Основные свойства рентгеновских лучей кратко. Рентгенологическое исследование

Рентгеновы лучи — это разновидность электромагнитных волн, к числу которых относятся также световые лучи, гамма-лучи радия и лучи, испускаемые радиоантеннами. Электромагнитные волны группируют по их длинам. В длинноволновом конце спектра их длина колеблется от 10 см до нескольких километров. С уменьшением начинается область инфракрасных или тепловых волн. Область видимого света включает длины волн (в зависимости от цвета) от 800 до 400 мм к. К ультрафиолетовой области относятся волны от 180 до 10 мм к.

Волны от 15А до 0.03А характерны для рентгеновых лучей. Меньшие длины волн, порядка 0,001 А, имеют гамма-лучи радиоактивного распада. Единица длины ангстрем (А) равна одной стомиллионной доле сантиметра.

Все эти типы излучений отличаются один от другого по природе возникновения и характеру взаимодействия с окружающей средой. Различные свойства лучей обусловлены неодинаковой длиной волны.

Электромагнитные колебания характеризуются также величиной энергии квантов (квант — отдельная порция энергии излучения). Чем меньше длина волны излучения, тем больше величина энергии квантов.

Законы распространения рентгеновых лучей подобны законам распространения света. Как световое излучение, рентгеновы лучи при взаимодействии со средой частично поглощаются, частично отражаются и рассеиваются. Но так как длина волны рентгеновых лучей мала, а энергия квантов велика, то они обладают еще другими свойствами: 1) проникают через среды различной плотности — картон, дерево, ткани организма животного и т. д. Проникающая способность рентгеновых лучей тем больше, чем короче длина волны и, следовательно, больше энергия квантов. Глубина проникновения рентгеновых лучей в ту или иную среду, или степень ослабления интенсивности рентгеновского излучения при прохождении через слой того или другого материала, зависит не только от коротковолновости или энергии квантов, но и от свойств материала: чем плотнее среда, тем больше в ней поглощаются рентгеновы лучи. Например, слой воды толщиной 35 см ослабляет интенсивность потока рентгеновых лучей, генерированных при напряжении 200 кв, в такой же степени, как слой железа 4,75 см или бетона толщиной 17,23 см;

2)вызывают свечение — люминесценцию некоторых химических соединений. Одни вещества светятся вмомент действия рентгеновых лучей, такое свечение называется флуоресценцией. Другие веществапродолжают светиться некоторое время после того,как рентгеновы лучи прекратили действие, это свечение называется фосфоресценцией;

3)подобно видимомусвету,вызывают изменения в галоидных соединениях серебра, входящих в состав фотоэмульсий.Иначеговоря,вызываютфотохимические реакции;

4)вызывают ионизацию нейтральныхатомов и молекул. В результате ионизации образуются положительно и отрицательно заряженные частицы — ионы. Ионизированная среда становитсяпроводникомэлектрического тока. Это свойство используют для измерения интенсивности лучей с помощью так называемой ионизационной камеры.

В основе биологического действия рентгеновых лучей лежит явление ионизации.

Какова природа и основные свойства рентгеновских лучей, благодаря которым их используют в медицине?

По природе рентгеновские лучи - разновидность электромагнитных колебаний, которые отличаются от других видов лучей (видимого света, инфракрасных, ультрафиолетовых, радиоволн) более короткой длиной волны.

Основные свойства рентгеновских лучей

Проникающая способность, на которой и основана рентгенодиагностика, зависит от плотности тканей. Так, костная ткань обладает наибольшей плотностью, а значит, и поглощающей способностью, поэтому при рентгенологическом исследовании даёт затемнение высокой интенсивности. Паренхиматозные органы также выглядят в виде затемнения, но они в 2 раза меньше задерживают рентгеновские лучи, и затемнение имеет среднюю интенсивность. Воздух не задерживает лучи и создаёт просветление, как, например, лёгочная ткань, которая представлена альвеолами, заполненными воздухом.

Флюоресцирующее свойство - способность вызывать свечение некоторых химических веществ. Именно благодаря этому свойству Рентген открыл Х-лучи. На этом свойстве основан метод рентгеноскопии - получение теневого изображения на рентгеновском экране, представленном куском картона, покрытым химическим составом. Рентгеновские лучи, возникнув в рентгеновской трубке и пройдя через тело человека, попадают на экран и вызывают его свечение.

Фотохимическое свойство - способность вызывать почернение плёнки благодаря разложению галоидных соединений серебра, составляющих основу фотослоя. Данное свойство позволило использовать рентгеновские лучи длярентгенографии. При этом лучи, выходя из рентгеновской трубки и проходя через тело человека, вызывают образование теневого изображения на рентгеновской плёнке.

Ионизирующее свойство заключается в том, что под действием рентгеновских лучей в любой среде, через которую они проходят, образуются ионы, по количеству которых судят о дозе излучения. На этом свойстве основан метод дозиметрии - измерение дозы с помощью различных видов специальных приборов - дозиметров. Дозиметрию осуществляют специальные ведомственные службы.

Биологическое или повреждающее действие на организм человека ионизирующих излучений вызывает необходимость защиты от него как персонала рентгеновских кабинетов, так и пациентов при осуществлении методов рентгенодиагностики. В то же время это свойство используют в лучевой терапии для лечения как опухолевых, так и неопухолевых заболеваний.

Назовите два основных метода рентгенологического исследования и два основных рентгенологических симптома.

Два основных метода рентгенологического исследования - рентгеноскопия и рентгенография.

Два основных рентгенологических симптома - это затемнение и просветление.

Позитивное изображение мы видим на экране при рентгеноскопии, при этом кости, средостение и другие плотные ткани (рис. 1.2) выглядят всегда в виде затемнения различной интенсивности, а воздух, где бы он ни находился (лёгкие, газовый пузырь желудка, кишечник, полость абсцесса и т.д.) - в виде просветления (рис. 1.3 а).

Негативное изображение получают при рентгенографии на рентгеновской плёнке после её фотообработки, здесь теневая картина обратная (рис. 1.3 б). Чтобы не запутаться в интерпретации двух рентгенологических симптомов, существует правило: любое рентгеновское изображение (на экране или рентгенограмме) анализируют как позитивное. Именно поэтому и получается, что при анализе рентгенограмм на «чёрное» надо говорить «белое» и, наоборот, на «белое» - «чёрное».

В каком приборе получают рентгеновские лучи искусственным путём? Каким образом это осуществляется?

