Элементарные частицы краткое сообщение естественные. Элементарная частица: что она собой представляет? Калибровочные теории и геометрия

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9 10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Популярная философия. Учебное пособие Гусев Дмитрий Алексеевич

4. Элементарные частицы

4. Элементарные частицы

До конца 19 века считалось, что атомы представляют собой неделимые частицы вещества. После революционных открытий в физике, сделанных на рубеже прошлого и нынешнего столетий было установлено, что атомы делимы и имеют сложное строение. Они состоят из различных более мелких частиц, взаимодействующих друг с другом, благодаря чему возможны различные атомные изменения и превращения. Эти частицы были названы элементарными (лат. elementarius – первоначальный, простейший). Сначала они считались (вместо атомов) последним и неделимым пределом вещества, основой всех материальных объектов или физических тел. Однако, в скором времени стала понятной условность, или относительность термина «элементарный», потому что выяснилось, что элементарные частицы, во-первых, вовсе не неделимы и совсем не просты, а, наоборот, представляют собой сложные микрообъекты с определенной структурой (устройством или строением), то есть, оказалось, что они никак не элементарны; и, во-вторых, их нельзя называть частицами в полном смысле этого слова, потому что они характеризуются корпускулярно-волновым дуализмом. Тем не менее исторически сложившееся название продолжает существовать.

Дальнейшее проникновение науки в глубины микромира было связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой из них в конце 19 века был открыт электрон, а затем в первые десятилетия 20 века – фотон, протон, позитрон и нейтрон. К середине нынешнего столетия благодаря использованию современной экспериментальной техники было установлено существование более 300 видов элементарных частиц.

Основными их свойствами являются масса, заряд, среднее время жизни и участие в тех или иных типах взаимодействий. Существуют элементарные частицы, не имеющие массы. Это фотоны. Другие частицы по массе делятся на лептоны (греч. leptos – легкий), мезоны (греч. mesos – средний) и барионы (греч. barys – тяжелый). Все известные частицы обладают положительным, отрицательным или нулевым электрическим зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Не так давно была высказана гипотеза о существовании частиц с дробным электрическим зарядом (1/3 или 2/3 от заряда электрона). Они были названы кварками . Экспериментального подтверждения эта гипотеза пока не нашла. По времени жизни элементарные частицы делятся на стабильные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно они играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны. Они существуют около 10–10 – 10–24 сек., после чего распадаются. Элементарные частицы со средним временем жизни 10–23 – 10–22 сек. называются резонансами . Вследствие краткого времени существования они распадаются еще до того, как успеют покинуть атом или атомное ядро. Эти частицы вычислены теоретически, обнаружить их в реальных экспериментах пока не удается.

Важной характеристикой элементарных частиц является тип взаимодействия. По современным представлениям, в природе существуют четыре вида взаимодействий: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие проявляется только в микромире, происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии около 10–13 см. Сильное взаимодействие очень прочно связывает частицы, в результате чего возникают атомные ядра – наиболее прочные объекты природы.

Слабое взаимодействие , как и сильное, проявляется только в микромире. Оно действует на расстоянии от 10–15 до 10–22 см и связано, главным образом, с распадом частиц. По современным представлениям большинство частиц нестабильно именно благодаря слабому взаимодействию.

Электромагнитное взаимодействие , в отличие от сильного и слабого, проявляется и в микромире, и в макромире, и в мегамире, но играет решающую роль в структуре макромира. Это взаимодействие в тысячу раз слабее сильного, но действует на гораздо больших расстояниях, чем оно. В результате него электроны и атомные ядра соединяются в атомы, атомы – в молекулы, молекулы – в макротела и т. д.

Гравитационное взаимодействие не проявляется в микромире. Оно проявляется в макромире и, особенно, в мегамире, играя первостепенную роль в структуре последнего. Это взаимодействие не учитывается в теории элементарных частиц. В космических масштабах оно, наоборот, имеет решающее значение, так как представляет собой не что иное, как всемирное тяготение (взаимное притяжение огромных космических объектов – планет и звезд). Расстояние, на котором оно действует, неограниченно.

Если физические тела состоят из молекул, молекулы – из атомов, а атомы – из элементарных частиц, то вроде логично было бы предположить, что элементарные частицы складываются, в свою очередь, из более мелких частиц. Однако такой вывод сделать невозможно, потому что на элементарном уровне существуют иные законы и все, к чему мы привыкли в макромире, там не действует. Например, мы прекрасно знаем, что если какое-нибудь тело распадается на части, то любая часть будет и по размерам, и по массе меньше исходного целого тела. А если распадется элементарная частица, то вполне может быть, что продукты ее распада окажутся по размерам и по массе больше исходной распавшейся частицы, что невероятно с точки зрения наших привычных представлений. Правильнее поэтому было бы говорить, что элементарные частицы не распадаются, а преобразуются или превращаются. Как то ни удивительно, но одна частица может превращаться в другую. Также почти каждая элементарная частица может быть как бы «составной частью» любой другой элементарной частицы. Если частицы способны к превращениям и другим сложным изменениям, значит они имеют какую-то внутреннюю структуру или устройство. Какое? На этот вопрос современная наука пока не в состоянии ответить. Единственное, что можно утверждать – это несомненное наличие у элементарных частиц этой структуры. Однако невозможно говорить, что она представляет собой еще более мелкие частицы. Здесь мы сталкиваемся с неведомым пока уровнем существования материи, который лежит глубже сферы элементарных частиц и представляет собой нечто совершенно для нас новое, непривычное, необыкновенное, сложновыразимое в существующих ныне научных понятиях и с трудом укладывающееся в современные научные представления и теории. Дальнейшее проникновение в глубинные тайны микромира, по всей видимости, будет делом науки 21 века.

