Параллельное прямоугольное проецирование. Методы проецирования: центральное и параллельное проецирование

Рассматриваемые вопросы:

  • 1. Понятие о проецировании
  • 4. Метод Монжа
  • 5. Аксонометрическая проекция

Понятие о проецировании. Изображения предметов на чертежах получают проецированием. Проецирование есть процесс построения изображения предмета на плоскости при помощи проецирующих лучей. В результате этого процесса получается изображение, называемое проекцией .

Слово «проекция» в переводе с латинского означает бросание вперед, вдаль. Проекцию можно наблюдать, рассматривая тень, отбрасываемую предметом на поверхность стены при освещении этого предмета источником света. компьютерный графика проецирование эскизирование

Под проецированием подразумевается процесс, в результате которого получаются изображения (проекции на плоскости), т.е. когда через характерные точки фигуры проводятся лучи до пересечения их с плоскостью, и полученные точки от пересечения лучей с плоскостью соединяют прямыми или кривыми линиями соответствующим образом.

Центральное (коническое) проецирование. В пространстве будет плоскость П1, назовем ее плоскостью проекции или картинной плоскостью. Возьмем какую-либо точку S, не принадлежащую плоскости проекции П1. Назовем ее центром проекции (Рис. 19).

Чтобы спроецировать фигуру АВС, называемую оригиналом, надо провести из точки S через точки А, В, С прямые, называемые проецирующими лучами, до пересечения их с плоскостью П1 в точках А1, В1, С1. Соединив их последовательно прямыми линиями, получим фигуру А1В1С1. Это будет центральная проекция А1В1С1 данной фигуры АВС на плоскость проекции П1.

Рис.19.

Параллельное (цилиндрическое) проецирование. При параллельном проецировании, как и в случае центрального проецирования, берут плоскость проекций П1, а вместо центра проекций S задают направление проецирования.

Задаем направление проецирования S не параллельно плоскости П1, считая, что точка S - центр проецирования - удалена в бесконечность. Оригинал проецирования та же фигура АВС, расположенная в пространстве. Чтобы спроецировать фигуру АВС, проводим через точки А, В, С параллельно направлению проецирования S проецирующие лучи до пересечения их с плоскостью проекцией П1 в точках А1,В1,С1. Точки А1,В1,С1 соединим прямыми линями, получим фигуры А1В1С1; это будет параллельная проекция фигуры АВС на плоскость П1. Таков процесс параллельного проецирования (Рис. 20).

Рис.20.

Если оригиналом является прямая линия, то все проецирующие лучи точек этой прямой будут располагаться в одной плоскости, называемой проецирующей плоскостью.

Плоскость Р, проходящая через проецирующие прямые ВВ1 и СС1, пересекает плоскость проекции П1 по прямой. Эту прямую можно рассматривать как проекцию прямой, заданной точками В и С. В зависимости от направления проецирования S к плоскости проекций параллельное проецирование разделяют на прямоугольные (ортогональные) и косоугольные проецирование (Рис. 21).


Рис.21 Прямоугольное и косоугольное проецирование

Прямоугольное проецирование , когда направление проецирования S с плоскостью проекций составляет прямой угол (Рис. 21а).

Косоугольное проецирование , когда направление проецирования составляет с плоскостью проекции угол меньше 90 ?(Рис. 21б).

Метод Монжа . Сведения и приемы построений, обусловливаемые потребностью в плоских изображениях пространственных форм, накапливались постепенно еще с древних времен. В течение продолжительного периода плоские изображения выполнялись преимущественно как изображения наглядные. С развитием техники первостепенное значение приобрел вопрос о применении метода, обеспечивающего точность и удобоизмеримость изображений, т. е. возможность точно установить место каждой точки изображения относительно других точек или плоскостей и путем простых приемов определить размеры отрезков линий и фигур. Постепенно накопившиеся отдельные правила и приемы построений таких изображений были приведены в систему и развиты в труде французского ученого Гаспара Монжа, изданном в 1799 г.

