Называется скопление галактик. Что такое скопление галактик? Смотреть что такое "Скопление галактик" в других словарях

Общая астрономия. Внегалактическая астрономия. Скопления галактик

Годы и расстояния.

Скопление в созвездии Печи. Галактики редко бывают одиночными. 90 процентов галактик концентрируются в скопления, в которые входят от десятков до нескольких тысяч членов. Средний диаметр скопления галактик 5 Мпк, среднее число галактик в скоплении – 130.

Местная группа галактик.

Скопление в созвездии Волосы Вероники. Мы его видим таким, каким оно было 400 миллионов лет назад. В Местную группу галактик, размеры которой 1,5 Мпк, входит наша Галактика, Туманность Андромеды M31, Туманность Треугольника M33, Большое Магелланово Облако (БМО), Малое Магелланово Облако (ММО), неправильные галактики NGC 6822, IC 1613, карликовые галактики – всего около сорока галактик, связанных взаимной гравитацией. Согласно последним исследованиям Местная группа движется со скоростью 635 км/с относительно соседних скоплений. Скопления сферической формы, состоящие из тысяч галактик, называются регулярными. В них чаще всего встречаются эллиптические галактики. Как правило, они являются сильными радиоисточниками. Одним из самых больших скоплений, содержащим 40 000 галактик, является скопление в созвездии Волосы Вероники. Оно находится от нас на расстоянии 100 Мпк. Скопление занимает на небе область диаметром около 10°, а его размеры достигают десяти миллионов световых лет. В иррегулярных скоплениях много спиральных галактик, но общее число галактик значительно меньше по сравнению с регулярными скоплениями.


Скопление в созвездии Девы.

Одно из них – скопление в созвездии Девы, находящееся в 15 Мпк от Местной группы. Скопление Девы огромно: оно покрывает участок неба, в 200 раз превышающий площадь, занимаемую Луной. Одна только эллиптическая галактика M87 из этого скопления по размеру сравнима с нашей Местной группой. Наивысшая плотность галактик наблюдается в центральных областях крупных скоплений. Галактики здесь часто сталкиваются. Конечно, расстояния между звездами огромны, и при столкновении двух галактик звезды одной из них свободно проходят между звездами другой. Однако галактики притягивают друг друга, звезды сходят с орбит; в некоторых случаях галактики сливаются. Пространство между галактиками заполнено газом, температура которого более десяти миллионов кельвинов. В среднем на каждый кубический дециметр пространства приходится всего один атом, однако в связи с огромным объемом скопления полная масса газа сопоставима с массой всех галактик скопления. Чтобы столь горячий газ не покидал скопление, его должна удерживать большая сила тяготения. По оценкам ученых суммарного гравитационного поля всех галактик для этого не достаточно. Необходимо предположить, что существует так называемая скрытая масса. К этому же выводу можно прийти, рассматривая устойчивость самих скоплений: скорости отдельных галактик настолько высоки, что без скрытой массы они разлетелись бы в разные стороны. Скопления галактик, по-видимому, самые крупные устойчивые системы во Вселенной. Области повышенной концентрации скоплений галактик чередуются с пустотами в сотни миллионов световых лет. Местная группа (вместе с сотнями других скоплений) также расположена в сверхскоплении, центр масс которого находится в созвездии Девы. Другое сверхскопление находится в созвездии Геркулеса на расстоянии около 700 миллионов световых лет.


Сверхскопление галактик в созвездии Геркулеса.

На этой трехмерной карте, покрывающей около трети неба, отмечены более 11 тысяч галактик. На трехмерных картах северной части неба хорошо заметна подобная структура, имеющая размеры 50×30×5 Мпк, названная Великой стеной. Похожее образование обнаружено и в южной части неба. Ячеистая структура Вселенной отражает картину распределения вещества в эпоху, когда галактик еще не существовало.

Галактики собраны в сверхскопления, которые образуют слои и ленты, разделенные обширными пустотами; по структуре это напоминает губку.

