Что такое микромир в информатике. Микро, макро, мега миры

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Постнеклассическая физическая картина мира - обобщённое физическое представление о природе, включающее в себя понятия, принципы, гипотезы, теории физики, сформировавшееся в последние три десятилетия XX века и первые два десятилетия XXI века.

Материальность мира и его единство

Окружающий нас мир представляет собой обладающую неисчерпаемым множеством свойств материю, существующую в многообразных, взаимосвязанных и взаимопревращающихся формах. В едином материальном мире можно выделить три основные структурные области, различающиеся между собой по пространственной протяженности их физических объектов и процессов, преимущественным типам фундаментальных взаимодействий, основным образующим их структурным элементам материи и по характеру их основных физических закономерностей. Это микромир, макромир и мегамир.

Микромир

Пространственная протяжённость порядка м; основные типы взаимодействия -электромагнитное, сильное (ядерное), слабое; основные структурные уровни материи — молекулы, атомы, ядра атомов, элементарные частицы; описывается законами квантовой механики и теории относительности.

В диапазоне расстояний м свойства микромира изучает молекулярная и атомная физика; явления на расстояниях изучают ядерная физика и физика частиц низких энергий; физика высоких энергий изучает явления на расстояниях м.

Макромир

Пространственная протяжённость порядка м; основные виды взаимодействия – электромагнитное, гравитационное; основные структурные уровни материи – макротела, макрополя, космические объекты (планеты солнечной системы и их спутники); при малых скоростях описывается законами классической механики и при больших скоростях – законами теории относительности.

На уровне макромира выделяют два основных вида материи – вещество и поле. Электромагнитное и гравитационное поля в отличие от вещества не имеют массы покоя и могут распространяться лишь с одной определённой скоростью – скоростью света. Структурными элементами вещества и поля являются элементарные частицы, основной чертой которых является их взаимопревращаемость. Общей чертой всех объектов макромира является корпускулярно-волновой дуализм, единство прерывности и непрерывности (двойственная природа света, волновые свойства частиц и т.д.).

Мегамир

Пространственная протяжённость более м (100 млн.

Микро, макро и мегамиры

световых лет); основные типы взаимодействия — тёмная энергия и гравитационное; основные структурные уровни материи — звёздные скопления и ассоциации, межзвёздная материя, галактики, метагалактики, чёрные дыры, тёмная материя, тёмная энергия; описывается законами общей теории относительности. Мегамир изучается космологией.

Согласно теории раздувающейся Вселенной, после Большого взрыва наступила фаза почти мгновенного раздувания, сопровождавшаяся расщеплением Правселенной на множество отдельных Вселенных, различающимися всеми фундаментальными константами, которые определяют свойства мира. Согласно квантовой космологии, изучающей физические явления сразу после Большого взрыва, и физики чёрных дыр, свойства микромира и мегамира взаимосвязаны законами физики элементарных частиц.

Физика чёрных дыр является междисциплинарным научным направлением, объединяющим концепции общей теории относительности, физики элементарных частиц, космологии, термодинамики.

Движение материи

Материи в любой форме присуще движение. Формы движения материи многообразны (механическая, тепловая, электромагнитная, ядерная, взаимопревращение элементарных частиц), взаимопревращаемы, но не сводимы друг к другу, так как каждая из форм обладает своей спецификой. Движение материи несотворимо и неуничтожимо, как и сама материя, что выражается в существовании законов сохранения массы, импульса, энергии, заряда и др. Движение материи влияет на свойства материальных объектов. Каждой форме движения присущи свои специфические закономерности. Например, законы движения макротел неприменимы к движению микрочастиц.

Пространство и время

Пространство и время — это не самостоятельные субстанции, а лишь формы существования материи и неотделимы от неё. Пространство и время имеют ряд свойств (однородность пространства и времени, изотропность пространства, необратимость времени и т.д.). Пространственно-временные характеристики относительны и определяются движением материи, что вытекает из специальной теории относительности (преобразования Лоренца). Пространство и время связаны друг с другом (инвариантность интервала СТО), образуя единую форму существования материи. Свойства пространства и времени определяются материей (влияние поля тяготения на геометрию пространства и ритм времени, определяемое уравнениями Эйнштейна ОТО).

Причинность и закономерность

В мире все явления причинно обусловлены и протекают в соответствии с объективными физическими законами. Причинность в физике может проявляться в механистической и вероятностной формах. Соответственно и закономерности в физике могут быть динамическими (классическая физика) и статистическими (квантовая физика, термодинамика).

См. также

Примечания

Литература

  • Мощанский В. Н. Формирование мировоззрения учащихся при изучении физики. - М.: Просвещение, 1976. - 157 с. - 80 000 экз.
  • Голубинцев В. А., Данцев А. А. , Любченко В. С. Философия для технических вузов. - Ростов-на-Дону: Феникс, 2003. - 640 с. - 5000 экз. - ISBN 5-222-03736-3.
  • Кузнецов Б.Г. Идеалы современной науки. - М: Наука, 1983. - 254 с. - 6150 экз.
  • М.А. Ельяшевич, Д.Н. Трифонов, В.И. Гольданский. Физика XX века. Развитие и перспективы. - М: Наука, 1984. - 336 с. - 4750 экз.
  • ред. Мелюхин С.Т. Философские проблемы естествознания. - М.: Высшая школа, 1985. - 400 с. - 16 000 экз.

