углы, вследствие чего « белый » свет разлагается на цветные составляющие. Со временем ньютоновская интерпретация природы света завоевала всеобщее признание, поскольку хорошо согласовалась с экспериментальными данными, а сам эксперимент был принят учеными за основу научного подхода к изучению явлений природы.

Видимый свет – это лишь малая часть широкого спектра электромагнитного излучения, включающего радиоволновое, микроволновое, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Каждый вид излучения представляет собой волну из взаимно перпендикулярных электрической и магнитной компонент, периодически меняющихся с определенными частотами (иначе говоря, волна имеет определенную длину). Волны, которые воспринимаются глазом человека, принадлежат видимой области; именно к ней в свое время относился введенный Ньютоном термин «спектр». В современной науке этот термин распространен на весь диапазон электромагнитного излучения.

Спектральные исследования сыграли ключевую роль в познании Вселенной. С их помощью удалось понять строение не только атомов и молекул, но и таких астрофизических объектов, как Солнце, звезды, планеты, и получить подробную информацию об их движении. Разработанная теория спектров и накопленные эмпирические данные позволили создать метод спектрального анализа для качественного и количественного определения состава химических веществ. См. также ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ; РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ; СВЕТ.

Классификация спектров. Все спектры делятся на два основных класса: спектры испускания (или эмиссионные) и спектры поглощения. Каждый класс, в свою очередь, подразделяется на непрерывные (сплошные), полосатые и линейчатые спектры. Поясним эту классификацию на примере видоизмененной схемы опыта Ньютона (которая, заметим, была применена лишь столетие спустя). Основное нововведение в этой схеме состояло в том, что круглое отверстие в ставне было заменено коллиматором – узкой щелью и линзой перед призмой. Вторая линза помещалась за призмой и предназначалась для проецирования спектра на экран, как это делал сам Ньютон в своих более поздних опытах. Если на щель простого спектроскопа (как теперь называется устройство, состоящее из щели, линз и призмы) направить свет от лампы накаливания, то на экране возникает непрерывный спектр со следующим порядком чередования цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Если же щель осветить пламенем, в которое внесена крупинка поваренной соли (хлорида натрия NaCl ), то спектр будет фактически состоять из двух близко расположенных ярких желтых линий. Аналогично, если щель осветить красным светом неоновой рекламной трубки, то на экране появится ряд ярких красных линий. Здесь каждая линия – это изображение щели спектроскопа, образованное светом определенной длины волны, а полученный спектр называется линейчатым спектром испускания. Существуют спектры, состоящие из групп линий, расположенных настолько тесно, что каждая группа выглядит как узкий участок непрерывного спектра. Такие спектры называются полосатыми. Линии Фраунгофера. В 1802, изучая непрерывный спектр Солнца, У.Волластон заметил в нем множество тонких темных линий. Двенадцатью годами позже Й.Фраунгофер, заменив зрительную трубу в спектроскопе Волластона трубой теодолита, точно измерил угловое положение темных линий. В честь него эти линии теперь называются фраунгоферовыми линиями солнечного спектра. См. также СОЛНЦЕ. Исследования Кирхгофа. В 1859 Г.Кирхгоф сформулировал свой знаменитый закон, связывающий поглощение и испускание. Суть его заключается в том, что любое вещество хорошо поглощает излучение именно тех длин волн, которое само интенсивно испускает. На основании этого закона Кирхгоф следующим образом объяснил появление фраунгоферовых линий в непрерывном солнечном спектре. Газ, находящийся во внешних, наиболее холодных слоях солнечной атмосферы, избирательно поглощает из сплошного спектра ярко светящейся фотосферы Солнца излучение тех длин волн, которые соответствуют линиям испускания возбужденного газа. Поэтому на отдельных участках непрерывного солнечного спектра резко падает интенсивность и появляются темные линии.

Одно из самых важных открытий физической оптики состоит в том, что каждый атом и каждая молекула испускают характерный только для них линейчатый спектр. Многие исследователи, работавшие после Фраунгофера, были близки к этому открытию, но лишь Кирхгоф смог четко сформулировать его и применить на практике. Он понял, что характеристические спектры и закон, связывающий поглощение и испускание, позволяют спектральным методом определить химический состав солнечной атмосферы и, более того, что они являются универсальным инструментом, дающим возможность в лабораторных условиях обнаруживать и анализировать различные элементы (так, к примеру, были открыты рубидий и цезий). Его работы, выполненные совместно с Р.Бунзеном, заложили основы современной спектроскопии. См. также СПЕКТРОСКОПИЯ.

СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В соответствии с длинами волн ( l ) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей – от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от l , но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником – инфракрасным. Радиоволны. Электромагнитное излучение с длинами волн примерно от 1 см до 30 000 м составляет радиоволновую часть спектра. Поскольку скорость любого электромагнитного излучения в вакууме составляет 300 000 000 м / с и равна произведению длины волны на частоту ( c = ln ), то радиоволновому интервалу соответствуют частоты примерно от 10 000 герц (Гц, 1Гц = 1 с –1 ) до 30 000 мегагерц (МГц, 1МГц = 10 6 Гц). Излучение таких частот получают с помощью ламповых или полупроводниковых генераторов, а для регистрации применяют резонансные радиосхемы.

Радиоволны используются в основном в системах связи и навигации. В 1932 было открыто радиоволновое излучение нашей Галактики, что в значительной мере стимулировало рождение новой науки – радиоастрономии. Крупного успеха радиоастрономия добилась в 1951, когда были обнаружены радиоволны, испускаемые облаками межзвездного водорода на единственной частоте, отвечающей длине волны около 21 см. В лабораториях радиоспектроскопия широко применяется для исследования атомов и молекул. См. также РАДИОАСТРОНОМИЯ.