Источник информации: "Открытая Астрономия 2.5", ООО "ФИЗИКОН"

Практически все галактики входят в то или иное скопление. На сегодня известны тысячи скоплений галактик. Это такие гравитационно-связанные системы, которые являются одними из самых больших структур во Вселенной. Диаметр скоплений галактик всегда превышает десятки миллионов световых лет.

Все скопления галактик можно разделить на 2 основных типа (или класса): правильные (регулярные) и неправильные (иррегулярные). Также ещё скопления галактик можно классифицировать по разным параметрам, например, по наличию ярких галактик в центре, по наличию пекулярных галактик, по числу галактик с мощным излучением и так далее.

Правильные скопления галактик

Правильные (регулярные) скопления - как правило правильной сферической формы, состоят из большого числа галактик (количество может превышать 10 тысяч), к центру этого скопления увеличивается концентрация галактик. Самые яркие члены этих скоплений относятся к E и S0. В самом центре можно обнаружить одну или две ярчайшие эллиптические галактики.

Типичным и известным представителем правильных скоплений является скопление в (показано на изображении выше). Его размеры превышают 4 Мегапарсека. Помните, что 1 парсек = 3.08567758 × 10 16 метра. Число галактик в этом скоплении - несколько десятков тысяч.

Неправильные скопления галактик

Неправильные (иррегулярные) скопления галактик имеют неправильную форму и в них часто встречаются отдельные сгущения. В скоплениях этого типа встречаются галактики всех типов.

Типичным представителем неправильных галактик является скопление в созвездии Девы. Размеры его примерно 3 Мегапарсека. Число галактик - несколько тысяч (не больше 10 тысяч).

Ещё одним хорошим примером неправильного скопления галактик является скопление в :

В этом скоплении очень много спиральных галактик, внутри которых идёт активное звёздообразование. Часть галактик сталкивается друг с другом и со временем сливаются в одну. Учёные считают, что это скопление - хороший пример того, как на раннем этапе развития Вселенной взаимодействовали между собой галактики и после отдалились друг от друга, вследствие расширения Вселенной.

Сверхскопления галактик

Изображение взято из Википедии

Крупномасштабные неоднородности в распределении галактик носят так называемый «ячеистый» характер. На стенках каждой ячейки расположено много галактик и скоплений, а внутри - большие пустые пространства. Размеры таких ячеек примерно составляют 100 Мегапарсек, толщина стенок - 3-4 Мегапарсека. Большие правильные или неправильные скопления галактик находятся в узлах этой ячеистой структуры. Отдельные участки (фрагменты) этой структуры называют сверхскоплениями . Как правило, сверхскопления имеют вытянутую или неправильную форму. На изображении выше часть сверхскоплений подписана.

Теперь вы представляете масштабы Вселенной (хотя, наверное, такое нельзя представить). Его невообразимые размеры. Это многотысячные скопления галактик, сверхскопления, внутри каждого из которых миллионы звёзд, каждая из них имеет множество планет, возможно на которых живут разумные существа. Вот только далеко нам до них и совсем не верится, что когда-нибудь мы кого-нибудь повстречаем!

ЗВЁЗДНЫЕ СКОПЛЕНИЯ

Скопление
Звёздные скопления бывают двух типов:

открытые скопления , например Плеяды, насчитывают от нескольких сотен до нескольких тысяч свободно расположенных молодых звёзд;
в шаровых скоплениях , таких как Омега Центавра, звёзды располагаются очень компактно. Они могут содержать до миллиона очень старых звёзд и, возможно, являются самыми древними образованиями нашей Галактики.

ПЛЕЯДЫ

Открытое скопление М45 в созвездии Тельца .
Диаметр центра - 7 световых лет.

Общий диаметр - 40 световых лет.

Расстояние до Солнца - 410 световых лет.

Концентрация: 3000 звёзд на 0.05 кубических световыхлет.

СКОПЛЕНИЕ ГЕРКУЛЕСА

Шаровое скопление М13 в созвездии Геркулеса.

Диаметр - 160 световых лет.

Расстояние до Солнца - 23 500 световых лет.

Концентрация в центре - 1 звезда на кубический световой год.