Наиболее важными для описания и объяснения микромира являются два положения современного естествознания – это принцип дополнительности датского ученого Нильса Бора и принцип соотношения неопределенностей немецкого ученого Вернера Гейзенберга. Согласно принципу дополнительности корпускулярные и волновые свойства объектов микромира не исключают, а дополняют друг друга; микромир является такой специфической реальностью, что адекватное его описание возможно как раз посредством идеи о взаимодополняемости вроде бы несовместимых свойств – корпускулярных и волновых. Согласно принципу соотношения неопределенностей в микромире невозможно одинаково точно определить координату частицы и ее скорость, определенность одного из этих параметров обуславливает неопределенность другого. Известное уравнение Гейзенберга представляет собой произведение неопределенности координаты частицы и неопределенности ее скорости, которое равно постоянной величине (постоянной Планка). Таким образом, когда неопределенность одного из членов произведения стремится к нулю (т. е. он является определенным), тогда неопределенность другого стремится к бесконечности (т. е. он является совершенно неопределенным). Принципы дополнительности и соотношения неопределенностей, приемлемые для микромира, немыслимы для макромира: будучи примененными в нем, они приводят к нелепостям и абсурду.

Например, согласно принципу дополнительности корпускулы (объекты) могут быть волнами (процессами) и наоборот. В макромире объект – это не процесс, а процесс – не объект, иначе придется предположить, что, например, маятник (объект) и колебания маятника (процесс) могут быть одним и тем же: маятник – это колебания маятника, а колебания маятника – это маятник. Получается абсурд. То же и с принципом соотношения неопределенностей. Например, зная, что пуля вылетела из ружейного ствола и движется со скоростью 800 м/с, мы спрашиваем, на каком расстоянии от ствола она сейчас находится, и отвечаем на этот вопрос примерно так: «Если нам известна скорость пули, то ее местонахождение (координата) совершенно неизвестно – она может быть сейчас на Луне, в Антарктиде, в другой галактике и т. п.». Или наоборот, зная, что пуля, вылетевшая из ружейного ствола, находится в метре от него, мы спрашиваем, с какой скоростью она сейчас движется, и отвечаем примерно так: «Если нам известно местоположение пули (координата), то именно поэтому нам совершенно неизвестна ее скорость – она сейчас может быть равна нулю или скорости света и т. п.».

Принципы дополнительности и соотношения неопределенностей, созданные для описания микромира и мысленно примененные к макромиру, вполне свидетельствуют о том, что эти две области реальности отличаются друг от друга не только количественно (по принципу – большего или меньшего размера), но и качественно, представляя собой действительно два разных мира со своими специфическими особенностями и свойствами. Здесь мы еще раз сталкиваемся с одним из важных законов философской диалектики – законом перехода количественных изменений в качественные.

Из книги Феномен человека автора де Шарден Пьер Тейяр

1. ЭЛЕМЕНТАРНЫЕ ФОРМЫ ДВИЖЕНИЯ ЖИЗНИ А. СамовоспроизведениеВ основе всего процесса образования вокруг Земли оболочки биосферы лежит типично жизненный механизм самовоспроизведения. Всякая клетка в определенный момент делится (путем "бинарного деления", или

Из книги Краткая история философии [Нескучная книга] автора Гусев Дмитрий Алексеевич

12.3. Лилипуты пространства и времени (элементарные частицы) После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны

Из книги Любители мудрости [Что должен знать современный человек об истории философской мысли] автора Гусев Дмитрий Алексеевич

Элементарные частицы. Лилипуты пространства и времени После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны разные

Из книги Конец науки: Взгляд на ограниченность знания на закате Века Науки автора Хорган Джон

Джон Уилер и «Это из частицы» Как кажется, Бете, Вайнберг и Мермин предполагали, что квантовая механика, по крайней мере в качественном смысле, и есть окончательная теория физики. Некоторые физики и философы предположили, что они смогут пенять квантовую механику, если

Из книги Обоснование интуитивизма [ёфицировано] автора Лосский Николай Онуфриевич

Глава IX. Элементарные методы знания I. Теория интуитивизма (теория непосредственного усмотрения связи основания и следствия) Суждение есть акт дифференциации объекта путём сравнения. В результате этого акта, при успешном выполнении его, мы имеем предикат P, т. е.

Из книги Человеческое познание его сферы и границы автора Рассел Бертран

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

5.11. Местонахождение частицы и ее количество движения Еще более наглядным примером такого рода является квантовомеханическая концепция положения частицы в пространстве. Выше мы говорили о том, что состояние частицы может включать в себя суперпозицию двух или более

Из книги Удивительная философия автора Гусев Дмитрий Алексеевич

Лилипуты пространства и времени. Элементарные частицы После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны разные

Из книги Философия в систематическом изложении (сборник) автора Коллектив авторов

Б. Элементарные явления душевной жизни Чтобы сохранить себя в борьбе с внешним миром, душе необходимо ориентироваться в этом мире, а для того, чтобы проявить свою индивидуальность, ей нужен материал, который опять-таки доставляется ей из внешнего мира. Этот материал она

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Квантовое состояние частицы Как выглядит «физическая реальность» на квантовом уровне, где различные «альтернативные возможности», открытые перед системой, должны всегда обладать способностью сосуществовать, образуя суммы со странными комплекснозначными весами?

Из книги Процессуальный ум. Руководство по установлению связи с Умом Бога автора Минделл Арнольд

Четыре силы и их виртуальные частицы Давайте сосредоточимся на TOE физики, так называемой «единой теории поля» и подумаем о силах и полях. В сегодняшней физике есть повседневная реальность, состоящая из пространства, времени и объектов. Внутри объектов имеются различные

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

Частицы и волны В 1690 г., когда Ньютон писал свои «Принципы», в которых выражались его идеи относительно физики и математики, европейское Возрождение было в самом разгаре. Ньютон представлял себе частицы как неделимые порции материи с конкретным известным местоположением

Из книги автора

Сновидения и частицы Корпускулярно-волновое описание материи, наблюдаемой в общепринятой реальности, и ее загадочная непознаваемая природа вне ОР не столь чужды нашему пониманию, как мы могли бы поначалу подумать. Психологи хорошо знают эту проблему; они должны часто

Из книги автора

33. Атомная энергия и виртуальные частицы Постепенно создавая духовное тело с помощью медитативных упражнений, китайцы пытались в этой жизни отделять энергии, связанные с обычным телом и таким образом наделять… самость – новым телом… Таким способом вокруг

Из книги автора

Виртуальные части и частицы в психологии Здесь важно вспомнить, что мы делаем множество вещей, которые не можем видеть. Психология, как и физика, полна виртуальных вещей, частей и частиц. Большинство школ психологии говорят о таких виртуальных вещах, как тень, анимус,

Из книги автора

Виртуальные частицы и внутренняя работа Понятие частицы эволюционировало во времени. В первой части XX в. понятие четко ограниченной частицы материи, появившееся четыре века назад, превратилось в понятие волноподобного пакета в квантовой механике. Теперь, в новейшей

Элементарные частицы, в точном значении этого термина, - это первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.