Микроволновое излучение. Излучение с длинами волн примерно от 0,5 мм до 30 см (частотный интервал от 600 000 до 1000 МГц) относится к микроволновому диапазону спектра. Для генерации микроволнового излучения применяются специальные электронные лампы (клистроны). Бурное развитие микроволновая техника получила в период Второй мировой войны в связи с резко возросшими требованиями к эффективности средств связи и радиолокации. Микроволновое излучение естественных источников обусловлено главным образом вращением молекул, хотя известны и СВЧ-спектры атомов. Исследование микроволновых вращательных спектров молекул является одни из самых точных методов определения структуры молекул газа. Инфракрасное излучение. Инфракрасное (ИК) излучение было открыто английским астрономом В.Гершелем в 1800. Пользуясь простым термометром, он установил, что тепловое излучение имеет наибольшую интенсивность за пределами видимой области вблизи его красной границы. Инфракрасная область спектра начинается примерно от 0,8 мкм и простирается примерно до 1 мм. Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней ИК-области (до ~ 1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами – детекторами, чувствительными к нагреву инфракрасным излучением.

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте.

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.

Видимая область. Видимой области соответствует диапазон длин волн от 400 нм (фиолетовая граница) до 760 нм (красная граница), что составляет ничтожную часть полного электромагнитного спектра. Источниками видимого света в лаборатории обычно служат раскаленные твердые тела, электрический разряд и лазеры (обычно лазеры на красителях). Перестраиваемые лазеры на красителях позволяют перекрывать большие участки видимого спектра (например, краситель родамин 6 G излучает в интервале 570–660 нм). Наиболее распространенными детекторами видимого излучения являются глаз человека, фотопластинки, фотоэлементы, фотоумножители. Видимые спектры связаны с квантовыми переходами внешних электронов атомов и молекул и содержат важнейшую информацию об их электронной структуре. Ультрафиолетовое излучение. Ультрафиолетовая (УФ) спектральная область была открыта в 1801, когда И.Риттер и У.Волластон, наблюдая солнечный спектр, обнаружили, что наибольшее почернение хлорида серебра вызывается излучением, более коротковолновым, нежели фиолетовое. К УФ-области относится излучение с длинами волн от 10 до 400 нм. УФ-излучение с длинами волн короче 185 нм поглощается воздухом, поэтому приборы для этого диапазона должны быть вакуумными. Поскольку лишь немногие из обычно прозрачных веществ остаются прозрачными для «вакуумного ультрафиолета», в таких приборах применяется отражательная оптика. Для регистрации ультрафиолетового излучения используются специальные фотопластинки и фотоэлектрические детекторы. Большинство УФ-спектров связано с квантовыми переходами внешних электронов атомов и молекул, поэтому УФ-спектроскопия применяется для исследования строения атомов. Рентгеновское излучение. В 1895 было сделано одно из самых важных открытий физики: В.Рентген, изучая электрические разряды в газах, заметил, что бумажный экран, подвергнутый специальной обработке, начинает светиться, если его поднести к работающей газоразрядной трубке, и сделал вывод, что свечение возникает под действием нового, неизвестного проникающего излучения, названного им X -лучами. Из дальнейших экспериментов выяснилось, что X -лучи – это электромагнитное излучение, длинноволновая граница которого перекрывается с вакуумным ультрафиолетом, а коротковолновая составляет малую долю нанометра.

Рентгеновское излучение с непрерывным спектром часто называют тормозным излучением, поскольку оно возникает при замедлении электронов, бомбардирующих анод рентгеновской трубки. См. также РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.

Гамма-излучение. Гамма-излучение отличается от рентгеновского меньшей длиной волны (0,1–10 –6 нм) и своим происхождением. Ядро, получив в результате ядерной реакции избыточную энергию, может оказаться в возбужденном состоянии. Возвращаясь в состояние с более низкой энергией, оно отдает избыточную энергию, испуская гамма-квант. Изучение спектров гамма-излучения позволяет получить важную информацию о строении ядер и ядерных взаимодействиях, подобно тому, как оптические спектры помогают понять строение атомов и молекул и действующие в них силы. ЛИТЕРАТУРА Ельяшевич М.А. Атомная и молекулярная спектроскопия . М., 1962
Собельман И.И. Введение в теорию атомных спектров . М., 1964

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №39

Семинар по теме:

«Спектр электромагнитных излучений»

«Кругом нас, в нас самих, всюду и везде, вечно сменяясь, совпадая и сталкиваясь, идут излучения разной длины волны… Лик Земли ими меняется, ими в значительной мере лепится»

В.И.Вернадский

Клочкова Н.Ф. – учитель физики

Г.Воронеж – 2013г.

Обучающие цели урока:

1.Усвоить следующие элементы неполного опыта учащихся в рамках отдельного урока:

2.Низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи; их применение в жизнедеятельности человека.

3.Систематизировать и обобщить знания об электромагнитных волнах.

Развивающие цели урока:

1.продолжить формирование научного мировоззрения на основе знаний об электромагнитных волнах.

2.показать комплексное решение проблем на основе знаний физики и информатики.

3.способствовать развитию аналитико-синтетического и образного мышления, для чего побуждать учащихся к осмыслению и нахождению причинно-следственных связей. 4.формировать и развивать ключевые компетенции: информационную, организационную, самоорганизационную, коммуникационную.

5.При работе в паре и в группе сформировать такие важные качества и умения школьника, как: желание участвовать в совместной деятельности, уверенность в успехе, ощущение положительных эмоций от совместной деятельности;

умение презентовать себя и свою работу;

умение строить деловые отношения в совместной деятельности на уроке (принимать цель совместной деятельности и сопроводительные указания к ней, разделять обязанности, согласовывать способы достижения результата предложенной цели);

анализировать и оценивать полученный опыт взаимодействия.