Искусственным путём рентгеновские лучи получают в рентгеновской трубке .Это происходит при включении трубки в электрическую сеть. Поток электронов, идущий с определённой скоростью от катода к аноду, тормозится при столкновении с последним, в результате чего и возникает рентгеновское излучение, которое является тормозным.

Из каких основных блоков (комнат) состоит рентгеновский кабинет? Какие два штатива имеет рентгеновский аппарат? Может ли он иметь один совмещённый штатив?

Рентгеновский кабинет состоит из следующих основных блоков (комнат):

пультовая - комната, где расположен пульт управления аппаратом;

фотолаборатория - место, где рентгенолаборант производит обработку экспонированной рентгеновской плёнки и зарядку кассет неэкспонированной плёнкой;

рентгенодиагностический кабинет - место, где находится рентгеновский аппарат с одним (совмещённым) или двумя штативами,

а также стационарными и индивидуальными средствами защиты от рентгеновских лучей. Современный цифровой рентгеновский аппарат (рис. 1.5) может иметь один совмещённый штатив, предназначенный как для рентгеноскопии, так и для рентгенографии, управление дистанционное. - Штативы.

Штатив для рентгеноскопии (стол, на котором помещается больной, за ним - рентгеновская трубка, перед ним - экран,за которым - первое рабочее место врача-рентгенолога). Штатив можно перемещать в горизонтальное и вертикальное положения.

Штатив для рентгенографии (стол, на котором помещается больной в горизонтальном положении и вертикальная стойка), над столом - рентгеновская трубка, под ним - кассета с рентгеновской плёнкой. На этом штативе (второе рабочее место) рентгенолаборант проводит укладку больного и рентгенографию.

Стационарные и индивидуальные средства защиты от рентгеновских лучей.

Какие основные приспособления к рентгеновскому аппарату позволяют уменьшить лучевую нагрузку на врача и пациента, а также улучшить качество изображения?

Основные приспособления к рентгеновскому аппарату, которые позволяют уменьшить лучевую нагрузку и улучшить качество изображения при рентгенодиагностических процедурах, включают электронно-оптический усилитель рентгеновского изображения, компрессионный тубус, диафрагму и отсеивающую решётку.

Электронно-оптический усилитель рентгеновского изображения (УРИ) заменяет флюоресцирующий экран, на него попадают рентгеновские лучи, прошедшие сквозь тело больного. В УРИ происходит преобразование рентгеновского образа в световой и электронный. Под воздействием ускоряющего поля и в результате фокусировки с большого входного экрана на маленький выходной повышается плотность потока электронов и в 3-6 тысяч раз усиливается яркость изображения, которое через систему зеркал и линз пере- даётся на телевизионную трубку и экран телевизора, что называют рентгенотелевидением. При необходимости изображение можно записывать с помощью видеомагнитофона, кинокамеры (рентгенокинематография), фотокамеры, можно выполнить цифровую рентгеноскопию и рентгенографию, можно ввести изображение в компьютер для последующей обработки и анализа изображения на его мониторе. УРИ исключает необходимость темновой адаптации врача, что ускоряет проведение исследования, облегчает его и делает более эффективным, лучевая нагрузка на пациента и персонал уменьшается в 15 раз.

Компрессионный тубус (свинцовый цилиндр) уменьшает поле облучения, одновременно осуществляет давление (компрессию) на

тело больного, уменьшая его толщину, за счёт этого уменьшается количество рассеянных лучей, изображение становится более чёт- ким, а облучение уменьшается.

Диафрагма имеет вид свинцовых шторок, она, как и тубус, сужает поле облучения и уменьшает количество рассеянных лучей с теми же преимуществами.

Отсеивающая решётка состоит из множества свинцовых пластин, которые поглощают рассеянное излучение, а значит, улучшают качество изображения и уменьшают лучевую нагрузку.

С помощью какого аппарата осуществляют рентгенографию в рентгеновском кабинете?

Рентгенографию в рентгеновском кабинете осуществляют с помощью стационарного рентгеновского аппарата (штатив для рентгенографии). Можно производить рентгенографию и в палате, и в операционной, и в перевязочной и т.д., для этого необходим переносной (передвижной) рентгеновский аппарат, при этом кассету с плёнкой подкладывают под больного.

В чём заключаются преимущества рентгеноскопии и недостатки рентгенографии?

Преимущества рентгеноскопии и недостатки рентгенографии заключаются в следующем.

Рентгеноскопия предоставляет возможность изучения функционального состояния различных органов (сердечных сокращений, дыхательных движений рёбер, диафрагмы, изменения лёгочного рисунка и патологических теней при дыхании, перистальтических волн и сроков эвакуации бария сульфата по пищеводу, желудку и кишечнику). При рентгенографии вышеописанное невозможно, так как фиксируется только один из моментов состояния организма.

Рентгеноскопия предоставляет возможность получения объём- ного изображения за счёт полипозиционного исследования, т.е. больного изучают в вертикальном и горизонтальном положениях с различными поворотами вокруг оси. Рентгенография предоставляет суммарное изображение, так как осуществляется в основном в двух проекциях (прямой и боковой).

В процессе рентгеноскопии осуществим контроль выполнения инвазивных рентгенологических процедур, например катетеризации сердца и сосудов, что невозможно при рентгенографии.

Использование УРИ при рентгеноскопии уменьшает время проведения исследования, что имеет значение при диагностике неотложных состояний (например, при кишечной непроходимости и др.). Для проведения рентгенографии необходимо больше времени для укладки больного и фотолабораторного процесса.

Появление в последние годы цифровых рентгеновских аппаратов позволяет переносить изображение с рентгеновского экрана на экран компьютера, трансформировать его, передавать на расстояние (создается не субъективное, как раньше, а объективное впечатление об исследовании), фиксировать на диске и хранить в памяти.

Что относится к преимуществам рентгенографии и в то же время недостаткам рентгеноскопии?

К преимуществам рентгенографии и недостаткам рентгеноскопии (до использования цифрового рентгеновского аппарата) относились следующие.

Возможность визуализации при рентгенографии большего количества деталей, в том числе очень мелких - до 50-100 мкм (детали лёгочного рисунка, костной структуры и др.). Это было связано не столько с разрешающей способностью метода, сколько с неограниченным временем анализа рентгенограммы, в отличие от рентгеноскопии, где время исследования строго регламентировано, чтобы не превысить лучевую нагрузку (например, исследование лёгких - 5 мин, желудка - 10 мин, толстой кишки - 20 мин). Цифровой метод даёт возможность записать процесс рентгеноскопии на диск, многократно просматривать исследование на экране компьютера.