Элементарные частицы современной физики не удовлетворяют строгому определению элементарности, поскольку большинство из них по современным представлениям являются составными системами. Общее свойство этих систем заключается в том. Что они не являются атомами или ядрами (исключение составляет протон). Поэтому иногда их называют субъядерными частицами.

Частицы, претендующие на роль первичных элементов материи, иногда называют "истинно элементарные частицы".

Первой открытой элементарной частицей был электрон. Его открыл английский физик Томсон в 1897 году.

Первой открытой антицастицей был позитрон - частица с массой электрона, но положительным электрическим зарядом. Это античастица была обнаружена в составе космических лучей американским физиком Андерсоном в 1932 году.

В современном физике в группу элементарных относятся более 350 частиц, в основном нестабильных, и их число продолжает расти.

Если раньше элементарные частицы обычно обнаруживали в космических лучах, то с начала 50-х годов ускорители превратились в основной инструмент для исследования элементарных частиц.

Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения: квантовые закономерности являются определяющими в поведении элементарных частиц.

Наиболее важное квантовое свойство всех элементарных частиц - это способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами. Все процессы с элементарными частицами протекают через последовательность актов их поглощения и испускания.

Различные процессы с элементарными частицами заметно отличаются по интенсивности протекания.

В соответствии с различной интенсивностью протекания взаимодействия элементарных частиц феноменологически делят на несколько классов: сильное, электромагнитное и слабое. Кроме того, все элементарные частицы обладают гравитационным взаимодействием.

Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей по сравнению с другими процессами интенсивностью и приводит к самой сильной связи элементарных частиц. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов.

Электромагнитное взаимодействие отличается от других участием электромагнитного поля. Электромагнитное поле (в квантовой физике - фотон) либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами.

Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества, и тем самым определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микросистем.

Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных частиц.

Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного.

Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях дает чрезвычайно малые эффекты из-за малости масс элементарных частиц.

Слабое взаимодействие гораздо сильнее гравитационного, но в повседневной жизни роль гравитационного взаимодействия гораздо заметнее роли слабого взаимодействия. Это происходит потому, что гравитационное взаимодействие (как, впрочем, и электромагнитное) имеет бесконечно большой радиус действия. Поэтому, например, на тела, находящиеся на поверхности Земли, действует гравитационное притяжение со стороны всех атомов, из которых состоит Земля. Слабое же взаимодействие обладает настолько малым радиусом действия, что он до сих пор не измерен.

В современной физике фундаментальную роль играет релятивистская квантовая теория физических систем с бесконечным числом степеней свободы - квантовая теория поля. Эта теория построена для описания одного из самых общих свойств микромира - универсальной взаимной превращаемости элементарных частиц. Для описания такого рода процессов требовался переход к квантовому волновому полю. Квантовая теория поля с необходимостью является релятивистской, поскольку если система состоит из медленно движущихся частиц, то их энергия может оказаться недостаточной для образования новых частиц с ненулевой массой покоя. Частицы же с нулевой массой покоя (фотон, возможно нейтрино) всегда релятивистские, т.е. всегда движутся со скоростью света.

Универсальный способ ведения всех взаимодействий, основанный на калибровочной симметрии, дает возможность их объединения.

Квантовая теория поля оказалась наиболее адекватным аппаратом для понимания природы взаимодействия элементарных частиц и объединения всех видов взаимодействий.

Квантовая электродинамика - та часть квантовой теории поля, в которой рассматривается взаимодействие электромагнитного поля и заряженных частиц (или электронно-позитронного поля).

В настоящее время квантовая электродинамика рассматривается как составная часть единой теории слабого и электромагнитного взаимодействий.

В зависимости от участия в тех или иных видах взаимодействия все изученные элементарные частицы, за исключением фотона, разбиваются на две основные группы - адроны и лептоны.

Адроны (от греч. - большой, сильный) - класс элементарных частиц, участвующих в сильном взаимодействии (наряду с электромагнитным и слабым). Лептоны (от греч. - тонкий, легкий) - класс элементарных частиц, не обладающих сильным взаимодействием, участвующих только в электромагнитном и слабом взаимодействии. (Наличие гравитационного взаимодействия у всех элементарных частиц, включая фотон, подразумевается).

Законченная теория адронов, сильного взаимодействия между ними пока отсутствует, однако имеется теория, которая, не являясь ни законченной, ни общепризнанной, позволяет объяснить их основные свойства. Эта теория - квантовая хромодинамика, согласно которой адроны состоят из кварков, а силы между кварками обусловлены обменом глюонами. Все обнаруженные адроны состоят из кварков пяти различных типов ("ароматов"). Кварк каждого "аромата" может находиться в трех "цветовых" состояниях, или обладать тремя различными "цветовыми зарядами".

Если законы, устанавливающие соотношение между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определенных преобразованиях, которым может быть подвергнута система, то говорят, что эти законы обладают симметрией (или инвариантны) относительно данных преобразований. В математическом отношении преобразования симметрии составляют группу.

В современной теории элементарных частиц концепция симметрии законов относительно некоторых преобразований является ведущей. Симметрия рассматривается как фактор, определяющий существование различных групп и семейств элементарных частиц.

Сильное взаимодействие симметрично относительно поворотов в особом "изотопическом пространстве". С математической точки зрения изотопическая симметрия отвечает преобразованиям группы унитарной симметрии SU(2). Изотопическая симметрия не является точной симметрией природы, т.к. она нарушается электромагнитным взаимодействием и различием в массах кварков.