Воспитательные цели урока:

1.развивать вкус, акцентируя внимание на оригинальном дизайне презентации с эффектами анимации.

2.воспитывать культуру восприятия теоретического материала с помощью компьютера для получения знаний об истории открытия, свойствах и применении электромагнитных волн

3. воспитание чувства гордости за свою Родину, за отечественных ученых, которые работали в области электромагнитных волн, применили их в жизнедеятельности человека.

Оборудование:

Ноутбук, проектор, электронная библиотека «Просвещение» диск 1 (10-11класс), материалы из интернета.

План урока:

1 . Вступительное слово учителя.

2.Изучение нового материала .

1)Низкочастотное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

2)Радиоволны: история открытия, источники и приемники, свойства и применение.

3)Инфракрасное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

4)Видимое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

5)Ультрафиолетовое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

6)Рентгеновское излучение: история открытия, источники и приемники, свойства и применение.

7)Гамма - излучение: история открытия, источники и приемники, свойства и применение.

Каждая группа дома готовила таблицу:

История открытия

Источники и приемники

Свойства

Применение

Историк изучал и записывал в свою таблицу историю открытия излучения,

Конструктор изучал источники и приемники различных типов излучений,

Теоретик-эрудит изучал характерные свойстваэлектромагнитных волн,

Практик изучал практическое применение электромагнитных излучений в различных сферах деятельности человека.

Каждый учащийся к уроку чертил 7 таблиц, одна из которых дома заполнялась им.

Учитель: Шкала ЭМ излучений имеет два раздела:

1 раздел – излучение вибраторов;

2 раздел – излучение молекул, атомов, ядер.

1 раздел делится на 2 части (диапазона): низкочастотное излучение и радиоволны.

2 раздел содержит 5 диапазонов: инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи.

Мы начинаем изучение с низкочастотных электромагнитных волн, координатору группы 1 предоставляется слово.

Координатор 1:

Низкочастотное электромагнитное излучение -

это электромагнитные волны с длиной волны 10 7 - 10 5 м

,

История открытия:

Впервые обратил внимание на низкочастотные

электромагнитные волны советский физик Вологдин В.П., создатель современной высокочастотной электротехники. Он обнаружил, что при работе индукционных генераторов повышенной частоты возникали электромагнитные волны длиной от 500 метров до 30 км.

Вологдин В.П.

Источники и приемники

Электрические колебания низкой частоты создаются генераторами в электрических сетях частотой 50 Гц, магнитными генераторами повышенной частоты до 200 Гц, а также в телефонных сетях частотой 5000 Гц.

Электромагнитные волны более 10 км называют низкочастотными волнами. С помощью колебательного контура можно получить электромагнитные волны (радиоволны). Это доказывает, что резкой границы между НЧ и РВ нет. НЧ волны генерируются электрическими машинами и колебательными контурами.

Свойства

Отражение, преломление, поглощение, интерференция, дифракция, поперечность (волны с определённым направлением колебаний Е и В называются поляризованными),

Быстрое затухание;

В веществе, которое пронизывает НЧ волны, индуцируются вихревые токи, вызывая глубокое прогревание этого вещества.

Применение

Низкочастотное электромагнитное поле индуцирует вихревые токи, вызывая глубокое нагревание – это индуктотермия. НЧ используется на электростанциях, в двигателях, в медицине.

Учитель: Расскажите о низкочастотном электромагнитном излучении.

Ученики рассказывают.

Учитель: Следующий диапазон – радиоволны, слово предоставляется координатору 2 .

Координатор 2:

Радиоволны

Радиоволны - это электромагнитные волны с длиной волны от нескольких км до нескольких мм и частотой от 10 5 -10 12 Гц.

История открытия

О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма.

В 1896 году Генрих Герц экспериментально подтвердил

теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров.

В 1895году 7 мая А.С.Попов доложил Русскому физико-химическому обществу об изобретении прибора, могущего улавливать и регистрировать электрические разряды.

24марта 1896года, используя эти волны, он передал на расстояние 250м первую в мире радиограмму из двух слов «Генрих Герц».

В 1924г. А.А. Глаголева-Аркадьева с помощью созданного ею массового излучателя получила еще более короткие ЭМ волны, заходящие в область ИКИ излучения.

М.А.Левитская, профессор Воронежского Государственного Университета в качестве излучающих вибраторов брала металлические шарики и маленькие проволочки, наклеенные на стекла. Ею получены ЭМ волны с длиной волны 30мкм.

М.В. Шулейкин разработал математический анализ процессов радиосвязи.

Б.А.Введенский разработал теорию огибания радиоволнами земли.

О.В.Лосев открыл свойство кристаллического детектора генерировать незатухающие колебания.

Источники и приёмники

РВ излучаются вибраторами (антеннами, соединёнными с ламповыми или полупроводниковыми генераторами. В зависимости от назначения генераторы и вибраторы могут иметь разную конструкцию, но всегда антенна преобразует подводимые к ней ЭМ волны.

В природе существуют естественные источники РВ во всех частотных диапазонах. Это звёзды, Солнце, галактики, метагалактики.

РВ генерируются и при некоторых процессах, происходящих в земной атмосфере, например при разряде молний.

Принимаются РВ также антеннами, которые преобразуют падающие на них ЭМ волны, в электромагнитные колебания, воздействующие затем на приёмник (телевизор, радиоприёмник, ЭВМ и др.)

Свойства радиоволн:

Отражение, преломление, интерференция, дифракция, поляризация, поглощение, короткие волны хорошо отражаются от ионосферы, ультракороткие проникают через ионосферу.