CC© wikiredia.ru

1.ВВЕДЕНИЕ

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма-териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че-ловеческого восприятия и несоизмеримых с объектами повседнев-ного опыта. Применяя системный подход, естествознание не просто выде-ляет типы материальных систем, а раскрывает их связь и соот-ношение.

В науке выделяются три уровня строения материи:

    Макромир мир макрообъектов, размерность которых со-относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ-рах, а время - в секундах, минутах, часах, годах.

    Микромир - мир предельно малых, непосредственно не на-блюдаемых микрообъектов, пространственная разномерность ко-торых исчисляется от десяти в минус восьмой степени до десяти в минус шестнадцатой степени см, а время жизни — от бесконечности до десяти в минус двадцать четвертой степени сек.

    Мегамир - мир огромных космических масштабов и скоро-стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил-лиардами лет.

И хотя на этих уровнях действуют свои специфические зако-номерности, микро-, макро- и мегамиры теснейшим образом взаи-мосвязаны.

2.МАКРОМИР: концепции классического естествознания.

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватываем период oт античности до становления экспериментального естествознания в XVI-XVI1 вв. В этот период учения о природе носили чисто натурфилософский характер, наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен-ных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Античный атомизм был первой теоретической программой объяснения целого как суммы отдельных составляющих его час-тей. Исходными началами в атомизме выступали атомы и пус-тота. Сущность протекания природных процессов объяснилась на основе механического взаимодействия атомов, их притяже-ния и отталкивания. Механическая программа описания при-роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Поскольку современные научные представления о струк-турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи-нать исследование нужно с концепций классической физики.

Формирование научных взглядов на строение материи от-носится к XVI в., когда Г.Галилеем была заложена основа пер-вой в истории науки физической картины мира - механиче-ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо-логию нового способа описания природы - научно-теорети-ческого. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото-рые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде "Пробирные весы", оказала решающее влияние на становление классического естествознания.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес-ных тел, и движение земных объектов одними и теми же зако-нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо-лютно постоянно и всегда пребывает в покое. Время представ-лялось как величина, не зависящая ни от пространства, ни от материи.

Философское обоснование механическому пониманию при-роды дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно , без учета чело-века-наблюдателя. Это убеждение, глубоко созвучное взглядам Ньютона, на десятилетия вперед определило направленность развития естественных наук.

Итогом ньютоновской картины мира явился образ Все-ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно точно реконструировать любую про-шлую ситуацию во Вселенной или предсказать будущее с аб-солютной определенностью. И.Р.Пригожин назвал эту веру в безграничную предсказуемость "основополагающим мифом классической науки".

Механистический подход к описанию природы оказался не-обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам-ках механистической картины мира.

Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц - кор-пускул. В корпускулярной теории света И. Ньютона утвер-ждалось, что светящиеся тела излучают мельчайшие части-цы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отра-жения и преломления света.

Наряду с механической корпускулярной теорией, осуществ-лялись попытки объяснить оптические явления принципиально иным путем, а именно на основе волновой теории, сформули-рованной X.Гюйгенсом. Волновая теорияустанавливала анало-гию между распространением света и движением волн на по-верхности воды или звуковых волн в воздухе. В ней предпола-галось наличие упругой среды, заполняющей все пространство, светоносного эфира Распространение света рассматривалось как распространение колебаний эфира, каждая отдельная точка эфира колеблется в вертикальном направлении, а колебания всех точек создают картину волны, которая перемещается в пространстве от одного момента времени к другому. Главным аргументом в пользу своей теории X. Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.

Согласно же корпускулярной теории, между пучками изу-ченных частиц, каковыми является свет, возникали бы столк-новения или, по крайней мере, какие-либо возмущения. Исхо-дя из волновой теории X. Гюйгенс успешно объяснил отраже-ние и преломление света.

Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, рас-пространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гра-нью, то его тень будет иметь резкую границу. Однако эго воз-ражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно ви-деть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было на-звано дифракциейсвета. Именно открытие дифракции сделало X. Гюйгенса ревностным сторонником волновой теории света. Однако авторитет И. Ньютона был настолько высок, что кор-пускулярная теория воспринималась безоговорочно даже не-смотря на то, что на ее основе нельзя было объяснить явление дифракции

Волновая теория света была вновь выдвинута в первые де-сятилетия XIX в. английским физикомТ. Юнгоми французским естествоиспытателем О.Ж. Френелем. Т.Юнг дал объясне-ние явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помо-щью парадоксального утверждения, свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды среды, или волно-вое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается со впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.