Лучевая нагрузка при рентгенографии ниже, чем при рентгеноскопии, за счёт более короткой экспозиции (1-3 с, а не 5-20 мин, как при рентгеноскопии).

Рентгенография предоставляет возможность создания архива с хранением рентгенограмм. Изображение же, полученное при рентгеноскопии, хранилось только в памяти врача, а это недолговечно. В последние годы с появлением цифровой рентгеноскопии этот недостаток исключён. Новый метод позволяет сохранять изображение на магнитных носителях, что создаёт удобство хранения, создание оперативного доступа к архиву и передачи изображения на расстояние как внутри больницы (в аудиторию, учебные комнаты и т.д.), так и за её пределы, например в другое лечебное учреждение этого или другого города и страны.

Рентгенография - объективный метод диагностики благодаря возможности коллегиального обсуждения рентгенограмм, в то время как рентгеноскопия раньше была субъективным методом диагностики, однако использование цифрового метода исключило и этот недостаток.

Многократная рентгенография позволяет наблюдать за патологическим процессом в динамике, проводить контроль лечения благодаря меньшей лучевой нагрузке по сравнению с рентгеноскопией.

Рентгеноскопия и рентгенография проводятся отдельно друг от друга или сочетанно? Кто и как это осуществляет?

Рентгеноскопия и рентгенография могут проводиться отдельно друг от друга на разных штативах рентгеновского аппарата. Однако во время рентгеноскопии врач-рентгенолог во все времена использовал и рентгенографию - снимки за экраном, которые фиксировали опре- делённые моменты исследования и помогали комплексно решить диагностическую задачу. Эти снимки не мог проконсультировать другой врач, который не смотрел конкретного больного за экраном, так как рентгенограммы не отражают весь процесс рентгеноскопии. Рентгенографию на соответствующем штативе осуществляет не врач, а рентгенолаборант. С появлением цифрового рентгеновского аппарата с одним штативом ситуация несколько изменилась, так как перед проведением рентгенографии рентгенолаборантом врач-рентгенолог может предварительно осуществить рентгеноскопию, чтобы более точно определить центрацию на патологический очаг для последующей рентгенографии и скорригировать укладку больного.

При каких условиях создаётся естественная контрастность? В каких случаях проводят искусственное контрастирование, что для этого необходимо?

Естественная контрастность создаётся при условиях, когда рядом с воздушными тканями или тканями, содержащими воздух, которые выглядят как просветление, находятся более плотные ткани, дающие симптом затемнения. Например, это относится к рентгенологической картине органов грудной полости, когда лёгкие выглядят прозрачными, светлыми на фоне затемнения, образованного средостением.

Искусственное контрастирование п роводят в тех случаях, когда рядом расположенные органы и ткани приблизительно одинаковы по плотности, они не дифференцируются друг от друга и тогда для их визуализации необходимо введение контрастного вещества.

Какие группы контрастных веществ используют при рентгенологических исследованиях? Что они собой представляют, в виде какого симптома, и для исследования каких органов их применяют?

При рентгенологических исследованиях используются следующие группы контрастных веществ.

Высококонтрастные вещества (рентгенопозитивные) - препараты, контрастность которых выше мягких тканей, поэтому они выглядят в виде симптома интенсивного затемнения (рис. 1.6 а).

- Бария сульфат (ВаSО 4) - применяют в виде самостоятельного препарата или в составе Бар-ВИПС ♠ , выпускают в виде белого порошка, расфасованного в пакетиках, продают в аптеках. Используют при исследовании пищевода, желудка и кишечника в виде водной взвеси. Для того чтобы БаSО 4 лучше прилипал к слизистой оболочке, в него добавляют танин (при контрастной клизме), цитрат натрия, сорбит или белок яйца (при рентгеноскопии желудка), а для увеличения вязкости - желатин или целлюлозу (при исследовании желудка), Бар-ВИПС * в своём составе уже содержит вышеперечисленные ингредиенты.

Водорастворимые препараты.

- Йодированные масла представлены эмульсией йодистых соединений в растительных маслах (персиковом, маковом), например липиодол ультра-флюид ♠ , который используют при исследовании бронхов, лимфатических сосудов, полости матки, свищевых ходов.

Низкоконтрастные (рентгенонегативные) препараты входят в группу препаратов, контрастность которых ниже контрастности мягких тканей - это газы (динитроген оксид, углекислый газ, воздух), поэтому рентгенологически они выглядят в виде просветления (рис. 1.6 б). При введении в кровь применяют углекислый газ, в полости тела и клетчаточные пространства - динитроген оксид, а в ЖКТ - воздух.

Куда и какими способами вводят контраст при искусственном контрастировании?

Варианты введения контраста при искусственном контрастировании.

В различные полости с использованием высококонтрастных, реже низкоконтрастных веществ:

В пищевод, желудок, кишечник перорально (в том числе через зонд);

В кишечник через прямую кишку;

В патологические полости, в желчный пузырь и почки путём чрескожной пункции;

В сосуды, жёлчные протоки, мочеточник, свищевые ходы и матку с помощью шприцев и катетеров.

В окружающие орган ткани путём пункции только низкоконтрастных веществ (воздух):

В средостение;

В брюшную полость;

В забрюшинное пространство.

Внутривенно с использованием высококонтрастных водорастворимых препаратов, при этом препарат из крови поглощается некоторыми органами, концентрируется там и выводится. Этот метод применяют при исследовании:

Желчного пузыря;

Жёлчных путей;

Почек и мочевых путей.

Для чего проводят биологическую пробу и в чём она заключается?

Биологическую пробу проводят для установления переносимости йодсодержащего препарата пациентом при рентгенологическом исследовании с искусственным контрастированием. Осложнениями при введении таких веществ могут быть аллергические и токсические реакции.

Биологическая проба состоит из внутривенного введения 1 мл рентгеноконтрастного препарата перед исследованием. Если в течение 5 мин нет побочных эффектов, то можно вводить всю дозу, которая варьирует от 20 до 100 мл. Для устранения аллергических и токсических реакций у пациентов в рентгеновском кабинете обязательно должны быть соответствующие ЛС.

С какой целью и периодичностью проводят флюорографию, в чём заключается её сущность и способы получения изображения?

Флюорографию проводят с целью профилактического исследования органов грудной полости 1 раз в год всем жителям планеты с 15-летнего возраста, а также в группах повышенного риска. Именно этот метод способствует выявлению ранних изменений лёгких при различных заболеваниях (туберкулёзе, кистах, опухолях и др.).