Изотопическая симметрия представляет собой часть более широкой приближенной симметрии сильного взаимодействия - унитарной SU(3)- симметрии. Унитарная симметрия оказывается значительно более нарушенной, чем изотопическая. Однако высказывается предположение, что эти симметрии, которые оказываются очень сильно нарушенными при достигнутых энергиях, будут восстанавливаться при энергиях, отвечающих так называемому "великому объединению".

Для класса внутренних симметрий уравнений теории поля (т.е. симметрий, связанных со свойствами элементарных частиц, а не со свойствами пространства-времени), применяется общее название - калибровочная симметрия.

Калибровочная симметрия приводит к необходимости существования векторных калибровочных полей, обмен квантами которых обусловливает взаимодействия частиц.

Идея калибровочной симметрии оказалась наиболее плодотворной в единой теории слабого и электромагнитного взаимодействий.

Интересной проблемой квантовой теории поля является включение в единую калибровочную схему и сильного взаимодействия ("великое объединение").

Другим перспективным направлением объединения считается суперкалибровочная симметрия, или просто суперсимметрия.

В 60-х годах американскими физиками С.Вайнбергом, Ш.Глэшоу, пакистанским физиком А.Саламом и др. была создана единая теория слабого и электромагнитного взаимодействий, позднее получившая название стандартной теории электрослабого взаимодействия. В этой теории наряду с фотоном, осуществляющим электромагнитное взаимодействие, появляются промежуточные векторные бозоны - частицы, переносящие слабое взаимодействие. Эти частицы были экспериментально обнаружены в 1983 году в ЦЕРНе.

Открытие на опыте промежуточных векторных бозонов подтверждает правильность основной (калибровочной) идеи стандартной теории электрослабого взаимодействия.

Однако для проверки теории в полном объеме необходимо также экспериментально исследовать механизм спонтанного нарушения симметрии. Если этот механизм действительно осуществляется в природе, то должны существовать элементарные скалярные бозоны - так называемые хиггсовы бозоны. Стандартная теория электрослабого взаимодействия предсказывает существование, как минимум, одного скалярного бозона.

Эти три частицы (как и другие описываемые ниже) взаимно притягиваются и отталкиваются соответственно своим зарядам , которых всего четыре вида по числу фундаментальных сил природы. Заряды можно расположить в порядке уменьшения соответствующих сил следующим образом: цветовой заряд (силы взаимодействия между кварками); электрический заряд (электрические и магнитные силы); слабый заряд (силы в некоторых радиоактивных процессах); наконец, масса (силы тяготения, или гравитационного взаимодействия). Слово «цвет» здесь не имеет ничего общего с цветом видимого света; это просто характеристика сильного заряда и самых больших сил.

Заряды сохраняются , т.е. заряд, входящий в систему, равен заряду, из нее выходящему. Если суммарный электрический заряд некоторого числа частиц до их взаимодействия равен, скажем, 342 единицам, то он и после взаимодействия независимо от его результата будет равен 342 единицам. Это относится и к другим зарядам: цветовому (заряду сильного взаимодействия), слабому и массовому (массе). Частицы различаются своими зарядами: в сущности, они и «есть» эти заряды. Заряды – это как бы «справка» о праве отвечать на соответствующую силу. Так, только на цветные частицы действуют цветовые силы, только на электрически заряженные частицы действуют электрические силы и т.д. Свойства частицы определяются наибольшей силой, действующей на нее. Только кварки являются носителями всех зарядов и, следовательно, подвержены действию всех сил, среди которых доминирующей является цветовая. Электроны имеют все заряды, кроме цветового, а доминирующей для них является электромагнитная сила.

Наиболее устойчивыми в природе оказываются, как правило, нейтральные комбинации частиц, в которых заряд частиц одного знака компенсируется суммарным зарядом частиц другого знака. Это отвечает минимуму энергии всей системы. (Точно так же два стержневых магнита располагаются в линию, причем северный полюс одного из них обращен к южному полюсу другого, что соответствует минимуму энергии магнитного поля.) Гравитация же является исключением из этого правила: отрицательной массы не существует. Нет тел, которые падали бы вверх.

ВИДЫ МАТЕРИИ

Обычная материя образуется из электронов и кварков, группирующихся в объекты, нейтральные по цветовому, а затем и по электрическому заряду. Цветовая сила нейтрализуется, о чем подробнее будет сказано ниже, когда частицы объединяются в триплеты. (Отсюда и сам термин «цвет», взятый из оптики: три основных цвета при смешении дают белый.) Таким образом, кварки, для которых цветовая сила является главной, образуют триплеты. Но кварки, а они подразделяются на u -кварки (от англ. up – верхний) и d -кварки (от англ. down – нижний), имеют еще и электрический заряд, равный для u -кварка и для d -кварка. Два u -кварка и один d -кварк дают электрический заряд +1 и образуют протон, а один u -кварк и два d -кварка дают нулевой электрический заряд и образуют нейтрон.

Стабильные протоны и нейтроны, притягиваемые друг к другу остаточными цветовыми силами взаимодействия между составляющими их кварками, образуют нейтральное по цвету ядро атома. Но ядра несут положительный электрический заряд и, притягивая отрицательные электроны, вращающиеся вокруг ядра наподобие планет, обращающихся вокруг Солнца, стремятся образовать нейтральный атом. Электроны на своих орбитах удалены от ядра на расстояния, в десятки тысяч раз превышающие радиус ядра, – свидетельство того, что удерживающие их электрические силы гораздо слабее ядерных. Благодаря силе цветового взаимодействия 99,945% массы атома заключено в его ядре. Масса u - и d -кварков примерно в 600 раз больше массы электрона. Поэтому электроны намного легче и подвижнее ядер. Их движением в веществе обусловлены электрические явления.