Другой областью физики, где механические модели оказа-лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадеяи теоретические работы английского физика Дж.К. Максвеллаокончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по-ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис-пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Ос-мысливая свои эксперименты, он ввел понятие "силовые ли-нии". М.Фарадей, обладавший талантом экспериментатора и богатым воображением, с классической ясностью представ-лял себе действие электрических сил от точки к точке в их "силовом поле". На основе своего представления о силовых ли-ниях он предположил, что существует глубокое родство элек-тричества и света, и хотел построить и экспериментально обос-новать новую оптику, в которой свет рассматривался бы как колебания силового поля. Эта мысль была необычайно смела для того времени, но она была достойна исследователя, кото-рый считал, что только тот находит великое, кто исследует ма-ловероятное.

Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую пунктом исследований Дж.К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Используя высоко-развитые математические методы, Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж.К. Максвелл придал ему физиче-ский смысл и стал рассматривать поле как самостоятельную физическую реальность. "Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, нахо-дящиеся в электрическом или магнитном состоянии"1. Обоб-щив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера, Био-Савара) и открытое М. Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему диффе-ренциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.

Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не "привязанного" к электрическим зарядам. В дифференциальных уравнениях Мак-свелла вихри электрического и магнитного полей определяются производными по времени не от своих, а от чужих полей: элек-трическое - от магнитного и, наоборот, магнитное - от элек-трического.

14. Структурные уровни организации материи (микро-, макро- и мегамир).

Поэтому если меняется со временем магнитное по-ле, то существует и переменное электрическое поле, которое в свою очередь ведет к изменению магнитного поля. В результате происходит постоянное изменение векторов напряженности электрического и магнитного полей, т.е. возникает переменное электромагнитное поле, которое уже не привязано к заряду, а отрывается от него, самостоятельно существуя и распространя-ясь в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. А ис-ходя из этого Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцом в 1888 г.

Страницы: следующая →

1234Смотреть все

  1. Структурные уровни организации материи (2)

    Реферат >> Биология

    Структурные уровни организации материи В самом общем виде материя … собой. Границы микро — и макромира … в макро -, ни в мегамире . 2. Развитие структурной химии Многочисленные … литературы: 1. Горелов А.А. «Концепции современного естествознания », М.: Высшее …

  2. Структурные уровни организации живой материи

    Реферат >> Биология

    Структурные уровни организации живой материи Живой мир чрезвычайно многообразен. Обычно выделяют следующие структурные уровни … всех известных структурных уровнях (микро , макро , и мегамир ) трёхмерным. … две последние концепции . Концепция панспермии, согласно …

  3. Концепции современного естествознания (33)

    Реферат >> Биология

    … Она включает объекты микро -, макро — и мегамиров . В более популярном … знание от псевдонаучного. Структурные уровни организации материи . Развитие – это … с концепцией иерархии качественно своеобразных структурных уровней материальной организации , выступающих …

  4. Концепции современного естествознания (27)

    Лекция >> Биология

    … проблему с разных сторон. Современные концепции – это освещение наиболее перспективных направлений … к фундаментальным наукам: Поддержка высокого уровня знаний в данной области науки. … научных результатов. На каждом уровне научного познания свой метод: …

  5. Концепции современного естествознания (28)

    Реферат >> Биология

    … ; корпускулярная и континуальная концепция описания природы; порядок и беспорядок в природе; хаос; структурные уровни организации материи ; микро -, макро — и мегамиры ; пространство, время …

Хочу больше похожих работ…

МАКРОМИР И МИКРОМИР – две основные области материального мира, кардинально различающиеся характером своих закономерностей.

Микро, Макро, Мега миры

Противопоставление макромира и микрокосмоса восходит к древнейшим натурфилософским концепциям макрокосмоса и микрокосмоса . Современные представления о макромире и микромире сложились в ходе становления квантовой теории и ее осмысления: объекты исследования доквантовой физики составляют макромир, а объекты, на базе которых разрабатывается квантовая теория, составляют микромир. Квантовая теория создавалась как теория структуры и свойств атома и процессов атомного масштаба; ныне же она лежит в основе физики элементарных частиц. С точки зрения представлений классической физики, законы квантовой теории оказались весьма странными и парадоксальными, что и определило становление концепции об особом своеобразном физическом мире. Высказывается мнение, что квантовая теория представляет такой «плод человеческой мысли, который более всякого другого научного достижения углубил и расширил наше понимание мира» (Вайскопф В. Физика в двадцатом столетии. М., 1977, с. 34). Важнейшими особенностями квантовых представлений, позволяющими говорить об особом мире физических явлений, являются корпускулярно-волновой дуализм, принципиально вероятностный характер процессов микромира и относительность свойств микрообъекта, фиксируемых на макроуровне.