Прямоугольное проецирование есть частный случай параллельного проецирования. Метод ортогональных проекций называют методом Монжа . Этот метод является наиболее распространенным при составлении технических чертежей. Он не дает наглядности изображения, но зато является простым и удобным при выполнении чертежа и дает высокую точность. Метод Монжа - это прямоугольная параллельная проекция на две взаимно перпендикулярные плоскости проекций. Такой комплекс двух связанных между собой ортогональных проекций выявляет положение проецируемого предмета в пространстве. Изложенный Монжем метод обеспечивает выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей (рисунок 22).

Слово прямоугольный часто заменяют словом ортогональный, образованным из слов древнегреческого языка, обозначающих «прямой» и «угол». В дальнейшем изложении термин ортогональные проекции будет применяться для обозначения системы прямоугольных проекций на взаимно перпендикулярных плоскостях. На рисунке 22 изображены две взаимно перпендикулярные плоскости. Примем их за плоскости проекций. Одна из них, обозначенная буквой П1, расположена горизонтально; другая, обозначенная буквой П2, -- вертикально. Эту плоскость называют фронтальной плоскостью проекций, плоскость П1 называют горизонтальной плоскостью проекций . Плоскости проекций П1, и П2 образуют систему П1, П2.

Линия пересечения плоскостей проекций называется осью проекций . Ось проекций разделяет каждую из плоскостей П1, и П2 на полуплоскости. Для этой оси будем применять обозначение х или обозначение в виде дроби П2 / П1.

Рис.22.

Аксонометрическая проекция . Если предмет с отнесенными к нему осями прямоугольных координат расположить перед плоскостью проекций и проецировать параллельными лучами на одну плоскость, которую в этом случае называют картинной, то получают аксонометрическую проекцию.

На рис. 23 показаны куб, отнесенные к нему оси прямоугольных координат х0,у0,z0, плоскость проекций Р и аксонометрическое изображение куба.

Рис.23. Образование аксонометрических проекций: а и б - фронтальной диметрической; в и г - изометрической

Аксонометрия - слово греческое, в переводе означает измерение по осям. При построении аксонометрических проекций размеры откладывают вдоль осей х,у,z.

Аксонометрические проекции достаточно наглядны, поэтому в ряде случаев они применяются для пояснения прямоугольных проекций сложных машин и механизмов и их отдельных деталей. При аксонометрическом проецировании фигура связывается с пространственной системой координатных осей, затем эту фигуру с осями координат проецируют на одну плоскость. Эту плоскость называют плоскостью аксонометрических проекций.

Аксонометрические проекции, полученные прямоугольным проецированием фигуры с координатными осями, называют прямоугольными, а полученные при косоугольном проецировании - косоугольными.

Плоскостью проекций называют плоскость, на которой получают проекцию предмета.

Параллельное проецирование

Наглядность - ценное свойство центрально проекционных изображений. Однако на практике большое значение имеют и другие качества проекционных чертежей, в частности, простота построения и обратимость. В этом отношении центрально проекционные чертежи не являются наиболее удобными. Поэтому большим распространением пользуется способ параллельного проециро­вания для построения изображений пространственных фигур.

Задаём некоторую плоскость П′ , являющуюся плоскостью проекций, и направление проецирования s , не параллельное плоскости проекций П′ в соответствии с рисунком 1.2.2. Для проецирования какой-либо точки А пространства проводим через неё про­ецирующую прямую АА′ , параллельную направлению проецирования s . Точка пересечения А′ проецирующей прямой с плоскостью П′ являетсяпараллельной проекцией точки А на плоскость П′ .


Рисунок 1.2.3 – Параллельная проекция параллельных в пространстве

Построив для прямых АВ и CD проецирующие плоскости AА¢В¢B и CС¢D¢D , заметим, что эти плоскости параллельны, как плоскости, имеющие уг­лы с соответственно параллельными сторонами (AB||CD ; BВ¢ ||DD¢ ). Поэтому проецирующие плоскости пересекают плоскость проекций П" по двум парал­лельным между собой прямым.

2) Отношение отрезков, лежащих на параллельных прямых, со­храняется в параллельной проекции .