Сущность флюорографии заключается в фотографировании рентгеновского изображения с экрана. При этом изображение получают на фотоплёнке небольшого формата (110x110 мм, 100x100 мм, 70x70 мм), меньше, чем размеры рентгенограмм. Таким образом, меньше денежных затрат идёт на плёнку и её обработку, выше пропускная способность флюорографического кабинета.

Изображение на фотоплёнку поступает может поступать:

С флюоресцирующего экрана специального рентгеновского аппарата (флюорографа) на рулонную плёнку. Используют при флюорографии лёгких;

Экрана электронно-оптического усилителя рентгеновского изображения (УРИ-флюорография) при проведении рентгенологического исследования пищевода, желудка и кишечника;

Монитора цифрового флюорографа. При этом проводят цифровую обработку изображения с помощью компьютера. Полученную картину печатают на принтере на специальной плёнке или на обычной писчей бумаге и выдают на руки пациенту. Вместе с рентгеновским изображением на бумаге печатают заключение по исследованию. Это наиболее дешёвый способ получения фотокадра с пониженной в 20 раз лучевой нагрузкой на пациента.

Для чего служит, что означает и как осуществляется томография?

Томография служит для получения послойного рентгеновского изображения в виде продольного среза тела человека на заданной в сантиметрах глубине и на любом уровне (череп, шея, грудная клетка, брюшная полость, кости и суставы).

Томография означает выделение из суммарного рентгеновского изображения одного слоя, осуществляется путём движения рентгеновской трубки и кассеты по отношению к неподвижному телу пациента, который лежит на штативе. При этом происходит размазывание изображения всех объектов и деталей, кроме тех, которые находятся в заданной плоскости на уровне центра вращения системы «излучатель-плёнка»

Чем больше величина амплитуды движения этой системы, тем тоньше томографический слой. Обычно величина угла качания 20-50°.

Каковы показания и цели применения томографии?

Показания и цели применения томографии следующие.

Различные заболевания лёгких и средостения:

С целью получения изображения просветов трахеи, главных, долевых и сегментарных бронхов (рис. 1.8);

Для уточнения параметров патологических затемнений (состояния контуров, формы, структуры, в том числе для выявления участков распада, фиброза и т.д.);

Для обнаружения увеличенных лимфатических узлов корней и средостения;

При выявлении объёмных образований средостения. Томография до сих пор остаётся наиболее информативным методом

при изучении органов грудной полости.

Заболевания гортани (рак, ларингит, туберкулёз). Томография - наиболее часто применяемая методика в связи с большой диагностической значимостью.

Объёмные образования органов брюшной полости и забрюшинного пространства, при этом проводят либо самостоятельную томографию, либо в сочетании с контрастными методами (например, пневмоперитонеумом для исследования печени и ретропневмоперитонеумом при исследовании почек и надпочечников).

Заболевания черепа. В последние годы томографию проводят в основном для изучения костей свода черепа, турецкого седла, придаточных пазух носа, височной кости.

Заболевания костей и суставов. Томография нередко позволяет получить дополнительные сведения, особенно при деструктивных процессах (остеомиелите, саркоме).

. Что представляет собой метод бронхографии, инвазивный он или нет? Каковы показания и техника его проведения?

Бронхография - метод искусственного контрастирования бронхов. Относится к инвазивным методам из-за глубокого проникновения по трахеобронхиальной системе.

Показания к бронхографии:

Аномалии развития;

Бронхоэктазы;

Внутрибронхиальные опухоли доброкачественного и злокачественного характера;

Бронхоплевральные и внутренние бронхиальные свищи. Техника проведения бронхографии: в условиях рентгеновского кабинета контрастное вещество (масляное или любое водорастворимое) вводят с помощью специальных катетеров через нос в дыхательные пути после предварительной местной анестезии (1% раствор тетракаина или лидокаина) или в процессе бронхоскопии. Контрастирование проводят под контролем рентгеноскопии, заполняя сначала одну половину бронхиального дерева, а потом, откачав из него контраст, вводят катетер или бронхоскоп, а через них и препарат, в другую половину бронхиального дерева, делая серию рентгенограмм в прямых и боковых проекциях. По бронхограммам оценивают расположение, диаметр и контуры бронхов,

В чём заключается ангиография? К каким методам (инвазивным или неинвазивным) относится? Возможны ли осложнения? В каких условиях проводят, каковы показания и противопоказания?

. Ангиография заключается в искусственном контрастировании сосудов.

Ангиография - инвазивный метод за счёт глубокого проникновения по естественным путям, т.е. по сосудам. При этом возможны осложнения (кровотечение, инфекция и т.д.) и имеется значительная лучевая нагрузка.

Ангиографию проводят в условиях специальной операционной (ангиографический кабинет). Ангиографию назначают только в тех случаях, когда неинвазивные методы оказались недостаточно информативными.

Показания к применению ангиографии: подозрение на поражение сосудов (изменение их хода, расширение, сужение, закупорка) в результате различных заболеваний (воспалительных, дистрофических, опухолевых, аномалий развития).

Противопоказания к проведению ангиографии: тяжёлое общее состояние, сердечная, почечная и печёночная недостаточность, непереносимость йодсодержащих препаратов.

Каковы разновидности ангиографии, чем они обусловлены? В чём заключается техника их проведения, показания и как проводят анализ ангиограмм?

Разновидности ангиографии обусловлены тем, в какие сосуды вводят контраст, это артериография, венография (флебография), лимфография.

Техника проведения артериографии заключается во введении контраста путём пункции (исследование сонных артерий, сосудов нижних конечностей, абдоминальной аорты), но чаще путём катетеризации по методике шведского учёного Сельдингера. По этой методике сначала после местной анестезии делают разрез на коже и обнажают артерию, например бедренную, затем вводят катетер в брюшную аорту и её ветви (это целиакография, мезентерикография и др.). Если катетер проводят через артерию локтевого сгиба в правое предсердие и правый желудочек сердца, а затем в лё- гочный ствол, то это ангиопульмонография. Контрастирование сосудов контролируют рентгеноскопией, при этом раньше делали серийную рентгенографию с помощью сериографа (специального приспособления). В настоящее время изображение фиксируют с помощью цифрового рентгеновского аппарата. Показания к применению метода: подозрение на нарушение кровотока за счёт изменения артерий.

Венографию проводят двумя способами:

Прямым, когда контраст вводят путём пункции, венесекции или катетеризации по Сельдингеру;

Непрямым, имеет три разновидности:

Введение контраста в артерии, через которые после прохождения системы капилляров контрастируются вены;

Инъекция контраста в костномозговое пространство, откуда он поступает в вены;

Введение контраста в паренхиму органа путём инъекции, в результате визуалируются вены, отводящие кровь от этого органа (например, спленопортография при пункции селе- зёнки).