Влияние на здоровье человека

Как отмечают медики, наиболее чувствительными системами организма человека к электромагнитным излучениям являются: нервная, иммунная, эндокринная и половая.

Исследование воздействия радиоизлучения от мобильных телефонов на людей дает первые неутешительные результаты.

Еще в начале 90-х годов американский ученый Кларк обратила внимание, что здоровье улучшают …. радиоволны!

В медицине существует даже направление - магнитотерапия, а некоторые ученые, например, доктор медицинских наук, профессор В.А. Иванченко, использует работающие на этом принципе свои медицинские приборы в лечебных целях.

Кажется невероятным, но найдены частоты, губительные для сотен микроорганизмов и простейших, а на определенных частотах идет восстановление организма стоит на несколько минут включить прибор и, в зависимости от определенной частоты, органы, отмеченные как больные, восстанавливают свои функции, приходят в диапазон нормы.

Защита от негативного воздействия

Далеко не последнюю роль могут играть средства индивидуальной защиты на основе текстильных материалов.
Многие зарубежные фирмы создали ткани, позволяющие эффективно защищать организм человека от большинства видов электромагнитного излучения

Применение радиоволн

Телескоп – гигант позволяет вести радиоизмерения.

Комплекс «Спектр-М» позволяет анализировать в какой угодно области спектра любые образцы: твердые, жидкие, газообразные.

Уникальный микроэндоскоп повышает точность диагноза.

Радиотелескоп субмиллиметрового диапазона регистрирует излучение из части Вселенной, которая закрыта слоем космической пыли.

Компактная камера. Преимущество: возможность стирать снимки.

Радиотехнические методы и устройства применяются в автоматике, вычислительной технике, астрономии, физике, химии, биологии, медицине и т. д.

Микроволновое излучение используют для быстрого приготовления пищи в СВЧ-печах.

Воронеж – город радиоэлектроники. Магнитофоны и телевизоры, радиоприемники и радиостанции, телефон и телеграф, радио и телевидение.

Учитель: Расскажите о радиоволнах. Сравните свойства низкочастотного излучения со свойствами радиоволн.

    Ученики рассказывают. Короткие волны хорошо отражаются от ионосферы. Ультракороткие проникают через ионосферу.

Учитель: Следующий диапазон – инфракрасное излучение, слово предоставляется координатору 3 .

Координатор 3:

Инфракрасное излучение

Частотный диапазон инфракрасных излучений

3 . 10 11 – 4 . 10 14 Гц

История открытия

Инфракрасное излучение было обнаружено английским астрономом и физиком Уильямом Гершелем в 1800 году.

Расщепив солнечный свет призмой, Гершель поместил термометр сразу за красной полосой видимого спектра и обнаружил, что температура термометра повышается. Следовательно, на термометр воздействует излучение, недоступное человеческому взгляду.

Источники инфракрасного излучения

ИК волны излучают нагретые тела, молекулы которых движутся интенсивно. Это излучение называют тепловым: электрическая дуга, квантовые генераторы(лазеры), тело человека.

50 % энергии Солнца излучается в инфракрасном диапазоне, самый мощный источник ИКИ.

Основная часть излучения лампы накаливания лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. КПД этих ламп только15 %.

Приемники инфракрасного излучения

Их действие основано на преобразовании энергии ИКИ в другие виды энергии, измеряющиеся обычными методами.

Это термоэлементы, болометры, фотоэлементы, фоторезисторы, чувствительные к ИКИ.

Свойства

1.Все свойства электромагнитных волн (отражение, преломление, интерференция, дифракция, поглощение и др.)

2.Характерной особенностью ИКИ является тепловое воздействие, а также способность сильно поглощаться некоторыми веществами.

3.Проходя через земную атмосферу, ИКИ ослабляется в результате рассеивания азотом и кислородом и поглощения парами воды.

4.Наличие в атмосфере взвешенных частиц пыли, дыма, капель воды приводит к «парниковому эффекту».

5.Химическое действие.

6.Невидимое.

Применение ИК излучения

Для сушки лакокрасочных покрытий, овощей, фруктов.

Преимущества:

Быстрый нагрев изделий и материалов до заданной температуры,

Небольшая длительность ИК-сушки для ряда лакокрасочных материалов по сравнению с конвективным способом сушки;

Возможность нагрева части изделия (зонный нагрев).

Инфракрасное излучение применяется в медицине, т.к. оказывает болеутоляющее, антиспазматическое, противовоспалительное, циркуляторное, стимулирующее и отвлекающее действие.

В приборах ночного видения:

биноклях,

очках,

прицелах для стрелкового оружия,

ночных фото- и видеокамер.

Здесь невидимое глазом инфракрасное изображение объекта преобразуется в видимое.

Тепловизор - устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее как цветовое поле, где определённой температуре соответствует определённый цвет.

Термограмма - изображения в инфракрасных лучах, показывающего картину распределения температурных полей.


Тепловизоры применяют на предприятиях, где необходим контроль за тепловым состоянием объектов, и в организациях, занимающихся поиском неисправностей сетей различного назначения.

Так, сканирование тепловизором может показать место отхода контактов в системах электропроводки

Тепловизоры используют в строительстве при оценке теплоизоляционных свойств конструкций. С их помощью можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

Тепловизионный снимок кирпичного фасада для оценки потерь тепла

Термограммы используют в медицине для диагностики заболеваний.

Так, инфракрасные снимки вен позволяют обнаруживать места закупорки сосудов, места локализации тромбов или злокачественных опухолей, даже если их температура превышает окружающую температуру на сотые доли градуса.

Термограмма тела человека

В телефонной связи, фотографирование в ИК лучах позволяют обнаруживать невидимые глазу звезды и слабо нагретые туманности, для сортировки материалов, обнаружения невидимых пятен, подписей, повреждений и для изучения тонких структур.