Существует несколько сот природных разновидностей атомов (включая изотопы), различающихся числом нейтронов и протонов в ядре и соответственно числом электронов на орбитах. Самый простой – атом водорода, состоящий из ядра в виде протона и обращающегося вокруг него единственного электрона. Вся «видимая» материя в природе состоит из атомов и частично «разобранных» атомов, которые называются ионами. Ионы – это атомы, которые, потеряв (или приобретя) несколько электронов, стали заряженными частицами. Материя, состоящая почти из одних ионов, называется плазмой. Звезды, горящие за счет идущих в центрах термоядерных реакций, состоят в основном из плазмы, а поскольку звезды – самая распространенная форма материи во Вселенной, можно сказать, что и вся Вселенная состоит в основном из плазмы. Точнее, звезды – это преимущественно полностью ионизованный газообразный водород, т.е. смесь отдельных протонов и электронов, а стало быть, из нее и состоит почти вся видимая Вселенная.

Это – видимая материя. Но во Вселенной есть еще невидимая материя. И есть частицы, выступающие в роли носителей сил. Существуют античастицы и возбужденные состояния некоторых частиц. Все это приводит к явно чрезмерному изобилию «элементарных» частиц. В этом изобилии можно найти указание на действительную, истинную природу элементарных частиц и сил, действующих между ними. Согласно самым последним теориям, частицы в своей основе могут представлять собой протяженные геометрические объекты – «струны» в десятимерном пространстве.

Невидимый мир.

Во Вселенной имеется не только видимая материя (а также черные дыры и «темная материя», например холодные планеты, которые станут видимыми, если их осветить). Существует и подлинно невидимая материя, пронизывающая всех нас и всю Вселенную ежесекундно. Она представляет собой быстро движущийся газ из частиц одного сорта – электронных нейтрино.

Электронное нейтрино является партнером электрона, но не имеет электрического заряда. Нейтрино несут лишь так называемый слабый заряд. Их масса покоя, по всей вероятности, равна нулю. Но с гравитационным полем они взаимодействуют, поскольку обладают кинетической энергией E , которой соответствует эффективная масса m , согласно формуле Эйнштейна E = mc 2 , где c – скорость света.

Ключевая роль нейтрино заключается в том, что оно способствует превращению и -кварков в d -кварки, в результате чего протон превращается в нейтрон. Нейтрино играет роль «иглы карбюратора» для звездных термоядерных реакций, в которых четыре протона (ядра водорода) объединяются, образуя ядро гелия. Но поскольку ядро гелия состоит не из четырех протонов, а из двух протонов и двух нейтронов, для такого ядерного синтеза нужно, чтобы два и -кварка превратились в два d -кварка. От интенсивности превращения зависит, насколько быстро будут гореть звезды. А процесс превращения определяется слабыми зарядами и силами слабого взаимодействия между частицами. При этом и -кварк (электрический заряд +2/3, слабый заряд +1/2), взаимодействуя с электроном (электрический заряд - 1, слабый заряд –1/2), образует d -кварк (электрический заряд –1/3, слабый заряд –1/2) и электронное нейтрино (электрический заряд 0, слабый заряд +1/2). Цветовые заряды (или просто цвета) двух кварков в этом процессе компенсируются без нейтрино. Роль нейтрино состоит в том, чтобы уносить нескомпенсированный слабый заряд. Поэтому скорость превращения зависит от того, насколько слабы слабые силы. Если бы они были слабее, чем они есть, то звезды вообще не горели бы. Если же они были бы более сильными, то звезды давно бы выгорели.

А что же нейтрино? Поскольку эти частицы крайне слабо взаимодействуют с другим веществом, они почти сразу уходят из звезд, в которых родились. Все звезды сияют, испуская нейтрино, а нейтрино днем и ночью просвечивают наши тела и всю Землю. Так они странствуют по Вселенной, пока не вступят, может быть, в новое взаимодействие ЗВЕЗДЫ) .

Переносчики взаимодействий.

За счет чего возникают силы, действующие между частицами на расстоянии? Современная физика отвечает: за счет обмена другими частицами. Представьте себе двух конькобежцев, перебрасывающихся мячом. Сообщая мячу импульс при броске и получая импульс с принятым мячом, оба получают толчок в направлении друг от друга. Так можно объяснить возникновение сил отталкивания. Но в квантовой механике, рассматривающей явления в области микромира, допускаются необычные растяжение и делокализация событий, что приводит, казалось бы, к невозможному: один из конькобежцев бросает мяч в направлении от другого, но тот тем не менее может этот мяч поймать. Нетрудно сообразить, что, будь такое возможно (а в мире элементарных частиц это возможно), между конькобежцами возникло бы притяжение.

Частицы, благодаря обмену которыми возникают силы взаимодействия между четырьмя рассмотренными выше «частицами материи», называются калибровочными частицами. Каждому из четырех взаимодействий – сильному, электромагнитному, слабому и гравитационному – соответствует свой набор калибровочных частиц. Частицами-переносчиками сильного взаимодействия являются глюоны (их всего восемь). Фотон – переносчик электромагнитного взаимодействия (он один, а фотоны мы воспринимаем как свет). Частицами-переносчиками слабого взаимодействия являются промежуточные векторные бозоны (в 1983 и 1984 были открыты W + -, W - -бозоны и нейтральный Z -бозон). Частицей-переносчиком гравитационного взаимодействия является пока еще гипотетический гравитон (он должен быть один). Все эти частицы, кроме фотона и гравитона, которые могут пробегать бесконечно большие расстояния, существуют лишь в процессе обмена между материальными частицами. Фотоны заполняют Вселенную светом, а гравитоны – гравитационными волнами (пока еще с достоверностью не обнаруженными).

О частице, способной испускать калибровочные частицы, говорят, что она окружена соответствующим полем сил. Так, электроны, способные испускать фотоны, окружены электрическими и магнитными полями, а также слабыми и гравитационными полями. Кварки тоже окружены всеми этими полями, но еще и полем сильного взаимодействия. На частицы с цветовым зарядом в поле цветовых сил действует цветовая сила. То же самое относится к другим силам природы. Поэтому можно сказать, что мир состоит из вещества (материальных частиц) и поля (калибровочных частиц). Об этом подробнее ниже.

Антивещество.

Каждой частице отвечает античастица, с которой частица может взаимно уничтожиться, т.е. «аннигилировать», в результате чего высвобождается энергия. «Чистой» энергии самой по себе, однако, не существует; в результате аннигиляции возникают новые частицы (например, фотоны), уносящие эту энергию.