Исторически проникновение науки в область микропроцессов приводило к разработке научных теорий большой степени общности. Проникновение в структуру вещества привело к разработке классической статистической физики, а анализ глубинных структур наследственности – к созданию генной теории. Познание атома породило квантовую теорию – наиболее фундаментальную в современной физике. «Микрофизика вчера, сегодня и, нужно думать, завтра, – как отметил отечественный физик В.Гинзбург, – была, есть и будет передним краем физики и всего естествознания» (Гинзбург В. О перспективах развития физики и астрофизики в конце 20 в. – Физика 20 в. Развитие и перспективы. М., 1984, с. 299). Представления о макромире и микромире взаимодополняют и взаимообусловливают друг друга. Знание свойств и законов микромира позволяет раскрыть свойства и структуры объектов макромира, а знание макромира позволяет раскрыть богатство внутренних возможностей объектов микромира.

Развитие физики микромира преобразует и основные формы теоретического выражения знаний. В частности, при переходе от классической физики к физике микромира произошли изменения в нашем понимании элементарного – переход от представлений о бесструктурных атомах (материальных точек) к представлениям об элементарных событиях как о некоторых далее неразложимых (бесструктурных) актах взаимодействия. И теория относительности, и особенно квантовая теория в своих построениях исходят из понятия события, представляющего собою бесструктурный элементарный объект.

Как сказал отечественный физик А.Д.Александров, имея в виду структуру теории относительности: «Простейший элемент мира – это то, что называется событием. Оно представляет собою «точечное» явление вроде мгновенной вспышки точечной лампы или, пользуясь наглядными представлениями о пространстве и времени, явление, протяжением которого в пространстве и во времени можно пренебречь. Словом, событие аналогично точке в геометрии, и, подражая определению точки, данному Эвклидом, можно сказать, что событие – это явление, часть которого есть ничто, оно есть «атомарное» явление. Всякое явление, всякий процесс представляется как некоторая связная совокупность событий. С этой точки зрения весь мир рассматривается как множество событий» (Александров А.Д. О философском содержании теории относительности. – Эйнштейн и философские проблемы физики 20 в. М., 1979, с. 113). Анализу перехода от языка объектов к языку событий в ходе становления современной физики принципиальное значение придавал Б.Рассел (см.: Рассел Б. Человеческое познание. М., 1957. с. 358 и 497). Можно, т.о., утверждать, что мир макрофизики есть мир, построенный из объектов, а мир микрофизики есть мир, образованный из событий.

В современной физике проблема элементарной сущности (как далее неразложимого, бесструктурного элемента) во многом остается открытой. Можно предположить, что при дальнейшем проникновении науки на глубинные уровни строения материи вопрос о простейшем, бесструктурном элементе изменит свой смысл. Исходные явления физического мира с самого начала следует рассматривать как нечто сложное, т.е. системным образом; при этом само понятие системы выступает как первичное, фундаментальное. Тем самым изменится и характер теоретических построений в фундаментальных областях физики.

МАКРОМИР И МИКРОМИР – две основные области материального мира, кардинально различающиеся характером своих закономерностей. Противопоставление макромира и микрокосмоса восходит к древнейшим натурфилософским концепциям макрокосмоса и микрокосмоса . Современные представления о макромире и микромире сложились в ходе становления квантовой теории и ее осмысления: объекты исследования доквантовой физики составляют макромир, а объекты, на базе которых разрабатывается квантовая теория, составляют микромир. Квантовая теория создавалась как теория структуры и свойств атома и процессов атомного масштаба; ныне же она лежит в основе физики элементарных частиц. С точки зрения представлений классической физики, законы квантовой теории оказались весьма странными и парадоксальными, что и определило становление концепции об особом своеобразном физическом мире. Высказывается мнение, что квантовая теория представляет такой «плод человеческой мысли, который более всякого другого научного достижения углубил и расширил наше понимание мира» (Вайскопф В. Физика в двадцатом столетии. М., 1977, с. 34). Важнейшими особенностями квантовых представлений, позволяющими говорить об особом мире физических явлений, являются корпускулярно-волновой дуализм, принципиально вероятностный характер процессов микромира и относительность свойств микрообъекта, фиксируемых на макроуровне.

Исторически проникновение науки в область микропроцессов приводило к разработке научных теорий большой степени общности. Проникновение в структуру вещества привело к разработке классической статистической физики, а анализ глубинных структур наследственности – к созданию генной теории. Познание атома породило квантовую теорию – наиболее фундаментальную в современной физике. «Микрофизика вчера, сегодня и, нужно думать, завтра, – как отметил отечественный физик В.Гинзбург, – была, есть и будет передним краем физики и всего естествознания» (Гинзбург В. О перспективах развития физики и астрофизики в конце 20 в. – Физика 20 в. Развитие и перспективы. М., 1984, с. 299). Представления о макромире и микромире взаимодополняют и взаимообусловливают друг друга. Знание свойств и законов микромира позволяет раскрыть свойства и структуры объектов макромира, а знание макромира позволяет раскрыть богатство внутренних возможностей объектов микромира.