Радиоспектроскопия – наука, использующая методы радиофизики для изучения электромагнитных волн сантиметрового и миллиметрового диапазона.

Дистанционное управление телевизором или видеомагнитофоном осуществляется с помощью ИК излучения. В пультах дистанционного управления пучок инфракрасного излучения испускает светодиод.

Учитель: Расскажите об инфракрасном излучении. Сравните свойства инфракрасного излучения со свойствами радиоволн.

Ученики рассказывают.

Учитель: Следующий диапазон – видимое излучение, слово предоставляется координатору 4 .

Координатор 4:

Видимое излучение

Длина волн приблизительно от 380нм (фиолетовый) до 780 нм (красный).

История открытия

В работах Пифогора, Аристотеля, Платона и Евклида рассматриваются вопросы природы и распространения света, но только в средние века был заложен действительно научный фундамент учения о свете. В его основе работы Ньютона, Ломоносова, Гюйгенса, Гримальди и др. Именно в 16-17веке была обнаружена дифракция, дисперсия, поляризация света, изучены отражение и преломление света, измерена его скорость, построены первые телескопы и микроскопы. Ломоносов был крупным специалистом в области теоретической оптики.

В 1756г. Он выступил на собрании Академии наук с речью «Слово о происхождении света». В ней он высказал предположение о волновой природе света. Впервые указал на единую природу тепловых и световых лучей, изложил основы цветовидения.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах. Физики 20 века показали, что для света характерна двойственность свойств. В зависимости от условий свет проявляет волновые или квантовые свойств.

Ньютон Гете Бэкон

Источники излучения

Солнце

Звезды

Электролампы

Люминесцентные лампы

Электрическая дуга

Лазеры

Полярное сияние

Свойства световых волн

Отражение

Преломление


Световые волны преломляются сильнее, чем радиоволны, но меньше инфракрасных излучений.

Дисперсия

Интерференция

Дифракция


Поляризация

Свойства световых волн

Воздействует на глаз,

Делает видимым окружающие предметы,

Способствует появлению свободных электронов,

Вызывает фотоэффект,

Обладает способностью оказывать:

Фотохимическое и

Биологическое действие .

Применение видимого излучения

Освещение


3) Геометрическая оптика в медицинских приборах

Очки- простейший медицинский прибор.


Лазерное излучение

является особым видом светового излучения электромагнитной природы, получаемое с помощью оптических квантовых генераторов - лазеров.

Микроскопы

Применяют для получения больших увеличений.

Телескопы

Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Телескопы бывают линзовые и

зеркальные.

Учитель: Расскажите о видимом излучении. Сравните свойства видимого излучения со свойствами инфракрасного излучения. Ученики рассказывают . Видимое излучение дает возможность познания окружающего мира.

Учитель: Следующий диапазон – ультрафиолетовое излучение, слово предоставляется координатору 5 .

Координатор 5:

Ультрафиолетовое излучение

Ультрафиолетовое излучение это электромагнитные волны с длиной волны 3,8*10 -7 – 10 -8 м.

История открытия

Английский врач Волластон и немецкий ученый Иоганн Риттер воспользовались фотопластинкой (фотохимическим действием электромагнитного излучения).

Они установили, что за фиолетовым концом видимого спектра пленка засвечивается гораздо сильнее, чем за фиолетовыми лучами.

Так как спектр они получили, разлагая белый свет, тот стало ясно, что в состав солнечного излучения входит более коротковолновое, чем фиолетовый свет, излучение.

Оно получило название ультрафиолетового излучения.


Иоганн Вильгельм Риттер и

Волластон Уильям Хайд(1801)

Источники и приемники

Источники: Все тела, нагретые до 3000 градусов Цельсия (Солнце, звезды, высокотемпературная плазма, электрическая дуга, газоразрядные лампы: ртутные, ксеноновые, водородные и др.)

Солнце Ртутно-кварцевые лампы

Приемники: Для регистрации ультрафиолетового излучения используют обычные фотоматериалы. Ультрафиолетовое излучение обнаруживается с помощью фотоэлементов, фотоумножителей, люминофоров, светящихся под действием ультрафиолетовых лучей

Свойства

Невидимое

Проявляет все свойства электромагнитных волн: отражение, преломление, поглощение, интерференция, дифракция, поперечность и др.)

Оказывает сильное биологическое действие (убивает болезнетворные микробы, влияет на ЦНС)

Ионизирует воздух

Оказывает химическое действие (на люминисцентный экран, фотобумагу и др.)

Для УФИ кварц прозрачен, стекло непрозрачно)

УФИ в малых дозах:

повышает тонус живого организма;

активирует защитные механизмы;

повышает уровень иммунитета, а также увеличивает секрецию ряда гормонов;

образуются вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов;

изменяется углеводный и белковый обмен веществ в организме;

изменяет легочную вентиляцию - частоту и ритм дыхания; повышается газообмен;

образуется в организме витамин D 2, укрепляющий костно-мышечную систему и обладающий антирахитным действием;

убивает бактерии.

УФИ в больших количествах :

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к .

Длительное действие ультрафиолета способствует развитию , различных видов кожи, ускоряет старение и появление морщин.

Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза , несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.

Применение

Медицина: бактерицидные лампы

Промышленность: строительство, ртутные лампы, специальная фотография и др.

Наука: астрономия, химия, дефектоскопия и др.

Сельское хозяйство: сушка овощей, зерна и др

Люминесцентные лампы Солярий Кварцевание инструмент в лаборатории

Учитель: Расскажите об ультрафиолетовом излучении. Сравните свойства ультрафиолетового излучения со свойствами видимого излучения.