Античастица в большинстве случаев обладает противоположными по отношению к соответствующей частице свойствами: если частица под действием сильного, слабого или электромагнитного полей движется влево, то ее античастица будет двигаться вправо. Короче говоря, античастица имеет противоположные знаки всех зарядов (кроме массового заряда). Если частица составная, как, например, нейтрон, то ее античастица состоит из компонент с противоположными знаками зарядов. Так, антиэлектрон имеет электрический заряд +1, слабый заряд +1/2 и называется позитроном. Антинейтрон состоит из и -антикварков с электрическим зарядом –2/3 и d -антикварков с электрическим зарядом +1/3. Истинно нейтральные частицы являются своими собственными античастицами: античастица фотона – фотон.

Согласно современным теоретическим представлениям, своя античастица должна быть для каждой существующей в природе частицы. И многие античастицы, в том числе позитроны и антинейтроны, действительно были получены в лаборатории. Следствия этого исключительно важны и лежат в основе всей экспериментальной физики элементарных частиц. Согласно теории относительности, масса и энергия эквивалентны, и в определенных условиях энергия может быть превращена в массу. Поскольку заряд сохраняется, а заряд вакуума (пустого пространства) равен нулю, из вакуума, как кролики из шляпы фокусника, могут возникать любые пары частиц и античастиц (с нулевым суммарным зарядом), лишь бы энергия была достаточной для создания их массы.

Поколения частиц.

Эксперименты на ускорителях показали, что четверка (квартет) материальных частиц по крайней мере дважды повторяется при более высоких значениях массы. Во втором поколении место электрона занимает мюон (с массой, примерно в 200 раз большей массы электрона, но с прежними значениями всех остальных зарядов), место электронного нейтрино – мюонное (которое сопутствует в слабых взаимодействиях мюону так же, как электрону сопутствует электронное нейтрино), место и -кварка занимает с -кварк (очарованный ), а d -кварка – s -кварк (странный ). В третьем поколении квартет состоит из тау-лептона, тау-нейтрино, t -кварка и b -кварка.

Масса t -кварка примерно в 500 раз больше массы самого легкого – d -кварка. Экспериментально установлено, что существуют только три типа легких нейтрино. Таким образом, четвертое поколение частиц или не существует вовсе, или соответствующие нейтрино являются очень тяжелыми. Это согласуется с космологическими данными, в соответствии с которыми могут существовать не более четырех типов легких нейтрино.

В экспериментах с частицами высоких энергий электрон, мюон, тау-лептон и соответствующие нейтрино выступают как обособленные частицы. Они не несут цветового заряда и вступают только в слабые и электромагнитные взаимодействия. В совокупности они называются лептонами .

Таблица 2. ПОКОЛЕНИЯ ФУНДАМЕНТАЛЬНЫХ ЧАСТИЦ
Частица Масса покоя, МэВ/с 2 Электрический заряд Цветовой заряд Слабый заряд
ВТОРОЕ ПОКОЛЕНИЕ
с -кварк 1500 +2/3 Красный, зеленый или синий +1/2
s -кварк 500 –1/3 То же –1/2
Мюонное нейтрино 0 0 +1/2
Мюон 106 0 0 –1/2
ТРЕТЬЕ ПОКОЛЕНИЕ
t -кварк 30000–174000 +2/3 Красный, зеленый или синий +1/2
b -кварк 4700 –1/3 То же –1/2
Тау-нейтрино 0 0 +1/2
Тау 1777 –1 0 –1/2

Кварки же под действием цветовых сил объединяются в сильно взаимодействующие частицы, преобладающие в большинстве экспериментов физики высоких энергий. Такие частицы называются адронами . В них входят два подкласса: барионы (например, протон и нейтрон), которые состоят из трех кварков, и мезоны , состоящие из кварка и антикварка. В 1947 в космических лучах был открыт первый мезон, названный пионом (или пи-мезоном), и некоторое время считалось, что обмен этими частицами – главная причина ядерных сил. Особой известностью в физике элементарных частиц пользовались также адроны омега-минус, открытые в 1964 в Брукхейвенской национальной лаборатории (США), и джей-пси-частица (J /y -мезон), открытая одновременно в Брукхейвене и в Стэнфордском центре линейных ускорителей (тоже в США) в 1974. Существование омега-минус-частицы было предсказано М.Гелл-Манном в его так называемой «SU 3 -теории» (другое название – «восьмеричный путь»), в которой впервые было высказано предположение о возможности существования кварков (и было дано им это название). Десятилетие спустя открытие частицы J /y подтвердило существование с -кварка и заставило, наконец, всех поверить и в кварковую модель, и в теорию, объединившую электромагнитные и слабые силы (см. ниже) .

Частицы второго и третьего поколения не менее реальны, чем первого. Правда, возникнув, они за миллионные или миллиардные доли секунды распадаются на обычные частицы первого поколения: электрон, электронное нейтрино, а также и - и d -кварки. Вопрос о том, почему в природе существуют несколько поколений частиц, до сих пор остается загадкой.

О разных поколениях кварков и лептонов часто говорят (что, конечно, несколько эксцентрично) как о разных «ароматах» частиц. Необходимость их объяснения называется проблемой «аромата».

БОЗОНЫ И ФЕРМИОНЫ, ПОЛЕ И ВЕЩЕСТВО

Одним из принципиальных различий между частицами является различие между бозонами и фермионами. Все частицы делятся на эти два основных класса. Одинаковые бозоны могут налагаться друг на друга или перекрываться, а одинаковые фермионы – нет. Наложение происходит (или не происходит) в дискретных энергетических состояниях, на которые квантовая механика делит природу. Эти состояния представляют собой как бы отдельные ячейки, в которые можно помещать частицы. Так вот, в одну ячейку можно поместить сколько угодно одинаковых бозонов, но только один фермион .

В качестве примера рассмотрим такие ячейки, или «состояния», для электрона, вращающегося вокруг ядра атома. В отличие от планет Солнечной системы, электрон по законам квантовой механики не может обращаться по любой эллиптической орбите, для него существует только дискретный ряд разрешенных «состояний движения». Наборы таких состояний, группируемые в соответствии с расстоянием от электрона до ядра, называются орбиталями . В первой орбитали имеются два состояния с разными моментами импульса и, следовательно, две разрешенные ячейки, а в более высоких орбиталях – восемь и более ячеек.