Развитие физики микромира преобразует и основные формы теоретического выражения знаний. В частности, при переходе от классической физики к физике микромира произошли изменения в нашем понимании элементарного – переход от представлений о бесструктурных атомах (материальных точек) к представлениям об элементарных событиях как о некоторых далее неразложимых (бесструктурных) актах взаимодействия. И теория относительности, и особенно квантовая теория в своих построениях исходят из понятия события, представляющего собою бесструктурный элементарный объект. Как сказал отечественный физик А.Д.Александров, имея в виду структуру теории относительности: «Простейший элемент мира – это то, что называется событием. Оно представляет собою «точечное» явление вроде мгновенной вспышки точечной лампы или, пользуясь наглядными представлениями о пространстве и времени, явление, протяжением которого в пространстве и во времени можно пренебречь. Словом, событие аналогично точке в геометрии, и, подражая определению точки, данному Эвклидом, можно сказать, что событие – это явление, часть которого есть ничто, оно есть «атомарное» явление. Всякое явление, всякий процесс представляется как некоторая связная совокупность событий. С этой точки зрения весь мир рассматривается как множество событий» (Александров А.Д. О философском содержании теории относительности. – Эйнштейн и философские проблемы физики 20 в. М., 1979, с. 113). Анализу перехода от языка объектов к языку событий в ходе становления современной физики принципиальное значение придавал Б.Рассел (см.: Рассел Б. Человеческое познание. М., 1957. с. 358 и 497). Можно, т.о., утверждать, что мир макрофизики есть мир, построенный из объектов, а мир микрофизики есть мир, образованный из событий.

В современной физике проблема элементарной сущности (как далее неразложимого, бесструктурного элемента) во многом остается открытой. Можно предположить, что при дальнейшем проникновении науки на глубинные уровни строения материи вопрос о простейшем, бесструктурном элементе изменит свой смысл. Исходные явления физического мира с самого начала следует рассматривать как нечто сложное, т.е. системным образом; при этом само понятие системы выступает как первичное, фундаментальное. Тем самым изменится и характер теоретических построений в фундаментальных областях физики.

Наша Вселенная разделена человеком на различные составляющие объективной реальности, распределена на ряд миров. Для удобства принято использовать такие понятия, как мегамир, макромир и микромир.

Для полного понимания значения этих терминов необходимо перевести слова в понятную нам лексику. Приставка "мега" - происходит от греческого μέγας , что обозначает "большой". Макро - в переводе с греческого μάκρος (макрос) — "большой", "длинный". Микро - происходит от греческого μικρός и означает "маленький".

Различные миры восприятия

К мегамиру относятся объекты космических размеров. Например: галактика, солнечная система, туманность.

Макромир - это то привычное для нас пространство, осязаемое и воспринимаемое естественным путём. Где мы можем видеть, воспринимать обычные физические объекты: автомобиль, дерево, камень. В нем также существуют такие привычные для нас понятия, как секунда, минута, день, год.

Интерпретируя по-другому, можно сказать, что макромир - это обычный мир, в котором живёт человек.

Существует второе определение. Макромир - это мир, в котором мы жили до появления квантовой физики. С возникновением новых знаний и понимания строения материи произошло деление на макромир и микромир.

Ввела человека в новые представления о мире и его составляющих частях. Установила ряд определений, уточнив, какие объекты характерны для микро- и макромира.

К определению объектов микромира отнесено все, что находится на атомном и субатомном уровне. Кроме своих размеров, этой зоне свойственны совершенно другие законы физики и философии её понимания.

Корпускула или волна?

Это область, где стандартные для нас законы лишены какого-либо применения. на этих уровнях пребывают сугубо в виде Анализируя утверждения некоторых учёных, что этой области мира присуще корпускулярное (в переводе означает "частица") проявление элементарных частиц, можно сказать, что не может быть однозначного видения в этих вопросах.

В некоторой степени они правы, с позиции макромира. При наличии наблюдателя они ведут себя как частицы. При отсутствии их поведение становится волновым.

В реальности территория области микромира представлена волнами энергии, зацикленными в кольцах и спиралях. Что касается нашей привычной зоны восприятия, то объекты макромира представлены в виде корпускулярной (предметы, объекты) составляющей и волновых процессов.

Пять различных миров

На сегодня существует пять типов нашего мира, в том числе и указанные ранее три (обычно используемые).

Рассмотрим более углублённо все составляющие части нашей объективной реальности.

Гипермир

Первым считается гипермир, но на данный момент нет конкретного доказательства его существования. К нему гипотетически относят множественные Вселенные.

Мегамир

Следующим считают ранее упомянутый мегамир. К нему причисляют мегагалактики, звезды, планетарные подсистемы, планеты, спутники звёздных систем, кометы, метеориты, астероиды, диффузную материю пространства и открытую не так давно «тёмную материю и её составляющие».

Линейное пространство может измеряться в астрономических единицах, и парсеках. Время - в миллионах и миллиардах лет. Основной силой является гравитационный тип взаимодействия.

Макромир

Третий мир - это часть реальной объективности мира, в котором существует человек. То, как вы определите понятие "макромир" и его отличие от других составляющих Вселенной, не является сложностью. Нет необходимости утруждать собственное понимание.