Ученики рассказывают .

Учитель: Следующий диапазон – рентгеновское излучение, слово предоставляется координатору 6 .

Рентгеновское излучение

Рентгеновское излучение составляют электромагнитные волны с длиной

от 50 нм до 10 -3 нм и

частотой 3·10 17 - 3·10 20 Гц

Первооткрыватели

Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845-1923). В1895году. Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением.


Источники рентгеновского излучения

В 1895 г. Вильгельм много экспериментировал с газоразрядными трубками, изучал катодные лучи. При этом обнаружил свечение люминесцентного экрана, расположенного вблизи трубки. Поместив трубку в коробку из черного картона, к своему удивлению, не заметил никакого уменьшения яркости свечения, более того, свечение можно было обнаружить даже тогда, когда экран был удален на 2 м.

Рентген понял, что открыл новый вид излучения.

Он назвал его Х-лучами и принялся за изучение свойств открытого излучения.

Источники и приемники рентгеновского излучения

Источником РИ является рентгеновская трубка, в которой ускоренные электрическим полем электроны бомбардируют металлический анод.

При резком торможении заряженных частиц возникает РИ.

Источником РИ являются некоторые радиоактивные изотопы.

Действие приемников РИ основано на их сильном химическом ионизирующем воздействии, а также способности вызывать люминесценцию.

Приемники рентгеновского излучения

Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

В любой современной физической лаборатории, занимающейся проблемами ядерной физики или изучении космических лучей, можно увидеть прибор, носящий имя его изобретателя, - камера Вильсона

Свойства рентгеновского излучения

Рентген установил, что открытые им лучи обладают:

огромной проникающей способностью,

оказывает фотохимическое действие,

открытые им лучи не отклонялись ни в магнитном, ни в электрическом полях,

вызывали люминесценцию излучения света источниками за счет поступления к ним энергии в результате различных процессов,

РИ поглощается веществом, степень поглощения пропорциональна плотности вещества,

обладает всеми свойствами электромагнитных волн(отражение, преломление и др.),

невидимое.

Влияние на здоровье человека

Облучение в больших количествах вызывает лучевую болезнь

Способы защиты от отрицательного воздействия рентгеновского излучения

Экранами могут защищаться оконные проемы и стены зданий и сооружений, находящихся под воздействием электромагнитного излучения (ЭМИ).

Врачи, работающие у рентгеновских аппаратов, стали защищаться свинцовым экраном: свинец - это как бы защитная броня, он не пропускает рентгеновских лучей.

Медицина: рентгенограммы

Техника: рентгеновская дефектоскопия

Наука: изучение структуры кристаллов и белковых молекул, рентгеновская спектроскопия, рентгеновский микроскоп и др.

Аппарат для флюорографии Маммограф

Применение рентгеновского излучения

Медицина и культура

Диагностика болезней(переломы, опухоли и др.)

Лечение болезней

Определение дефектов картин

Отделение поддельных бриллиантов от настоящих


Томограф Снимок в рентгеновских лучах

Применение рентгеновского излучения

Наука и техника

Рентгеновский микроскоп: изучение биологических объектов(клетки, их составляющие и др.)

Рентгеноструктурный анализ: определение дефектов в кристаллах, изучение структуры вещества

Рентгенодефектоскопия: определение трещин,раковин, толщины швов и др.

Рентгеновская спектроскопия: изучение строения и свойств атомов

Рентгеновская голография объектов

Рентгеновский телескоп : изучение звезд, определение их координат и др.

Аппараты для проведения рентгеноструктурного анализа вещества


Учитель: Расскажите о рентгеновском излучении. Сравните свойства рентгеновского излучения со свойствами ультрафиолетового излучения.

Ученики рассказывают . Учитель: Следующий диапазон – гамма-излучение, слово предоставляется координатору7

Гамма - излучение

Длина волны - < 5·10 −3 нм

История открытия

Гамма-излучение было открыто французским физиком Полем Виллардом в 1900 году при исследовании излучения радия.

Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью.

Источники гамма- излучения

Атомные ядра, изменяющие энергетическое состояние.

Ускоренно движущиеся заряженные частицы.

Звезды, галактики.

Ядерные реакции, радиоактивный распад ядер.


Свойства гамма-излучения

Большая проникающая способность.

Высокая химическая активность.

Является ионизирующим, вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.

Применение

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Уровнемеры.

Гамма-каротаж в геологии.

Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Все свойства электромагнитных волн.

Учитель: Расскажите о гамма-излучении. Сравните свойства гамма-излучения со свойствами рентгеновского излучения.

Ученики рассказывают . Выводы

Различные виды электромагнитных излучений имеют ряд общих свойств, что позволяет рассматривать их как составные части единой шкалы электромагнитных излучений.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны .

Учитель: Существуют ли четкие границы между отдельными диапазонами?

Учащиеся: Нет. Между отдельными видами излучений нет принципиального отличия. Работы Левитской, Вологдина и др. показали, излучения граничных частот могут быть получены двумя способами: и как низкочастотные и как высокочастотные, да и свойства их сходны.

Всё говорит об условности границ между отдельными областями спектра /шкалы/электромагнитных излучени, но каждый вид излучения имеет своё характерное свойство, обусловленное частотой излучения.
Учитель: Кончается ли шкала электромагнитных излучений с длиной волны λ =10-13см?

Учащиеся: Шкала не имеет границ, ибо нет пределов познания природы. Ученые, безусловно, найдут еще методы получения еще более коротких волн.

Пройдем по свойствам волн, начиная с радиоволн.

Инфракрасное излучение обладает тепловыми свойствами.

С помощью видимого излучения человек познаёт окружающий мир.

Ультрафиолетовое излучение обладает бактерицидными и ионизирующими свойствами.