Поскольку электрон относится к фермионам, в каждой ячейке может находиться только один электрон. Отсюда вытекают очень важные следствия – вся химия, поскольку химические свойства веществ определяются взаимодействиями между соответствующими атомами. Если идти по периодической системе элементов от одного атома к другому в порядке увеличения на единицу числа протонов в ядре (число электронов тоже будет соответственно увеличиваться), то первые два электрона займут первую орбиталь, следующие восемь расположатся на второй и т.д. Этим последовательным изменением электронной структуры атомов от элемента к элементу и обусловлены закономерности в их химических свойствах .

Если бы электроны были бозонами, то все электроны атома могли бы занимать одну и ту же орбиталь, соответствующую минимальной энергии. При этом свойства всего вещества во Вселенной были бы совершенно другими, и в том виде, в котором мы ее знаем, Вселенная была бы невозможна.

Все лептоны – электрон, мюон, тау-лептон и соответствующие им нейтрино – являются фермионами. То же можно сказать о кварках. Таким образом, все частицы, которые образуют «вещество», основной наполнитель Вселенной, а также невидимые нейтрино, являются фермионами. Это весьма существенно: фермионы не могут совмещаться, так что то же самое относится к предметам материального мира.

В то же время все «калибровочные частицы», которыми обмениваются взаимодействующие материальные частицы и которые создают поле сил (см. выше ), являются бозонами, что тоже очень важно. Так, например, много фотонов могут находиться в одном состоянии, образуя магнитное поле вокруг магнита или электрическое поле вокруг электрического заряда. Благодаря этому же возможен лазер .

Спин.

Различие между бозонами и фермионами связано с еще одной характеристикой элементарных частиц – спином . Как это ни удивительно, но все фундаментальные частицы имеют собственный момент импульса или, проще говоря, вращаются вокруг своей оси. Момент импульса – характеристика вращательного движения, так же как суммарный импульс – поступательного. В любых взаимодействиях момент импульса и импульс сохраняются.

В микромире момент импульса квантуется, т.е. принимает дискретные значения. В подходящих единицах измерения лептоны и кварки имеют спин, равный 1/2, а калибровочные частицы – спин, равный 1 (кроме гравитона, который экспериментально пока не наблюдался, а теоретически должен иметь спин, равный 2). Поскольку лептоны и кварки – фермионы, а калибровочные частицы – бозоны, можно предположить, что «фермионность» связана со спином 1/2, а «бозонность» – со спином 1 (или 2). Действительно, и эксперимент, и теория подтверждают, что если у частицы полуцелый спин, то она – фермион, а если целый – то бозон.

КАЛИБРОВОЧНЫЕ ТЕОРИИ И ГЕОМЕТРИЯ

Во всех случаях силы возникают вследствие обмена бозонами между фермионами. Так, цветовая сила взаимодействия между двумя кварками (кварки – фермионы) возникает за счет обмена глюонами. Подобный обмен постоянно происходит в протонах, нейтронах и атомных ядрах. Точно так же фотоны, которыми обмениваются электроны и кварки, создают электрические силы притяжения, удерживающие электроны в атоме, а промежуточные векторные бозоны, которыми обмениваются лептоны и кварки, создают силы слабого взаимодействия, ответственные за превращение протонов в нейтроны при термоядерных реакциях в звездах.

Теория такого обмена изящна, проста и, вероятно, правильна. Она называется калибровочной теорией . Но в настоящее время существуют лишь независимые калибровочные теории сильного, слабого и электромагнитного взаимодействий и сходная с ними, хотя кое в чем и отличающаяся, калибровочная теория гравитации. Одной из важнейших физических проблем является сведение этих отдельных теорий в единую и вместе с тем простую теорию, в которой все они стали бы разными аспектами единой реальности – как грани кристалла.

Таблица 3. НЕКОТОРЫЕ АДРОНЫ
Таблица 3. НЕКОТОРЫЕ АДРОНЫ
Частица Символ Кварковый состав * Масса покоя, МэВ/с 2 Электрический заряд
БАРИОНЫ
Протон p uud 938 +1
Нейтрон n udd 940 0
Омега-минус W – sss 1672 –1
МЕЗОНЫ
Пи-плюс p + u 140 +1
Пи-минус p du 140 –1
Фи f 1020 0
Джей-пси J /y 3100 0
Ипсилон Ў b 9460 0
* Кварковый состав: u – верхний; d – нижний; s – странный; c – очарованный; b – красивый. Чертой над буквой обозначены антикварки.

Простейшей и самой старой из калибровочных теорий является калибровочная теория электромагнитного взаимодействия. В ней заряд электрона сравнивается (калибруется) с зарядом другого электрона, удаленного от него. Как можно сравнивать заряды? Можно, например, приблизить второй электрон к первому и сравнивать их силы взаимодействия. Но не меняется ли заряд электрона при его перемещении в другую точку пространства? Единственный способ проверки – послать от ближнего электрона к дальнему сигнал и посмотреть, как он среагирует. Сигналом является калибровочная частица – фотон. Чтобы можно было проверить заряд на удаленных частицах, необходим фотон.

В математическом отношении эта теория отличается чрезвычайной точностью и красотой. Из описанного выше «калибровочного принципа» вытекает вся квантовая электродинамика (квантовая теория электромагнетизма), а также теория электромагнитного поля Максвелла – одно из величайших научных достижений 19 в.

Почему же столь простой принцип оказывается столь плодотворным? Видимо, он выражает некую соотнесенность разных частей Вселенной, позволяя проводить измерения во Вселенной. В математическом плане поле интерпретируется геометрически как кривизна некоторого мыслимого «внутреннего» пространства. Измерение же заряда – это измерение полной «внутренней кривизны» вокруг частицы. Калибровочные теории сильного и слабого взаимодействий отличаются от электромагнитной калибровочной теории только внутренней геометрической «структурой» соответствующего заряда. На вопрос о том, где именно находится это внутреннее пространство, пытаются ответить многомерные единые теории поля, которые здесь не рассматриваются.