Венография показана при аномалиях развития вен, тромбоэмболии, тромбофлебите и его последствиях, после хирургических вмешательств на венах. Противопоказанием служит острый тромбофлебит.

Техника выполнения лимфографии (главным образом нижних конечностей, таза и забрюшинного пространства) заключается в том, что пропилиодон вводят в лимфатические сосуды путём пункции и делают рентгенограммы через 15-20 мин для их визуализации, а чтобы увидеть лимфатические узлы - через 24 ч. Лимфография показана при системных и опухолевых заболеваниях для уточнения локализации, степени и характера поражения лимфатических сосудов и узлов, что имеет значение, например, для диагностики их патологических изменений и при выборе полей для лучевой терапии рака.

При анализе ангиограмм любой разновидности обращают внимание на расположение сосудов, их диаметр и контуры. На ангиограммах отражаются фазы кровотока (артериальная, капиллярная или паренхиматозная и венозная), которые позволяют судить о состоянии гемодинамики. Патологическими симптомами на ангиограммах служат:

Сужение или ампутация сосудов с появлением окольных путей кровотока;

Гипоили гиперваскуляризация отдельных зон, появление бессосудистых дефектов или хаотических сосудов;

Аневризмы (расширения) сосудов.

. В чём сущность термографии? С помощью чего и как её проводят? Каковы патологические симптомы заболеваний и показания к применению?

Термография - метод диагностики некоторых заболеваний с помощью регистрации и оценки теплового излучения человека.

Термографию проводят с помощью специального аппарата - термографа в инфракрасном диапазоне длины волны.

Перед исследованием пациент должен от 10 до 30 мин адаптироваться к температуре помещения, где находится термограф, само исследование занимает 2-5 мин. Излучение от тела пациента с помощью специальных приспособлений (приёмника, усилителя, системы зеркал) отображается на экране монитора в виде чёрно-белого или цветного изображения (термоскопия), а затем его можно зафиксировать на фотохимической бумаге (термография).

Патологическими симптомами служат гипертермия и гипотермия.

При гипертермии разница в температуре с окружающими тканями составляет в случаях острого воспаления - 0,7-1 °С, хронического воспаления - 1-1,5 °С, гнойного процесса - 1,5-2 °С, злокачественной опухоли - 2-2,5 °С.

Симптом гипотермии наблюдают при ангиоспазме, сужении или стенозе сосудов.

Благодаря простоте исполнения, термография находит широкое применение при диспансеризации населения, особенно часто её применяют:

При различных нарушениях кровообращения;

При «остром животе»;

Для оценки активности артрита, бурсита;

При уточнении границ ожогового поражения или отморожения;

При воспалительных заболеваниях различных органов;

В случаях доброкачественных и злокачественных опухолей независимо от локализации.

Что собой представляет метод электрорентгенографии, как осуществляется, в каких случаях его используют?

Электрорентгенография - метод получения рентгеновского изображения на бумаге с большим количеством недорогих снимков без «мокрого» фотопроцесса.

Метод электрорентгенографии основан на попадании рентгеновского излучения, прошедшего через тело пациента, не на кассету с плён- кой, как при рентгенографии, а на селеновую пластину, предварительно заряженную статическим электричеством. Под действием рентгеновских лучей электрический потенциал пластины неодинаково меняется и возникает скрытое изображение. Затем на селеновую пластину укладывают бумагу и распыляют на ней чёрный порошок, который, притягиваясь к положительно заряженным участкам пластины, переводит изображение с пластины в видимое на бумаге, его закрепляют, а изоб-

ражение с пластины снимают. На одной пластине можно произвести более 100 снимков.

Электрорентгенографию в основном используют при травмах костей, когда необходимо большое количество снимков в динамике. Получение изображения на бумаге дешевле, чем на рентгеновской плёнке.

Что входит в понятие «интервенционная рентгенология»? Каковы её основные направления и в чём заключаются?

В понятие «интервенционная рентгенология» входит новое направление, которое состоит из сочетания методов рентгенодиагностики и лечебных мероприятий с использованием современных технологий, т.е. это различного рода манипуляции, которые проводят под контролем рентгеноскопии.

Интервенционная рентгенология имеет следующие основные направления.

Рентгеноэндоваскулярные вмешательства заключаются во внутрисосудистом чрезкатетерном введении контраста для диагностики (ангиография) и контроля лечебных манипуляций на сосудах (дилатация, окклюзия и т.д.):

Чрескатетерная эмболия (рис. 1.9);

Чрескатетерное удаление инородных тел из сердца или лёгоч- ной артерии;

Чрескатетерное селективное введение ЛС (для растворения тромбов, при химиотерапии, при остром панкреатите и панкреонекрозе);

Чрескатетерное введение гибкого зонда-световода для ядерного разрушения тромбов или атероматозных бляшек.

Рентгеноэндобронхиальные вмешательства заключаются в катетеризации бронхиального дерева для биопсии из участков, недоступных при бронхоскопии.

Рентгенобилиарные вмешательства осуществляют путём чрескожной пункции и катетеризации жёлчных протоков:

Для декомпрессии при обтурационной желтухе;

Введения препаратов для растворения жёлчных камней;

Устранения стриктур жёлчных протоков.

Рентгеноэндоуриальные манипуляции основаны:

На чрескожной пункции патологических и естественных полостей почки;

Катетеризации почечной лоханки при непроходимости мочеточника;

Для раздробления и удаления почечных камней и др.

Под контролем рентгеноскопии эндоэзофагеально проводят дилатацию при стриктурах пищевода и желудка.

Аспирационная биопсия под контролем рентгеноскопии показана для установления природы внутригрудных и абдоминальных образований.

Чрескожное дренирование кист и абсцессов проводят для отсасывания содержимого и введения ЛС.

Радионуклиды, используемые в in vitro исследованиях должны, в идеале, соответствовать следующим требованиям:

    Выбор радиоактивной метки не ограничен, так как методы подсчёта, используемые in vitro намного более чувствительные, чем у гамма камеры. Очень незначительные количества радиоактивности могут использоваться, а радиационная доза не является основным предметом беспокойства. Техника подсчета образцов может обладать эффективностью более 80%, для многих обычно используемых радионуклидов.

    Долгий период полураспада используемых радиофармпрепаратов более удобен для применения и подсчёта, например, йод-125 с периодом полураспада в 60 дней.