Пусть АВ и CD – отрезки, лежащие на параллельных прямых. Построим их проекции на плоскость П¢ при направлении проецирования s (рисунок 1.2.3). Про­ведём в проецирующих плоскостях отрезки А¢В1 и С¢D1 , соответственно парал­лельные и равные отрезкам АВ и СD . Треугольники А¢B¢B1 и С¢D¢D1 являются подобными, т.к. их соответственные стороны параллельны. Отсюда


Отсюда следует, что отношение, в котором точка В делит отрезок АС. со­храняется в проекции для точки В′, делящей отрезок А"С′.


Рисунок 1.2.4 – Деление отрезка в заданном соотношении при параллельном проецировании

Изображение объектов трехмерного пространства на плоскости получают методом проецирования.

Проецирование - это процесс, в результате которого получают изображения, представляющие собой проекции на плоскости.

Аппарат проецирования включает в себя изображаемые объекты - точки А, В, проецирующие лучи i и плоскость проекций П", на которой получается изображение объектов в соответствии с рисунком 1.2.

Построить проекции предметов на чертеже можно двумя способами: центральным и параллельным.

Наименование способа проецирования Сущность способа
Центральное проецирование Все лучи, проецирующие предмет, исходят из одной точки Р, называемой центром проекций (рисунок 1.3). Полученные проекции А", В", С" называются центральными проекциями точек А, В, С.
Параллельное проецирование Все проецирующие лучи проходят параллельно наперед заданному направлению S , а значит и друг другу (рисунок 1.4). Это можно уподобить случаю центрального способа проецирования, когда центр проекций S удален в бесконечность и все проецирующие лучи становятся параллельными. При построении проекций А", В", С" этим способом они называются параллельными проекциями точек А, В, С.
Рисунок 1.3 Рисунок 1.4

Свойства проецирования

Проекции, полученные при центральном и параллельном проецировании, обладают рядом свойств:

1) Проекция точки есть точка. При заданном центре Р (или направлении S) проецированию любой точки А пространства соответствует иа плоскости проекций п" единственная точка А". При этом проекция точки В, лежащей в плоскости проекций, совпадает с самой точкой в соответствии с рисунком 1.2.
2) Проекция прямой есть прямая. Проекция прямой определена, если известны проекции хотя бы двух ее точек (рисунок 1.5). Если в пространстве прямая параллельна плоскости проекции П", то ее проекция параллельна самой прямой (рисунок 1.6). При этом при центральном проецировании проекции отрезков пропорциональны самим отрезкам, а при параллельном - равны им. При параллельном проецировании сохраняется отношение величин отрезков прямой и их проекций (рисунок 1.7).

Рисунок 1.5

Рисунок 1.6 Рисунок 1.7

Если плоскость параллельна плоскости проекций, то проекции ее плоских фигур при центральном проецировании подобны самим фигурам (рисунок 1.9, а), а при параллельном - равны им (рисунок 1.9, б).

Рисунок 1.9

1.5 Инварианты параллельного проецирования (прямоугольное проецирование)

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рисунок 1.10). Объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция - катетом: А"В" = AB cos a..

Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то при ортогональном проецировании прямой угол проецируется на эту плоскость в прямой же угол.

Обратимость чертежа. Проецирование на одну плоскость проекций дает изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А (рисунок 1.8) не определяет положение самой точки в пространстве, так как не известно, на какое расстояние она удалена от плоскости проекций п". Любая точка проецирующего луча, проходящего через точку А, будет иметь своей проекцией точку А". Наличие одной проекции создает неопределенность изображения. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображение дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа. В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексные чертежи) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрические чертежи).

Рисунок 1.12
Внимание, вопрос! Подумайте, проанализируйте предложенные чертежи и докажите справедливость перечисленных инвариантов центрального и параллельного проецирования (рисунок 1.12).
Запомните! 1 Рассмотренные свойства (инварианты) параллельного проецирования сохраняются при любом направлении проецирования. 2 Метрические характеристики геометрических фигур при параллельном проецировании в общем случае не сохраняются (происходит искажение линейных и угловых величин).