Рентгеновы лучи обладают большой проникающей способностью и биологической активностью.

Гамма – лучи обладают еще более проникающей способностью и биологической активностью.

Вывод 1 Количественные характеристики волн: длина и частота определяют их качество.

Пройдем снова по свойствам волн слева направо. При этом переходе (длина волны уменьшается, а частота увеличивается) нарастают квантовые свойства, а уменьшаются волновые.

Вывод 2. Все излучения объединяют, казалось бы, противоположные свойства: волновые и квантовые.

Здесь четко выражен дуализм в природе, единство и борьба двух противоположностей

(чем короче длина волны, тем четче выражены квантовые свойства).

Учитель: Мы видим на уроке подтверждение двух законов диалектики: закона перехода количественных изменений в качественные на примере свойств НИ, РВ, ИКИ, ВИ, УФИ, РИ, гамма-излучения и закона единства и борьбы двух противоположностей на основе волновых и квантовых свойств света.

Задание на дом.

1.записи в тетрадях, дополнить записи.

2.§84-86 Г.Я. Мякишев Б.Б. Буховцев В.М. Чаругин

Литература:

1.Учебник физики-11 Г.Я. Мякишев Б.Б. Буховцев В.М. Чаругин

2.Резников Л.И. «Физическая оптика в средней школе»

3.Орехов В.П. «Колебания и волны в курсе физики средней школы»

4.А.Луизов, Н.Теребинская «Свет без тепла»

5. Материалы Интернета

и другие.

Электромагнитный спектр - ряд форм электромагнитного излучения, расположенных по порядку величин их частот или длин волн (рисунок 4).

Рисунок 4 - Спектр электромагнитных излучений

Электромагнитное излучение (электромагнитные волны) -- распространяющееся в пространстве возмущение электрических и магнитных полей.

Диапазоны электромагнитного излучения

  • 1 Радиоволны
  • 2. Инфракрасное излучение (Тепловое)
  • 3. Видимое излучение (Оптическое)
  • 4. Ультрафиолетовое излучение
  • 5. Жёсткое излучение

Основными характеристиками электромагнитного излучения принято считать частоту и длину волны. Длина волны зависит от скорости распространения излучения. Скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Особенностями электромагнитных волн c точки зрения теории колебаний и понятий электродинамики являются наличие трёх взаимноперпендикулярных векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

Электромагнитные волны -- это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том, числе и через вакуум.

Общим для всех видов излучений является скорость их распространения в вакууме, равная 300 000 000 метров в секунду.

Электромагнитные излучения характеризуются частотой колебаний, показывающих число полных циклов колебаний в секунду, или длиной волны, т.е. расстоянием, на которое распространяется излучение за время одного колебания (за один период колебаний).

Частота колебаний (f), длина волны (л) и скорость распространения излучения (с) связаны между собой соотношением:

Электромагнитное излучение принято делить по частотным диапазонам. Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые или микрометровые. Волны с длиной л длиной менее 1 м (частота более 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ).

Инфракрасное излучение -- электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм).

Инфракрасное излучение занимает самую большую часть оптического спектра. Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне.

Видимый свет представляет собой сочетание семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Перед красными областями спектра в оптическом диапазоне находятся инфракрасные, а за фиолетовыми - ультрафиолетовые. Но не инфракрасные, не ультрафиолетовые не видимы для человеческого глаза.

Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова. Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-жёлтым светом. Этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.

Излучение оптического диапазона возникает при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота его излучения. При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие.

Кроме теплового излучения источником и приёмником оптического излучения могут служить химические и биологические реакции. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.

Жёсткие лучи. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ -- 0,1 МэВ, а энергия гамма-квантов -- больше 0,1 МэВ.

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) -- электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 -- 10 нм, 7,9Ч1014 -- 3Ч1016 Гц). Диапазон условно делят на ближний (380--200 нм) и дальний, или вакуумный (200--10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Длинноволновое ультрафиолетовое излучение обладает сравнительно небольшой фотобиологической активностью, но способно вызвать пигментацию кожи человека, оказывает положительное влияние на организм. Излучение этого поддиапазона способно вызывать свечение некоторых веществ, поэтому его используют дли люминесцентного анализа химического состава продуктов.

Средневолновое ультрафиолетовое излучение оказывает тонизирующее и терапевтическое действие на живые организмы. Оно способно вызывать эритему и загар, превращать в организме жипотных необходимый для роста и развития витамин D в усвояемую форму, обладает мощным антирахитным действием. Излучение этого поддиапазона вредны для большинства растений.

Коротковолновое ультрафиолетовое излечение отличается бактерицидным действием, поэтому его широко используют для обеззараживания воды и воздуха, дезинфекции и стерилизации различного инвентаря и посуды.

Основной природный источник ультрафиолетового излучения на Земле Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от различных факторов.

Искусственные источники ультрафиолетового излучения многообразны. Сегодня искусственные источники ультрафиолетового излучения широко применяются в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т.д. предоставляются существенно большие возможности, чем при использовании естественного ультрафиолетового излучения излучения .

Физик Рентген открыл еще более коротковолновое излучение. Недолго думая, эти лучи назвали в честь самого Рентгена. Обладая хорошей проницающей способностью, рентгеновское излучение нашло применение в медицине и кристаллографии. Как Вы, наверное, наслышаны, рентгеновские лучи опять-таки вредны живым организмам. И атмосфера Земли из-за их проницательности, упомянутой только что, им не помеха. Нас выручает магнитосфера Земли. Она задерживает многие опасные излучения космоса. Длины волн лучей Рентгена заключены между 0,1 А и 100 А.