    Важны химические свойства радионуклида. Используются изотопы биологически значимых трассирующих элементов, таких как железо или кобальт. Йод удобен потому, что может быть легко встроен в большой спектр органических молекул.

    Энергия радиоактивного распада не должна быть слишком большой. Высвобождение большого количества энергии может разорвать химические связи и привести к снижению химической стабильности. Например, I-125 предпочтительнее, чем I-131, а P-33 предпочтительнее, чем P-32.

Радионуклидная диагностика - это диагностика с использованием радионуклидов или меченых ими химических соединений. Допущенные к клиническому применению радионуклиды и меченые соединения называют радиофармацевтическими препаратами (РФП). В качестве РФП используют такие нуклиды и соединения, поведение которых в организме отражает состояние его органов и функциональных систем. В РФП используют ничтожно малые в весовом отношении количества радионуклидов, которые получили наименование индикаторных количеств и не нарушают нормального течения физиологических и биохимических процессов. Все радионуклидные методики связаны с введением РФП в организм больного или в извлеченные из организма ткани и жидкости. В первом случае говорят о радионуклидном исследовании живого и целостного организма (исследование in vivo), во втором - об исследовании в пробирке (исследование in vitro). Введенные в организм радионуклиды являются источником излучения. Оно может быть зарегистрировано специальными приборами (радиодиагностические приборы). Регистрация производится в виде цифровых показателей скорости счета (радиометрия), на движущейся ленте в форме кривой (радиография) или путем получения изображения органа на экране, бумаге или пленке (гамма-топография). Чаще всего используют внутривенное введение РФП. При этом препарат первоначально равномерно распределяется с кровью по всему организму, а затем начинает концентрироваться в отдельных («критических») органах. Этот процесс регистрируют посредством детекторов, размещенных над исследуемым органом. При радиометрии определяют радиоактивность части тела (органа), находящейся в «поле зрения» детектора радиодиагностического прибора. Это позволяет установить количество радионуклида, заключенного в исследуемом участке. С помощью радиографии изучают динамику радиоактивности в части тела (органе) и таким образом судят о сроках и интенсивности накопления и выведения радионуклида. В этом случае можно говорить о клинико-физиологическом (функциональном) исследовании, основной физической категорией которого является определение временных параметров, хронограммы (от греч. chronos- время). С помощью исследований такого типа судят о движении крови по камерам сердца и по сосудам, о некоторых функциях легких, печени, почек и т. д. Гамма-топография (от греч. topos - место, пространство) дает возможность определить распределение радионуклида в органе. По полученным изображениям удается судить о локализации, величине и положении органа и распределении в нем функционирующей паренхимы. Это - клинико-анатомическое исследование, основной физической категорией которого является определение пространственных параметров. Но серия гамматопограмм позволяет определять сроки и характер накопления и выведения радионуклида из органа, т. е. так же, как и при радиографии, судить о его функции. Топограммы дают возможность обнаруживать патологические очаги, в которых РФП не накапливается («холодный» очаг) или, наоборот, накапливается больше, чем в окружающих тканях («горячий» очаг). Исследование в пробирке выгодно отличается тем, что в организм больного не надо вводить радионуклид. Врач исследует взаимодействие РФП с составными частями биологических сред организма (кровь, моча, слюна, спинномозговая жидкость и др.) определяя количественное содержание в них биологически активных веществ (гормоны, лекарственные препараты и др.). Клиническое использование этих методик, основанных на конкурентном связывании (в частности, на взаимодействии типа антиген - антитело), позволяет определить и количественно оценить гормональный профиль больного, а также исследовать ряд биохимических показателей. Как правило, назначение на радионуклидное исследование и оформление направления больного осуществляет врач-клиницист. Он делает это в тех случаях, когда по данным клинического осмотра и лабораторных анализов не удается распознать болезнь и достаточно полно охарактеризовать состояние больного и требуется применить радионуклидную методику.

Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении между ее электродами. Несмотря на то, что трубка находилась в черном ящике, Рентген обратил внимание, что флуоресцентный экран, случайно находившийся рядом, всякий раз светился, когда действовала трубка. Трубка оказалась источником излучения, которое могло проникать через бумагу, дерево, стекло и даже пластинку алюминия толщиной в полтора сантиметра.

Рентген определил, что газоразрядная трубка является источником нового вида невидимого излучения, обладающего большой проникающей способностью. Ученый не мог определить было ли это излучение потоком частиц или волн, и он решил дать ему название X-лучи. В последствие их назвали рентгеновскими лучами

Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Длина волны X-лучей колеблется от 70 нм до 10 -5 нм . Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм ), называются мягкими . Длина волны 1 - 10нм характеризует жесткие X-лучи. Они обладают огромной проникающей способностью.

Получение рентгеновского излучения

Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет собой вакуумизированный стеклянный баллон с расположенными в нем катодом и анодом. Разность потенциалов между катодом и анодом (антикатодом), достигает несколько сотен киловольт. Катод представляет собой вольфрамовую нить, подогреваемую электрическим током. Это приводит к испусканию катодом электронов в результате термоэлектронной эмиссии. Электроны ускоряются электрическим полем в рентгеновской трубке. Поскольку в трубке очень небольшое число молекул газа, то электроны по пути к аноду практически не теряют своей энергии. Они достигают анода с очень большой скоростью.

Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода. Большая часть энергии электронов рассеивается в виде тепла. Поэтому аноде необходимо искусственно охлаждать. Анод в рентгеновской трубке должен быть сделан из металла, имеющего высокую температуру плавления, например, из вольфрама.

Часть энергии, не рассеивающая в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи). Таким образом, рентгеновские лучи являются результатом бомбардировки электронами вещества анода. Есть два типа рентгеновского излучения: тормозное и характеристическое.

Тормозное рентгеновское излучение

Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В результате в энергию рентгеновского излучения переходят различные части их кинетической энергии.

Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Рентгеновские лучи не могут иметь энергию большую, чем кинетическая энергия образующих их электронов. Наименьшая длина волны рентгеновского излучения соответствует максимальной кинетической энергии тормозящихся электронов. Чем больше разность потенциалов в рентгеновской трубке, тем меньшие длины волны рентгеновского излучения можно получить.

Характеристическое рентгеновское излучение

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр . Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атомов и выбивает один из их электронов. В результате появляется свободное место, которое может быть заполнено другим электроном, спускающимся с одной из верхних атомных орбиталей. Такой переход электрона с более высокого на более низкий энергетический уровень вызывает рентгеновское излучение определенной дискретной длины волны. Поэтому характеристическое рентгеновское излучение имеет линейчатый спектр . Частота линий характеристического излучения полностью зависит от структуры электронных орбиталей атомов анода.