Оглянитесь вокруг, макромир - это все, что вы видите, и все, что окружает вас. В нашей части объективной реальности существуют как объекты, так и целые системы. Они включают также живые, неживые и искуственные объекты.

Некоторые примеры макрообъектов и макросистем: оболочки планеты (водная, газообразная, твёрдая), города, машины и здания.

Геологические и биологические макросистемы (леса, горы, реки, океаны).

Пространство измеряется в микромиллиметрах, миллиметрах, сантиметрах, метрах и километрах. Что касается времени, то оно измеряется в секундах, минутах, днях, годах и эрах.

Присутствует в основном электромагнитное поле взаимодействия. Квантовое проявление - фотоны. Имеется также гравитационный вид взаимодействия.

Микромир

Микромир - это область микрообъектов и микросостояний. Является частью реальности, где объекты предельно малых размеров, экспериментального масштаба. Для наблюдения обычным человеческим глазом они недоступны.

Рассмотрим некоторые примеры микрообъектов и микросистем. К ним относят: микромолекулы, атомы, составляющие атомов (протоны, электроны) и более мелкие элементарные частицы. А также кванты (переносчики) энергий и «физический» вакуум.

Пространство измеряется от 10 в минус десятой степени до 10 в минус восемнадцатой степени метров, а время - от «бесконечности» до 10 в минус двадцать четвёртой степени.

Преобладают в микромире следующие силы: слабое межатомное взаимодействие, квантовые поля - тяжёлые промежуточные бозоны; сильное межъядерное взаимодействие, квантовый тип полей - глюонов и p-мезонов; электромагнитный тип взаимодействия, благодаря которому существуют атомы и молекулы.

Гипомир

Последний мир весьма специфичен. Существует на сегодня не более чем теоретически.

Гипомир - это гипотетический мир внутри микромира. Он ещё более мал по своим размерам. В нем предположительно существуют объекты и системы.

Примеры гипообъектов и гипосистем: планкеон (все, что меньше размеров Планка - 10 в минус тридцать пятой степени метров), «пузырьковая сингулярность», а также присущ «физический» вакуум с предположительными элементами меньше микрочастиц и вполне допустимо существование гипочастиц «тёмной материи».

Пространство и время дискретны, находятся в пределах представленной модели планкеона:

Линейные параметры - 10-35 метров.
- Время планктеона - 10-43 секунды.
- Плотность гипомира - 1096 кг/м 3 .
- Энергия планктеона - 1019 ГэВ.

К базовым взаимодействиям в микромире, возможно, в будущем добавятся новые силы гипомира или они будут объединены в одно целое.

В процессе познания этого мира учёные для полного понимания делили все изучаемое на области, сферы, разделы, группы, части и многое другое. Именно этот способ позволяет чётко классифицировать и понимать суть окружающего мира.

Примерно шестьсот лет назад любой учёный назывался естествоиспытателем. На то время не было деление науки на какие-либо направления. Естествоиспытатель изучал физику, химию, биологию и все, с чем сталкивался.

Попытка понять и изучить мир привела к продуктивному и эффективному разделению. Но все же не забываем, что этот подход применил человек. Природа и окружающий мир являются целостными и неизменными, независимо от наших представлений о них.

Микромир - это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро- , макро- и мегамиры теснейшим образом взаимосвязаны.

Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро - и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро - и мегаразмеры объектов соотносятся друг с другом как макро/микро~ мега/макро.

В классической физике отсутствовал объективный критерий отличия макро - от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя - это микрообъекты. Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро - и мега - как в размерах, так и моделях физических процессов.

Микромир

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в.Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечно­сти до 10 -24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритомв античностибыла выдвинутаАтомистическая гипотеза строения материи, позже, вXVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за еди­ницу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен­тов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».


В 1911 г. Э. Резерфорд предложил модель атома, которая на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрица­тельный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электриче­ский заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характе­ристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколькостационарных со­стояний (говоря языком планетарной модели, несколько ста­ционарных орбит) электронов, двигаясь по которым электрон может существовать,не излучая;

2) припереходе электрона из одного стационарного состоя­ния в другое атомизлучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основа­нии представления об орбитах точечных электронов принципи­ально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это по­следнее усилие описать структуру атома на основе классиче­ской физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь час­тично. Ответы на эти вопросы были получены в результате раз­вития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макро­мире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир . В истории изучения природы можно выделить два этапа: донаучный и научный

Донаучный, илинатурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мира - механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы - научно-теоре­тического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука » 1 .

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Нью­тоном и его последователями, сложилась дискретная (корпус­кулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Движение рассматривалось как перемещение в пространст­ве по непрерывным траекториям в соответствии с законами механики.

Итогом ньютоновской картины мира явился образ Вселен­ной как гигантского и полностью детерминированного меха­низма, где события и процессы являют собой цепь взаимозави­симых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформу­лированной X. Гюйгенсом. Волновая теория устанавливала ана­логию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспы­татель X. К. Эрстед, который впервые заметил магнитное дей­ствие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное измене­ние в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его рабо­ты стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии » 2 .