Контрольные вопросы

1 Какие геометрические элементы включают в себя аппарат проецирования?

2 Какие способы проецирования вы знаете?

3 Какие проецирующие поверхности могут создавать проецирующие лучи?

4 Перечислите основные свойства проекций.

5 Чему равна проекция угла, плоскость которого параллельна плоскости проекций при центральном проецировании?

6 В какие геометрические образы вырождаются проекции прямых и плоскостей поверхностей, занимающих проецирующее положение?

7 Как читается теорема о проецировании прямого угла?

8 Как вы понимаете термин «обратимый чертеж? Чем достигается обратимость чертежа?
ЛЕКЦИЯ №2

Параллельное проецирование можно рассматривать как частный случай центрального проецирования.

Если центр проекций при центральном аппарате проецирования перенести в бесконечность, то проецирующие лучи можно считать параллельными. Отсюда аппарат параллельного проецирования состоит из плоскости проекций П и направления Р. При центральном проецировании проецирующие лучи выходят из одной точки, а при параллельном проецировании — параллельны между собой.

В зависимости от направления проецирующих лучей параллельное проецирование может быть косоугольным, когда проецирующие лучи наклонены к плоскости проекций, и прямоугольным (ортогональным), когда проецирующие лучи перпендикулярны к плоскости проекций.

Рассмотрим пример косоугольного параллельного проецирования.

Построим параллельную проекцию А1В1 отрезка АВ, на плоскость П1, при заданном направлении проецирования Р не П1. Для этого необходимо провести проецирующие прямые через точки А и В, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1 и В1 точек А и В. Соединив параллельные проекции А1 и В1 мы получим параллельную проекцию А1В1 отрезка АВ.

Аналогично можно построить параллельную проекцию А1В1С1D1 четырёхугольника ABCD на плоскость П1, при заданном направлении проецирования Р не перпендикулярных П1.

Для этого необходимо провести проецирующие прямые через точки А, В, C, D, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1, В1, С1, D1 точек A, B, C, D. Соединив параллельные проекции А1, В1, С1, D1 мы получим параллельную проекцию А1В1С1D1 четырёхугольника ABCD.

Свойства проекций при параллельном проецировании:

Первые шесть свойств центрального проецирования справедливы и для параллельного проецирования. Перечислим ещё несколько свойств присущих параллельному проецированию:

1. Проекции параллельных прямых параллельны.

Из рисунка видно, что прямые АА 1 , ВВ 1 , СС 1 и DD 1 образуют две параллельные плоскости a и b . Эти две плоскости пересекаются с П 1 . Следовательно, линии пересечения их А 1 В 1 и С 1 D 1 будут параллельны.

2. Если точка делит длину отрезка в отношении m:n , то проекция этой точки делит длину проекции отрезка в том же отношении.

Пусть точка С принадлежит отрезку АВ , причем |АС| : |СВ| = 2: 1 . Построим параллельную проекцию А 1 В 1 отрезка АВ . Точка С 1 А 1 В 1 . Проведём АC’ || А 1 C 1 и CB’ || C 1 B 1 , получим два подобных треугольника АCC’ и CBB’ . Из их подобия следует пропорциональность сторон: |АC| : |СВ| = |AC’| : |CB’| , но |CB’| = |С1В1| , а |AC’| = |А 1 C 1 | , отсюда |АC| : |СВ| = |А 1 С 1 | : |C 1 B 1 | .

3. Плоская фигура, параллельная плоскости проекций, проецируется без искажения.

Возьмём треугольник АВС и спроецируем его на две параллельные плоскости проекций П 1 ‘ и П 1 . Так как длины отрезков равны |А 1 А 1 ‘| = |В 1 В 1 ‘| = |С 1 С 1 ‘| и отрезки параллельны, то четырёхугольники А 1 А 1 ‘ В 1 В 1 ‘, В 1 В 1 ‘ С 1 С 1 ‘, С 1 С 1 ‘А 1 А 1 ‘ являются параллелограммами. Следовательно, противоположные стороны их равны по длине |А 1 В 1 | = |А 1 ‘ В 1 ‘|, |В 1 С 1 | = |В 1 ‘ С 1 ‘|, |А 1 С 1 | = |А 1 ‘ С 1 ‘| , а значит, треугольники равны.