Линии спектра характеристического излучения разных химических элементов имеют одинаковый вид, поскольку структура их внутренних электронных орбитальных идентична. Но длина их волны и частота, благодаря энергетическим различиям между внутренними орбиталями тяжелых и легких атомов.

Частота линий спектра характеристического рентгеновского излучения изменяется в соответствие с атомным номером металла и определяется уравнением Мозли: v 1/2 =A (Z-B ), где Z - атомный номер химического элемента, A и B - константы.

Первичные физические механизмы взаимодействия рентгеновского излучения с веществом

Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма:

1. Когерентное рассеяние . Эта форма взаимодействия происходит, когда фотоны рентгеновских лучей имеют меньшую энергию, чем энергия связи электронов с ядром атома. В таком случае, энергия фотона оказывается не достаточной для освобождения электронов из атомов вещества. Фотон не поглощается атомом, но изменяет направление распространения. При этом длина волны рентгеновского излучения остается неизменной.

2. Фотоэлектрический эффект (фотоэффект) . Когда фотон рентгеновского излучения достигает атома вещества, он может выбить один из электронов. Это происходит в том случае, если энергия фотона превышает энергию связи электрона с ядром. При этом фотон поглощается, а электрон высвобождается из атома. Если фотон несет большую энергию, чем необходимо для высвобождения электрона, он передаст оставшуюся энергию освобожденному электрону в форме кинетической энергии. Этот феномен, называемый фотоэлектрическим эффектом, происходит при поглощении относительно низкоэнергетического рентгеновского излучения.

Атом, который теряет один из своих электронов, становится положительным ионом. Продолжительность существования свободных электронов очень коротка. Они поглощаются нейтральными атомами, которые превращаются при этом в отрицательные ионы. Результатом фотоэлектрического эффекта является интенсивная ионизация вещества.

Если энергия фотона рентгеновского излучения меньше, чем энергия ионизации атомов, то атомы переходят в возбужденное состояние, но не ионизируются.

3. Некогерентное рассеяние (эффект Комптона) . Этот эффект обнаружен американским физиком Комптоном. Он происходит, если вещество поглощает рентгеновские лучи малой длины волны. Энергия фотонов таких рентгеновских лучей всегда больше, чем энергия ионизации атомов вещества. Эффект Комптона является результатом взаимодействия высокоэнергетического фотона рентгеновских лучей с одним из электронов внешней оболочки атома, который имеет сравнительно слабую связь с атомным ядром.

Высокоэнергетический фотон передает электрону некоторую часть своей энергии. Возбужденный электрон высвобождается из атома. Оставшаяся часть энергии первоначального фотона излучается в виде фотона рентгеновского излучения большей длины волны под некоторым углом к направлению движения первичного фотона. Вторичный фотон может ионизировать другой атом и т.д. Эти изменения направления и длины волны рентгеновских лучей известны как эффект Комптона.

Некоторые эффекты взаимодействия рентгеновского излучения с веществом

Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок рентгеновских лучей направить на непрозрачные объекты, то можно наблюдать как лучи пройдут сквозь объект, поставив экран, покрытый флюоресцирующим веществом.

Флуоресцентный экран можно заменить фотографической пленкой. Рентгеновские лучи оказывают на фотографическую эмульсию такое же действие, как и свет. Оба метода используются в практической медицине.

Другим важным эффектом рентгеновского излучения является их ионизирующая способность. Это зависит от их длины волны и энергии. Этот эффект обеспечивает метод для измерения интенсивности рентгеновского излучения. Когда рентгеновские лучи проходят через ионизационную камеру, возникает электрический ток, величина которого пропорциональна интенсивности рентгеновского излучения.

Поглощение рентгеновского излучения веществом

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e -μd , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d - толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

τ = kρZ 3 λ 3 , где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z - атомный номер элемента, λ - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.

Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Применение рентгеновского излучения в медицине

Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность, одно из основных свойств рентгеновского излучения . В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей (рентгенодиагностика).

Рентгеноскопия . Рентгеновский прибор состоит из источника рентгеновских лучей (рентгеновской трубки) и флуоресцирующего экрана. После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Например, врач непосредственно может пронаблюдать движения легких, прохождение контрастного вещества по желудочно-кишечному тракту. Недостатки этого метода - недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры.

Флюорография . Этот метод состоит в получении фотографии с изображением части тела пациента. Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения.

Рентгенография. (Радиография рентгеновских лучей). Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Фотографии делаются обычно в двух перпендикулярных плоскостях. Этот метод имеет некоторые преимущества. Рентгеновские фотографии содержат больше деталей, чем изображение на флуоресцентном экране, и потому они являются более информативными. Они могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии.

Компьютерная рентгеновская томография . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.

Первое поколение компьютерных томографов (КT) включает специальную рентгеновскую трубку, которая прикреплена к цилиндрической раме. На пациента направляют тонкий пучок рентгеновских лучей. Два детектора рентгеновских лучей прикреплены к противоположной стороне рамы. Пациент находится в центре рамы, которая может вращаться на 180 0 вокруг его тела.

Рентгеновский луч проходит через неподвижный объект. Детекторы получают и записывают показатели поглощения различных тканей. Записи делают 160 раз, пока рентгеновская трубка перемещается линейно вдоль сканируемой плоскости. Затем рама поворачивается на 1 0 , и процедура повторяется. Запись продолжается, пока рама не повернется на 180 0 . Каждый детектор записывает 28800 кадров (180x160) в течение исследования. Информация обрабатывается компьютером, и посредством специальной компьютерной программы формируется изображение выбранного слоя.

Второе поколение КT использует несколько пучков рентгеновских лучей и до 30 их детекторов. Это дает возможность ускорить процесс исследования до 18 секунд.

В третьем поколении КT используется новый принцип. Широкий пучок рентгеновских лучей в форме веера перекрывает исследуемый объект, и прошедшее сквозь тело рентгеновское излучение записывается несколькими сотнями детекторов. Время, необходимое для исследования, сокращается до 5-6 секунд.

КТ имеет множество преимуществ по сравнению с более ранними методами рентгенодиагностики. Она характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.

Лучший на свете оптик - Природа

Вскоре после физики начали склоняться к мысли, что рентгеновские лучи очень похожи по своим свойствам на обычные оптические лучи, только у них длина волны меньше. Если длина волны зеленого света составляет 0,55 микрона, то длина волны рентгеновских лучей, видимо, в несколько тысяч раз меньше!