Исхо­дя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущ­ность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж. К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г.

После экспериментов Г. Герца в физике окончательно ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказа­лись разрушенными представления классической физики о ве­ществе и поле как двух качественно своеобразных видах материи.

Мегамир . Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высо­кого порядка -Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15- 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие«Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» - тот же мир, но с точки зрения его структуры - как упорядоченную систему га­лактик.

Строение и эволюция Вселенной изучаютсякосмологией. Космология как раздел естествознания, находится на своеоб­разном стыке науки, религии и философии. В основе космо­логических моделей Вселенной лежат определенные мировоз­зренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти та­кой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Современные космологические модели Вселенной основы­ваются на общей теории относительности А. Эйнштейна, со­гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свой­ства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселен­ной А. Эйнштейна мировое пространство однородно и изо­тропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсаль­ным космологическим отталкиванием.

Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922г. русский математик и геофизик А.А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 10 96 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” 3

Эра адронов . Тяжелые частицы, вступающие в сильные взаи­модействия.

Эра лептонов. Легкие частицы, вступающие в электромагнит­ное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная до­ля массы - энергии Вселенной - приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой кос­мологией. В этой модели описывается эволюция Вселенной на­чиная с момента 10 -45 с после начала расширения.

Сторонники инфляционной модели видят соответствие ме­жду этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии 4 .

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10 -50 см

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспо­ненциальному закону. В этот период создавалось само про­странство и время Вселенной. За период инфляционной стадии продолжительностью 10 -34 . Вселенная раздулась от невообра­зимо малых квантовых размеров 10 -33 до невообразимо больших 10 1000000 см, что на много порядков превосходит раз­мер наблюдаемой Вселенной - 10 28 см. Весь этот первоначаль­ный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осве­тившего космос.

Этап отделения вещества от излучения: оставшееся после ан­нигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от веще­ства излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и эксперименталь­но обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все бо­лее сложных структур - атомов (первоначально атомов водоро­да), галактик, звезд, планет, синтезу тяжелых элементов в не­драх звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека.

Различие между этапами эволюции Вселенной в инфляци­онной модели и модели Большого взрыва касается только пер­воначального этапа порядка 10 -30 с, далее между этими моделя­ми принципиальных расхождений в понимании этапов косми­ческой эволюции нет.

Пока же эти модели с помощью знаний и фантазии можно рассчитывать на компьютере, а вопрос остается открытым.

Самая большая трудность для ученых возникает при объяс­нении причин космической эволюции. Если отбросить частно­сти, то можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма .

Для концепции самоорганизации материальная Вселенная яв­ляется единственной реальностью, и никакой другой реально­сти помимо нее не существует. Эволюция Вселенной описыва­ется в терминах самоорганизации: идет самопроизвольное упо­рядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок.

В рамках концепции креационизма , т.е. творения, эволюция Вселенной связывается с реализацией

программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существова­ние во Вселенной направленного номогенца - развития от простых систем ко все более сложным и информационно ем­ким, в ходе которого создавались условия для возникновения жизни и человека. В качестве дополнительного аргумента при­влекаетсяантропный принцип, сформулированный английскими астрофизиками Б. Карром и Риссом.

Среди современных физиков – теоретиков имеются сторонники, как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научно – технической картины мира, синтезирующей все достижения в области знания и веры.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические , спиральные , неправильные .

Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь.

Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики .

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной веще­ство в ней находится преимущественно взвездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселен­ной, до сотен тысяч - самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, бла­годаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Ос­новная эволюция вещества во Вселенной происходила и проис­ходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные сис­темы состоят из двух, трех, четырех, пяти и больше звезд, об­ращающихся вокруг общего центра тяжести.

Звезды объединены также в еще большие группы - звезд­ные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчи­тывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч.

Ассоциации, или скопления звезд, также не являются неиз­менными и вечно существующими. Через определенное коли­чество времени, исчисляемое миллионами лет, они рассеивают­ся силами галактического вращения.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спут­ников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вра­щаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве слу­чаев в экваториальной плоскости своей планеты. Солнце, пла­неты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: ка­ждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливав­шихся в газово-пылевых облаках. Это обстоятельство дает ос­нование назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца об­разовалась в результате действия сил притяжения и отталкива­ния между частицами рассеянной материи (туманности), нахо­дящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образо­вание Солнечной системы послужила гипотеза английского фи­зика и астрофизика Дж. X. Джинса. Он предположил, что ко­гда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразо­валась в планеты.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнит­ные. Эта идея была выдвинута шведским физиком и астрофи­зиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первона­чальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались не­большие части этого облака. Гравитационная сила стала при­тягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях - как раз там, где находятся планеты. Гравитаци­онная и магнитные силы повлияли на концентрацию и сгуще­ние падающего газа, и в результате образовались планеты. Ко­гда возникли самые крупные планеты, тот же процесс повто­рился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невоз­можно. Во всех существующих теориях имеются противоречия и неясные места.