ГАЛАКТИЧЕСКИЕ СКОПЛЕНИЯ

Скопление - группа небесных тел одной природы, связанных силами гравитационного взаимодействия. Различают галактические скопления и звёздные скопления, находящиеся в пределах одной галактики.
ГМП относится к маленькому скоплению, известному под названием Локальная Группа. Некоторые галактические скопления объединены в сверхскопления.

В Сферических Галактиках нет спиральных рукавов, они более-менее плоские и их часто объединяют в одну группу со спиральными Галактиками. К сферическим Галактикам относится шаровая Галактика NGC 5128 (созвездие Кентавра) или М 87 (созвездие Девы). Они привлекают к себе внимание как мощнейшие источники радиоизлучения.

Эллиптические Галактики выглядят как несколько приплюснутые сферы и содержат мало газа и пыли. Их диаметр изменяется от 30.000 до 300.000 световых лет: такие Галактики составляют 10-15% от всех видимых Галактик во Вселенной. Эти Галактики выглядят как эллипсы с разной степенью сжатия. Среди них есть Галактики, похожие на линзу, и почти шаровые звёздные системы. Встречаются и гиганты, и карлики. Примерно четверть из наиболее ярких Галактик относят к числу эллиптических. Для многих из них характерен красноватый цвет.


Сферические / эллиптические: самые круглые - Е0, самые сплющенные Е7;
SО - промежуточные между спиральными и эллиптическими Галактиками;

спиральные: Sa - с короткими рукавами, толстыми спиралями, у Sc - ветви длинные, тонкие;

спиральные пересечённые", с перемычкой, из концов которой начинаются рукава (SВа, SВb, SВс);

неправильные Галактики (Irr).

Спиральная Галактика имеет форму диска с утолщением в центре - ядром. Из ядра исходят спиральные рукава, более или менее плотно прилегающих друг к другу. Ядро в основном состоит из старых звёзд, в то время как рукава состоят по большей части из молодых звёзд и газа, в основном - водорода. Все ветви - а их может быть одна, две или несколько - лежат в плоскости, совпадающей с плоскостью вращения Галактики. Поэтому Галактика имеет вид сплющенного диска. Спиральные Галактики окружены обширным тёмным, почти сферическим ореолом, который также состоит из старых звёзд.
Спиральные Галактики встречаются чаще других. К их числу относятся Галактика Млечного Пути, Галактика в Андромеде (М31), Галактика в Треугольнике (М33).

СОМБРЕРО

Галактика М104 в созвездии Девы.

Диаметр - около 110.000 световых лет.

Расстояние до Солнца – 40.000.000 световых лет.

ГОНЧИЕ ПСЫ

Ширина - около 60.000 световых лет.

Расстояние до Солнца – 35.000.000 световых лет.

Тип: гигантская спиральная галактика.

М 31 ТУМАННОСТЬ АНДРОМЕДЫ

Диаметр - около 150.000 световых лет. Расстояние до Солнца – 2.400.000 световых лет. Тип: гигантская спиральная галактика.

ГАЛАКТИКА МЛЕЧНОГО ПУТИ (ГМП)

17 млрд. лет назад началась образовываться наша ГАЛАКТИКА - МЛЕЧНЫЙ ПУТЬ. Спиральная Галактика Млечного Пути - одна из множеств Галактик разной формы, существующих во Вселенной. См.

Магеллановы Облака - это карликовые Галактики. Наибольшие угловые их размеры на звёздном небе 8°для Большого Магелланова Облака (БМО) и 4° для Малого Магеланова Облака (ММО). Звёзды Магелановых Облаков сходны со звёздами спиральных рукавов нашей Галактики, которые для земного наблюдателя видятся как серебристое сияние Млечного Пути. В Магелановых Облаках много молодых и горячих ярких звёзд, очень много голубых сверхгигантов чрезвычайно высокой светимости.


БОЛЬШОЕ МАГЕЛАНОВО ОБЛАКО (БМО)

Галактика LMC в созвездии Золотой Рыбы.

Диаметр – 26.000 световых лет.

Расстояние до Солнца - 16. 000 световых лет.