Аналогично, тоже самое можно доказать и для любой другой плоской фигуры. Параллельное проецирование, в отличие от центрального, обладает меньшей наглядностью, но обеспечивает простоту построения и большую взаимосвязь с оригиналом.

Параллельное проецирование (рис. 1.6) можно рассматривать как частный случай центрального проецирования, при котором центр проецирования удален в бесконечность (S ∞). При параллельном проецировании применяют параллельные проецирующие прямые, проведенные в заданном направлении относительно плоскости проек-

ций. Если направление проецирования перпендикулярно плоскости проекций, то проекции называют прямоугольными или ортогональными. в остальных случаях – косоугольными (на рис. 1.6 направление проецирования указано стрелкой под углом к плоскости проекций ).

При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают следующие новые свойства.

1. Параллельные проекции взаимно параллельных прямых параллельны, а отношение длин отрезков таких прямых равно отношению длин их проекций.

Если прямые MN и KL (рис. 1.7) параллельны, то проецирующие плоскости и параллельны, так как пересекающиеся прямые в этих плоскостях взаимно параллельны: – по условию,

Следовательно, проекции и параллельны как линии пересечения параллельных плоскостей р и у с плоскостью л.

Отметим на прямой MN произвольный отрезок А В и на прямой KL произвольный отрезок CD. Проведем в плоскости р через точку А прямую и в плоскости у через точку С прямую С – . Отрезки как отрезки параллельных между параллельными. Отрезки и, следовательно, . Отрезки , так как все их стороны взаимно параллельны. Из подобия треугольников и следует:

Из рассмотренного следует:

а) если длина отрезка прямой делится точкой в каком-либо отношении, то и длина проекции отрезка делится проекцией этой точки в том же отношении (рис. 1.8):

б) проекции равных по длине отрезков взаимно параллельных прямых взаимно параллельны и равны по длине.

Это очевидно, так как (см. рис. 1.7) при будет . Поэтому при косоугольном проецировании в общем случае параллелограмм, ромб, прямоугольник, квадрат проецируются в параллелограмм.

  • 2. Плоская фигура, параллельная плоскости проекций, проецируется при параллельном проецировании на эту плоскость в такую же фигуру.
  • 3. Параллельный перенос фигуры в пространстве или плоскости проекций не изменяет вида и размеров проекции фигуры.

Параллельные проекции, как и центральные при одном центре проецирования, также не обеспечивают обратимости чертежа.

Применяя приемы параллельного проецирования точки и линии, можно строить параллельные проекции поверхности и тела.

Параллельные проекции применяют для построения наглядных изображений различных технических устройств и их деталей.

Прямоугольное (ортогональное) проецирование

Частный случай параллельного проецирования, при котором направление проецирования перпендикулярно плоскости проекций, называют прямоугольным или ортогональным проецированием . Прямоугольной (ортогональной) проекцией точки называют основание перпендикуляра, проведенного из точки на плоскость проекций. Прямоугольная проекция D 0 точки D показана на рис. 1.9.

Наряду со свойствами параллельных (косоугольных) проекций ортогональное проецирование имеет следующее свойство : ортогональные проекции двух взаимно перпендикулярных прямых, одна из которых параллельна плоскости проекций, а другая не перпендикулярна ей, взаимно перпендикулярны.

На рис. 1.10 Докажем, что

Проецирующая прямая перпендикулярна плоскости проекций , проекции и прямой ВА. Плоскость ) перпендикулярна прямой ВА, так как она перпендикулярна двум пересекающимся прямым этой плоскости ( – по условию, а по построению). Проекция перпендикулярна плоскости , так как . Следовательно, проекция плоскости на плоскости – прямая KL перпендикуляпна пооекции , а с прямой KL совпадает проекция В °С 0, т. е. что и требовалось доказать.



Понравилась статья? Поделитесь с друзьями!