Самые короткие волны (меньше 0,1 А) у гамма-лучей. Это самый опасный вид радиоактивности, самое опасное электромагнитное излучение. Энергия фотонов гамма-лучей очень высока, и их излучение происходит при некоторых процессах внутри ядер атомов. Примером такого процесса может быть аннигиляция - взаимоуничтожение частицы и античастицы с превращением их массы в энергию. Регистрируемые, время от времени, таинственные гамма-вспышки на небе пока никак не объяснены астрономами. Ясно, что энергия явления, производящего вспышки, просто грандиозна. По некоторым подсчетам, на секунды, которые длится такая вспышка, она излучает больше энергии, чем вся остальная Вселенная. Гамма-излучение не пропускается к Земле ее магнитосферой .

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.

Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 – 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10-7 до 4*10-7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 – 1810), исследуя спектр, открыл, что за его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи . Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.

Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний.

Гамма-излучение . Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение – самое коротковолновое электромагнитное излучение (l< 10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц – гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.

Теория показывает, что электромагнитное излучение образуется тогда, когда электрические заряды движутся неравномерно, ускоренно. Равномерно движущийся (свободный) поток электрических зарядов не излучает. Нет излучения электромагнитного поля и у зарядов, движущихся под действием постоянной силы, например у зарядов, описывающих окружность в магнитном поле.

В колебательных движениях ускорение непрерывно меняется, поэтому колебания электрических зарядов дают электромагнитное излучение. Кроме того, электромагнитное излучение произойдет при резком неравномерном торможении зарядов, например при попадании пучка электронов на препятствие (образование рентгеновских луей). В хаотическом тепловом движении частиц также рождается эдектррмагнитное излучение (тепловое излучение). Пульсации

ядерного заряда приводят к созданию электромагнитного излучения, известного под названием у-лучей. Ультрафиолетовые лучи и видимый свет производятсядвижением атомных электронов. Колебания электрического заряда в космических масштабах приводят к радиоизлучению небесных тел.

Наряду с естественными процессами, в результате которых создается электромагнитное излучение самых различных свойств, имеются разнообразные экспериментальные возможности по созданию электромагнитного излучения.

Основной характеристикой электромагнитного излучения является его частота (если речь идет о гармоническом колебании) или полоса частот. Ложно, разумеется, при помощи соотношения пересчитать частоту излучения на длину электромагнитной волны в пустоте.

Интенсивность излучения пропорциональна четвертой степени частоты. Поэтому излучение очень низких частот с длинами волн порядка сотен километров не прослеживается. Практический радиодиапазон начинается, как известно, с длин волн порядка что соответствует частотам порядка длины волн порядка относят к среднему диапазону, десятки метров - это уже короткие волны. Ультракороткие волны (УКВ) выводят нас из обычного радиодиапазона; длины волн порядка нескольких метров и долей метра вплоть до сантиметра (т. е. частоты порядка употребляются в телевидении и радиолокации.

Еще более короткие электромагнитные волны были получены в 1924 г. Глаголевой-Аркадьевой. Она использовала в качестве генератора электрические искры, проскакивающие между взвешенными в масле железными опилками, и получила волны длиной до Здесь уже достигается перекрывание с длинами волн теплового излучения.

Участок видимого света весьма мал: он занимает всего лишь длины волн от см до см. Далее следуют ультрафиолетовые лучи, невидимые глазом, но весьма хорошо фиксируемые физическими приборами. Это - длина волн от см до см.

За ультрафиолетовыми следуют рентгеновские лучи. Их длины волн - от см до см. Чем меньше длина волны, тем слабее рентгеновские учи поглощаются веществами. Наиболее коротковолновое и проникающее электромагнитное излучение носит название у-лучей (длины волн от см и ниже).

Характеристика любого вида из перечисленных электромагнитных излучений будет исчерпывающей, если будут произведены следующие измерения. Прежде всего, тем или иным методом электромагнитное излучение должно быть разложено в спектр. В случае света, ультрафиолетовых лучей и инфракрасного излучения это может быть сделано с помощью преломления призмой или пропусканием излучения через дифракционную решетку (см. ниже). В случае рентгеновских и гамма-лучей разложение в спектр достигается отражением от кристалла (см. стр. 351). Волны

радиотехнического диапазона раскладываются в спектр с использованием явления резонанса.

Полученный спектр излучения может быть сплошным или линейчатым, т. е. может заполнять непрерывно некоторую полосу частот, а может также состоять из отдельных резких линий, соответствующих крайне узкому частотному интервалу. В первом случае для характеристики спектра надо задать кривую интенсивности в функции частоты (длины волны), во втором случае спектр будет описан заданием всех имеющихся в нем линий с указанием их частот и интенсивностей.

Опыт показывает, что электромагнитное излучение заданной частоты и интенсивности может отличаться своим поляризационным состоянием. Наряду с волнами, у которых электрический вектор колеблется вдоль определенной линии (линейно поляризованные волны), приходится сталкиваться с таким излучением, в котором линейно поляризованные волны, повернутые друг по отношению к другу около оси луча, наложены друг на друга. При исчерпывающей характеристике излучения надо указывать его поляризацию.

Следует обратить внимание, что даже для самых медленных электромагнитных колебаний мы лишены возможности измерять электрические и магнитные векторы волны. Нарисованные выше картины поля имеют теоретический характер. Тем не менее в их истинности не приходится сомневаться, имея в виду неразрывность и целостность всей электромагнитной теории.

Утверждение о принадлежности того или иного вида излучения к электромагнитным волнам всегда носит косвенный характер. Однако число следствий, вытекающих из гипотез, столь огромно и они находятся между собой в таком спаянном согласии, что гипотеза об электромагнитном спектре давно приобрела все черты непосредственной реальности.



Понравилась статья? Поделитесь с друзьями!