На современных звёздных картах БМО попадает в созвездие Столовой Горы и Золотой Рыбы.

S Золотой Рыбы в БМО - ярчайшая из известных на сегодняшний день во Вселенной.

Тарантул - световая диффузная туманность БМО. Это самая крупная из известных туманностей в Местной группе Галактик. Внутри этой туманности с "неистовой скоростью" происходит процесс рождения новых звёзд. В центре туманности находится рассеянное скопление очень горячих голубых звёзд.

МАЛОЕ МАГЕЛАНОВО ОБЛАКО (ММО)

Галактика SMC в созвездии Тукана.

Диаметр - 16.000 световых лет.

Расстояние до Солнца – 212.000 световых лет.

Тип: галактика неправильной формы.

На современных звёздных картах ММО попадает в созвездие Тукана.

МЕТАГАЛАКТИКА

ЛОКАЛЬНАЯ ГРУППА - скопление, насчитывающее около 30 Галактик, среди которых Млечный Путь, Магелановы Облака и туманность Андромеды. Имеет неправильную форму, расстояние между наиболее удалёнными точками скопления оценивается в 6 млн. световых лет.

Ячеисто-сотовая структура Метагалактики

Исходя из выше сказанного, не трудно объяснить видимые в Метагалактике образования, напоминающие пчелиные соты с размерами ячеек в 100-300 миллионов световых лет. Характерной особенностью ячеисто-сотовой структуры состоит в том, что внутренняя полость ячеек (войды) выглядит практически пустой, а все галактики и их скопления собраны в кластеры или вдоль так называемых "стенок", оконтуривающих ячейки.

Образование додекаэдра с внутренними шестнадцатью полостями формируется после второго этапа квантования. Но квантование пространства на этом этапе не заканчивается. Оно продолжится в каждой из вновь созданной хронооболочке много раз, образуя все новые и новые миллиарды систем по фрактальному типу.

Войды

В додекаэдрической структуре первого порядка образуются более мелкие додекаэдрические структуры второго порядка и т. д. Возможно, что они дополняются икосаэдрическими структурами, т.к. оба многогранника (додекаэдр и икосаэдр) легко перестраиваются друг в друга. Икосаэдро-додекаэдрическая структура хронооболочек образует крупномасштабную ячеисто-сотовую структуру Метагалактики. Скопления и сверхскопления галактик образуются в икосаэдро-додекаэдрических структурах меньшего уровня.

Вселенная в момент инфляции представляет собой псевдопространство, заполненное невидимыми ячейками, наподобие пчелиных сот, где в качестве ячеек находились раздувающиеся пузыри хронооболочек. Причем каждая такая ячейка содержала внутри себя будущее скопление или сверхскопление галактик, исполненных внутренними невидимыми хрональными оболочками будущих галактик и звездных систем по матрешечному типу, образуя фракталы Вселенной. Каждая хронооболочка в свернутом состоянии представляет собой гравитационный веерный диполь в связанном состоянии. Как только к такому диполю начинает поступать энергия, он «раскрывается», преобразуясь в пространство и материю.

Предел дифференциации по горизонтали определяется критической плотностью образующегося вещества. Раскрывающиеся хронооболочки стремительно увеличивают свое пространство, но вещество начинает формироваться только тогда, когда выделенная энергия превысит некоторое предельное значение. Поэтому в самый начальный момент инициации диполя плотность вещества равна нулю. Когда плотность вещества достигает порядка примерно 10-20 г/см3, начинается следующий этап в дифференциации - вертикальный. Он характеризуется тем, что новая образующаяся подсистема относится не к нулевому, а к первому модулю ИСМ, что позволяет ей занимать одно и то же место в пространстве. Т.е. пространства нулевого и первого модуля становятся пересекающимися множествами.

Пределом дифференциации Метагалактики являются галактики, поскольку в их формировании явно выражена вертикальная дифференциация. Эволюционно развитые галактики представляют собой двух-системные образования. К ним относятся спиральные галактики, в которых помимо хронооболочки нулевого модуля – сферической подсистемы, существует хронооболочка первого модуля – дисковая подсистема галактики.