Чтобы доказать эти теоретические прогнозы, необходимо подтвердить, что лучи Рентгена могут преломляться, огибать препятствия, взаимодействовать друг с другом, как это делают обычные оптические лучи. Вот если бы удалось с помощью каких-либо удивительных крошечных призм или дифракционных решеток получить спектр рентгеновских лучей!

В 1912 году ученика Рентгена Макса Лауэ озарила идея: дифракционной решеткой для рентгеновских лучей могла бы стать пластина кристаллов. Промежутки между атомами, образующими кристалл, сравнимы с предполагаемой длиной волны рентгеновских лучей. Атомы в кристалле расположены упорядоченно, образуя стройные шеренги и колонны. Ряды атомов чередуются с той же регулярностью, что и штрихи на стекле в дифракционной решетке. Сама Природа создала оптические приборы для рентгеновских лучей!

Разнообразны по форме и окраске природные и искусственные кристаллы, среди которых выделяются красные стержни рубина, выращенного в лаборатории.

В экспериментальной проверке этой удачной идеи Максу Лауэ помогали Вальтер Фридрих и Пауль Книппинг. Используя разрядную трубку и несколько свинцовых экранов с маленькими отверстиями, ученые получили узкий пучок рентгеновских лучей и направили его по очереди на кристаллы различных материалов: сульфида цинка, поваренной соли, сульфата никеля. Фотопластинку сначала расположили перед кристаллами, но отраженного потока рентгеновских лучей не обнаружили. Затем поставили фотопластинку за кристаллами, проявили ее и увидели симметричный узор из мелких темных пятен, расположенных вокруг сравнительно большого центрального пятна. По расчетам, сделанным Лауэ, именно такой должна быть картина дифракции, огибания рентгеновскими лучами сложной пространственной решетки, состоящей из многих атомов!

Прошел еще один год, ив 1913 году Г. В. Вульф в России, отец и сын Брэгги в Англии повторили опыты Лауэ и его друзей с одним существенным изменением: они направили рентгеновские лучи на кристаллы под разными углами к их поверхности. Сравнение рентгеновских изображений, полученных при этом на фотопластинках, позволило исследователям точно определить расстояния между атомами в кристаллах.

Так в физику пришли два фундаментальных научных факта: рентгеновские лучи обладают такими же волновыми свойствами, как и световые лучи; с помощью рентгеновских лучей можно исследовать не только внутреннее строение человеческого тела, но и заглянуть в глубь кристаллов.

Определить структуру любого кристалла можно с помощью рентгеновских фотографий.

По рентгеновским снимкам ученые теперь могли легко отличить кристаллы от аморфных тел, обнаружить сдвиги цепочек атомов в глубине непрозрачных для света металлов и полупроводников, определить, какие изменения в структуре кристаллов происходят при сильном нагревании и глубоком охлаждении, при сжатии и растяжении.

Техника XX века не могла бы без рентгеновского анализа получить в свое распоряжение то великолепное созвездие разнообразных материалов, которыми она располагает сегодня.

Благодаря возможности разглядеть то, что происходит внутри твердого тела, исследователи поняли причины многих «странностей» в поведении материалов, которые до тех пор казались необъяснимыми. Пузырьки воздуха в сварном шве, глубинная трещинка в уставшем металле, следы быстрой заряженной частицы в полупроводниковом кристалле стали видны как на ладони.

Здесь, вероятно, уместнее всего вспомнить слова римского поэта Вергилия, которые любил повторять Томас Юнг: «Счастлив тот, кто сумел вещей постигнуть причины…»

Если бы вы были ученым или обывателем в 1896 г. и заинтересовались недавно открытыми рентгеновскими лучами , вас наверняка в равной степени заинтриговали и позабавили бы некоторые теории, касающиеся их природы.

Например, физик Альберт Майкельсон сделал любопытное предположение, назвав рентгеновские лучи «электромагнитными вихрями, проходящими сквозь эфир». Томас Эдисон предложил версию, которая в итоге также была отброшена как «вздорная»: рентгеновские лучи — это «высокочастотные звуковые волны». Другие теории утверждали, что рентгеновское излучение — это катодные лучи (несмотря на то, что факты этому явно противоречили).

Интересно, что ближе всех к разгадке подошел сам Вильгельм Рентген в своей первой работе 1895 г., когда заметил, что лучи идентичны свету, хотя бы потому, что способны создавать изображение на фотопленке.

Кроме того, он заметил, чем рентгеновские лучи отличаются от света: их нельзя разложить с помощью призмы или отклонить магнитом либо другими инструментами.

На фоне этих и других противоречивых наблюдений вопрос об истинной природе рентгеновских лучей влился в русло более широких дебатов, развернувшихся в то время между физиками, которые пытались определить, состоит свет из частиц или из волн.

Вскоре новые данные продемонстрировали, что рентгеновские лучи действительно представляют собой некую разновидность света — точнее, электромагнитного излучения, проходящего через пространство в виде волн. Поначалу Рентген и другие ученые сомневались в этом, поскольку длина волны рентгеновского излучения невероятно мала: примерно в 1000 раз меньше, чем у видимого света.

Окончательное доказательство было получено 23 апреля 1912 г. Физик Макс фон Лауэ обдумывал, как доказать, что рентгеновские лучи действительно являются электромагнитными волнами и одновременно — хотя эта проблема вроде бы была совершенно не связана с первой — что кристаллы обладают упорядоченной атомной структурой (кристаллической решеткой).

Блестящее озарение позволило фон Лауэ совместно с Вальтером Фридрихом и Паулем Книппингом ответить на оба вопроса в ходе одного эксперимента. Он пропустил рентгеновский луч через кристалл сульфата меди, предположив, что, если атомы действительно располагаются в виде решетки — и лучи действительно состоят из волн, — пространство между атомами окажется достаточно мало, чтобы рассеять и отклонить коротковолновые лучи.

Эксперимент фон Лауэ подтвердил оба предположения. Увидев отчетливый «интерференционный» рисунок, который оставил луч, пройдя сквозь кристалл и засветив фотографическую пластину, фон Лауэ сделал выводы: во-первых, атомы в кристалле упорядочены в виде решетки; во-вторых, рентгеновские лучи распространяются в виде волн, а следовательно, являются одной из форм света. За это историческое открытие фон Лауэ в 1914 г. получил Нобелевскую премию по физике.

Джон Кейжу. Открытия, которые изменили мир .



Понравилась статья? Поделитесь с друзьями!