В настоящее время в области фундаментальной теоретиче­ской физики разрабатываются концепции, согласно которым объ­ективно существующий мир не исчерпывается материальным ми­ром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выво­ду: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.

Система природа-биосфера- человек и ее противоречия.

Человек, общество неразрывно связаны с природой и не в состоянии существовать и развиваться вне ее,в первую очередь без непосредственно окружающей его природной среды. Связь человека с окружающей средой особенно ярко выражена в сфере материального производства. Природные богатства служат естественной основой материального производства и жизни общества в целом. Вне природы и использования созданных на ее основе предметов человек не существует.

Наиболее тесно, человек связан с такими составляющими природы, как географическая и окружающая среда.

Географическая среда – та часть природы (растительный и животный мир, вода, почва, атмосфера Земли),которая вовлечена в сферу жизни человека, в первую очередь в производственный процесс. от особенностей географической среды зависят конкретные направления человеческой деятельности, развитие тех или иных отраслей производства в различных странах и континентах. Неблагоприяные природные условия тормозили общественное развитие. Поэтому древние цивилизации возникали первоначально именно на берегах Нила, Ефрата, Тигра, Ганга, Инда и т.д.

Если бы человек находил все необходимые ему средства к существованию в природе в готовом виде, не было бы стимулов для совершенствования производства и для собственного развития. Не только наличие тех или иных природных условий для производства, но и их недостаток также оказывал ускоряющее влияние на развитие общества. Именно наличие разнообразных природных условий является наиболее благоприятным фактором развития человека и общества.

Окружающая среда включает, помимо поверхности Земли и ее недр, часть Солнечной системы, которая попадает или может попасть в сферу деятельности человека,а также созданный им материальный мир. В структуре окружающей среды выделяют естественную и искусственную среды обитания.

Естественная среда обитания включает неживую и живую части природы – геосферу и биосферу. Она существует и развивается без вмешательства человека, естественным образом. Однако в ход эволюции человек постепенно все больше осваивает естественную среду обитания. Первоначально это было лишь простое потребление естественных богатств. Затем человек начал использовать и естественные источники средств жизни, преобразуя их в ходе своей практической деятельности.

В результате была создана искусственная среда обитания – все то,что специально сделано человеком: разнообразие предметов материальной и духовной культуры, преобразованные ландшафты, а также выведенные в процессе селекции и одомашнивания растения и животные. С развитием общества роль и значение для человека искусственной среды обитания непрерывно возрастают.

В результате преобразования человеком естественной среды обитания можно говорить о существовании нового ее состояния – техносфере.

Техносфера – совокупность технических устройств и систем вместе с областью технической деятельности человека. Ее структура достаточно сложна, включает техногенное вещество, технические системы, живое вещество, верхнюю часть земной коры, атмосферу, гидросферу. С началом эры космических полетов техносфера вышла далеко за пределы биосферы и охватывает уже околоземный космос.

Ноосфера: понятие и основные компоненты.

Термин «ноосфера» (от греч. Noos- разум) переводится как сфера господства разума. Впервые этот термин ввел Леруа в 1927 г. в месте с Тейяром де Шарденом он рассматривал ноосферу как некое идеальное образование, вне биосферную оболочку мысли, окружающую Землю.

Учение о ноосфере не носит пока законченного канонического характера.

Вернадский начал развивать учение о ноосфере с начала 30-х г.г. после детальной разработки учения о биосфере. Он употребляет понятие ноосфера в разных смыслах: -как состояние планеты, когда человек становится крупнейшей преобразующей геологической силой; -как область активного проявления научной мысли; -как главный фактор перестройки и изменения биосферы.

Он впервые осознал и попытался осуществить синтез естественных и общественных наук при изучении проблем глобальной деятельности человека, активно перестраивающего окружающую среду.

Общее в понимании ноосферы у Шардена и Вернадского: 1)появление человеческого разума ведет к изменению самой биосферы; 2)человеческая мысль и деятельность становятся геологическим фактором, они преобразуют весь поверхностный слой Земли. 3)преобразование биосферы является неизбежным и необратимым. К этим выводам независимо друг от друга они пришли в начале 30х гг.

Различия в концепциях Вернадского и Шардена: У Шардена 1)движущей силой эволюции – разум, сознание независящее от отдельного человека; 2)ноосфера – мыслящий пласт Земли, который образуется поверх биосферы. У Вернадского 1)движущей силой эволюции является сама природа, а мысль, разум является результатом эволюции природы. 2)ноосфера не возвышается над биосферой, а биосфера переходит в ноосферу, что приводит к улучшению биосферы.

В настоящее время под ноосферой понимается сфера взаимодействия человека и природы, в пределах которой разумная человеческая деятельность становится главным определяющим фактором развития. В структуре ноосферы можно выделить в качестве составляющих человечество, общественные системы, совокупность научных знаний, сумму техники и технологий в единстве с биосферой. Гармоничная взаимосвязь всех составляющих структуры есть основа устойчивого существования и развития ноосферы.



Понравилась статья? Поделитесь с друзьями!