Таким образом, в качестве элементарной структурной единицы Метагалактики будем считать галактику. Точно так же в строении обычного вещества его пределом являются молекулы. Потому что на уровне молекул начинается новая ступень в организации материи. Благодаря одинаковости молекул, мы видим вещество однородным, с присущим только ему определенными физико-химическими свойствами. Так же и в Метагалактике. Вся она состоит их плотной упаковки хронооболочек галактик, которые играют ту же роль, что и молекулы в веществе. В этом смысле Метагалактика супероднородна, т.к. вся она состоит из одних и тех же структурных элементов – галактик, играющих роль «молекул» в «супервеществе» Вселенной.

Циклические этапы в Метагалактике

Если рассматривать Метагалактику с точки зрения циклических этапов, т.е. ее относительного возраста, то можно отметить, что мы видим ранний этап развития Метагалактики, т.е. видим ее молодой. О чем свидетельствует интенсивное скопление галактик вдоль ребер додекаэдра, образующих так называемые «стенки» скоплений и сверхскоплений. Но это несколько упрощенный взгляд, на самом деле ситуация несколько сложнее. Когда мы наблюдаем другие галактики, то мы смотрим не только в даль, но и в прошлое, что связано с конечностью скорости света. Поэтому такое представление связано с тем, что свет, дошедший до нас от этих космических объектов, отправился тогда, когда додекаэдр только формировался.

Объяснение этому факту можно найти в следующем. Можно предположить, что в момент инфляции хронооболочка Вселенной дробилась «бессчетное» количество раз. Одновременно образовались миллиарды и миллиарды хронооболочек галактик, заполнившие собой всю Вселенную. Хронооболочки галактик образовались одновременно, но их количество конечно. В первый момент все хронооболочки представляют собой гравитационные диполи в свернутом виде. Все одновременно развернуться они не могут, т.к. находятся в неравных условиях. Раньше всего себя проявят те галактики, к которым энергия поступает интенсивнее всего. А это происходит вдоль ребер додекаэдра. Также легче «зажигаются» звезды галактик на периферии системы, т.е. там, где нет такого сильного давления, как в центре.

Поэтому все видимое вещество наблюдается вдоль «стенок» или «сшивок» между собой хронооболочек. Еще раз поясню, это связано с тем, что, во-первых, в местах «сшивки» хронооболочек амплитуда выделяющейся энергии возрастает за счет суммирования двух потоков обеих хронооболочек, текущих в одном направлении, что помогает звездообразовательному процессу. Во-вторых, раздвигание пространства на краю хронооболочки происходит легче и проще, чем в ее середине. Поэтому галактики на периферии проявляются значительно раньше, чем внутри. Перемещение звездообразования происходит от периферии к центру хронооболочки. Чем старше возраст (цикл), тем кучнее скопления галактик в центре первичной хронооблочки.


В результате чего в Метагалактике мы наблюдаем кластеры и войды (пустоты). Это достаточно хорошо видно по распределению галактик и их скоплений, т.е. "светящегося вещества". Практически весь "свет" находится в филаментах. В местах пересечения этих волокон располагаются сверхскопления. А в войдах - пусто. Большие войды занимают около 50 процентов объема Метагалактики. Поэтому на данном этапе развития с войдами связаны центральные области сфер хронооболочек высших уровней, в которых подсистемы внутренних хронооболочек находятся пока в виде свернутых диполей.

По мере того, как время жизни этих «первых» галактик вдоль ребер додекаэдра будет заканчиваться, они будут стареть и умирать. Зато на смену им будут «приходить» (проявляться) новые галактики, которые находятся ближе к центру сфер додекаэдра. Звездообразование постепенно будет перемещаться от ребер додекаэдра к центру его граней и далее к центру сферы хронооболочки. Поэтому по мере взросления Метагалактики войды будут «заполняться» все новыми и новыми галактиками, в то время как вдоль ребер додекаэдров галактики будут умирать и гаснуть. Следовательно, на более позднем этапе мы бы увидели шаровые сверхскопления галактик, не на границе сферических оболочек или гранях додекаэдра, а внутри пространственных сфер, расположенных на приблизительно одинаковых расстояниях друг от друга.

Со стороны «взросление» будет выглядеть так, будто вещество ячеек «перемещается» от ребер додекаэдра к его центру, а точнее к центру хронооболочки, где оно начинает как бы «кучковаться». Но это видимое представление. На самом деле галактики никуда не двигаются. Энергия выделяется в центре хронооболочки и дальше распространяется к периферии, а звездообразование начинается от периферии и двигается к центру хронооболочки.

В отличие от самой Метагалактики более низкие ее структурные уровни, т.е. скопления и сверхскопления галактик, находятся в более зрелой стадии своего развития. Вследствие этого в хронооболочках сверхскоплений мы наблюдаем «кучкование» вещества в ее центре. Т.е. мы отмечаем, что галактики как бы «переместились» к центру хронооболочки, где и образовали эти скопления. Когда мы сумеем развернуть нашу двухмерную картину звездного неба в трехмерный вариант, то вполне возможно, что мы сумеем увидеть эту грандиозную структуру.

Галактики редко бывают одиночными. 90 процентов галактик концентрируются в скопления, в которые входят от десятков до нескольких тысяч членов. Средний диаметр скопления галактик 5 Мпк, среднее число галактик в скоплении – 130.

В Местную группу галактик, размеры которой 1,5 Мпк, входит наша Галактика, Туманность Андромеды M31, Туманность Треугольника M33, Большое Магелланово Облако (БМО), Малое Магелланово Облако (ММО), неправильные галактики NGC 6822, IC 1613, карликовые галактики – всего около сорока галактик, связанных взаимной гравитацией. Согласно последним исследованиям Местная группа движется со скоростью 635 км/с относительно соседних скоплений.

Скопления сферической формы, состоящие из тысяч галактик, называются регулярными. В них чаще всего встречаются эллиптические галактики. Как правило, они являются сильными радиоисточниками. Одним из самых больших скоплений, содержащим 40 000 галактик, является скопление в созвездии Волосы Вероники. Оно находится от нас на расстоянии 100 Мпк. Скопление занимает на небе область диаметром около 10°, а его размеры достигают десяти миллионов световых лет.

В иррегулярных скоплениях много спиральных галактик, но общее число галактик значительно меньше по сравнению с регулярными скоплениями.

Одно из них – скопление в созвездии Девы, находящееся в 15 Мпк от Местной группы. Скопление Девы огромно: оно покрывает участок неба, в 200 раз превышающий площадь, занимаемую Луной. Одна только эллиптическая галактика M87 из этого скопления по размеру сравнима с нашей Местной группой.

Наивысшая плотность галактик наблюдается в центральных областях крупных скоплений. Галактики здесь часто сталкиваются. Конечно, расстояния между звездами огромны, и при столкновении двух галактик звезды одной из них свободно проходят между звездами другой. Однако галактики притягивают друг друга, звезды сходят с орбит; в некоторых случаях галактики сливаются.

Пространство между галактиками заполнено газом, температура которого более десяти миллионов кельвинов. В среднем на каждый кубический дециметр пространства приходится всего один атом, однако в связи с огромным объемом скопления полная масса газа сопоставима с массой всех галактик скопления.

Чтобы столь горячий газ не покидал скопление, его должна удерживать большая сила тяготения. По оценкам ученых суммарного гравитационного поля всех галактик для этого не достаточно. Необходимо предположить, что существует так называемая скрытая масса. К этому же выводу можно прийти, рассматривая устойчивость самих скоплений: скорости отдельных галактик настолько высоки, что без скрытой массы они разлетелись бы в разные стороны.

Скопления галактик, по-видимому, самые крупные устойчивые системы во Вселенной. Области повышенной концентрации скоплений галактик чередуются с пустотами в сотни миллионов световых лет. Местная группа (вместе с сотнями других скоплений) также расположена в сверхскоплении, центр масс которого находится в созвездии Девы. Другое сверхскопление находится в созвездии Геркулеса на расстоянии около 700 миллионов световых лет.



Понравилась статья? Поделитесь с друзьями!