Таблица 4. ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ
Взаимо-действие Относительная интенсивность на расстоянии 10 –13 см Радиус действия Переносчик взаимодействия Масса покоя переносчика, МэВ/с 2 Спин переносчика
Сильное 1 Глюон 0 1
Электро-
магнитное
0,01 Ґ Фотон 0 1
Слабое 10 –13 W + 80400 1
W 80400 1
Z 0 91190 1
Гравита-
ционное
10 –38 Ґ Гравитон 0 2

Физика элементарных частиц пока не завершена. Еще далеко не ясно, достаточно ли имеющихся данных для полного понимания природы частиц и сил, а также истинной природы и размерности пространства и времени. Нужны ли нам для этого эксперименты с энергиями 10 15 ГэВ или же будет достаточно усилий мысли? Ответа пока нет. Но можно сказать с уверенностью, что окончательная картина будет проста, изящна и красива. Возможно, что принципиальных идей окажется не так много: калибровочный принцип, пространства высших размерностей, коллапс и расширение, а прежде всего – геометрия.

Элементарными называются частицы, которым (на данном этапе развития физики) нельзя приписать никакой внутренней структуры.

Основные частицы, входящие в состав атома, - электроны, протоны и нейтроны - вначале считались неспособными к превращениям и каким-либо изменениям. Поэтому их и назвали элементарными. Однако в дальнейшем было показано, что термин "элементарная частица" весьма условен. Так, например, у свободного нейтрона время жизни около 15 минут, а затем он распадается на протон, электрон и антинейтрино:

Из всех открытых в настоящее время элементарных частиц лишь фотон, электрон, протон и нейтрино сохраняли бы свою неизменность, если бы каждая из них была одна в окружающем пространстве.

Элементарные частицы подчиняются законам квантовой физики.

В основу современной классификации элементарных частиц положены их основные свойства: масса, электрический заряд, спин и время жизни, а также лептонный и барионный заряды.

В таблице 23.1 приведены некоторые сведения о свойствах элементарных частиц со временем жизни более 10 -20 с. Частицы в таблице расположены по возрастанию их массы.

В таблицу элементарных частиц не включены все короткоживущие частицы-резонансы, в частности, "очарованные" частицы. Не включены также переносчики слабых взаимодействий - векторные бозоны. В результате получается 39 частиц.

Таблица открывается фотоном. Фотон, оставаясь в одиночестве, образует первую группу. Фотоны представляют собой кванты электромагнитного поля (света, -излучения и т.д.), не имеют соответствующих античастиц, т.е. являются своими собственными античастицами.

Следующую группу образуют легкие частицы - лептоны. В нее входит двенадцать частиц (включая античастицы). Это электрон , мюон (открыт в космических лучах в 1937 г. - это тяжелый аналог электрона, имеющий массу примерно в 200 раз большую массы электрона) и -лептон (таон имеет массу, примерно в 3500 раз превышающую массу электрона). Каждая из этих трех частиц имеет свое нейтрино, которое сопровождает свою собственную заряженную частицу в разнообразных взаимопревращениях: электронное нейтрино рождается вместе с электронами, мюонное нейтрино - вместе с мюонами, -лептонное - вместе с -лептонами. Хотя -лептон имеет очень большую массу, он включен в группу лептонов, поскольку по всем другим свойствам он близок к ним. Главное свойство, которое его роднит с остальными лептонами, состоит в том, что эта частица, как и другие лептоны, не участвует в сильных взаимодействиях

Таблица 23.1

Далее следуют мезоны. Эта группа состоит из восьми частиц. Наиболее легкие из них -мезоны: положительные, отрицательные и нейтральные. Их массы составляют 264,1 и 273,1 электронных масс. Пионы являются квантами ядерного поля, подобно тому как фотоны - кванты электромагнитного поля. Еще имеются четыре -мезона и один -мезон.

Последняя группа - барионы - самая обширная. В нее входит 18 частиц из 39. Самыми легкими из барионов являются нуклоны - протоны и нейтроны. За ними следуют так называемые гипероны. Вся таблица замыкается (омега-минус)-частицей, открытой в 1964 г. Ее масса в 3273 раза больше массы электрона.

Мезоны и барионы представляют собой класс адронов - частиц, участвующих в сильных взаимодействиях. Адроны разделяются на "стабильные" частицы со временем жизни с и на резонансы, время жизни которых с, т.е. соответствуют времени сильного взаимодействия. Длина их пробега с момента рождения до момента распада составляет около 10 -15 м. и в детекторах эти частицы не оставляют никаких треков. Они проявляются в виде пиков на графиках зависимости так называемых сечений рассеяния от энергии. Резонансы распадаются за счет сильного взаимодействия, стабильные частицы - за счет электромагнитного и слабого взаимодействий.

Разделение элементарных частиц на группы определяется не только различием в массах, но и другими важными свойствами, например, спином.

Лептоны и барионы имеют спин, равный спины мезонов равны 0, а спин фотона равен 1.

Между элементарными частицами существует четыре типа взаимодействий - гравитационное, электромагнитное, сильное и слабое.

Сильное взаимодействие свойственно тяжелым частицам, начиная с пиона. Наиболее известное его проявление - ядерные силы, обеспечивающие существование атомных ядер.

В электромагнитном взаимодействии непосредственно участвуют только электрически заряженные частицы и фотоны. Наиболее известное его проявление - кулоновские силы, обусловливающие существование атомов. Именно электромагнитное взаимодействие ответственно за подавляющее большинство макроскопических свойств вещества. Оно же вызывает аннигиляцию электронно-позитронной пары и многие другие микроскопические процессы.

Слабое взаимодействие характерно для всех частиц, кроме фотонов. Наиболее известное его проявление - -распад нейтрона и целого ряда атомных ядер.

Гравитационное взаимодействие присуще всем телам Вселенной, проявляясь в виде сил всемирного тяготения. Эти силы обеспечивают существование звезд, планетных систем и т.п. Гравитационное взаимодействие является предельно слабым и не играет существенной роли в мире элементарных частиц при обычных энергиях. В мире элементарных частиц гравитация становится существенной при колоссальных энергиях порядка 10 22 МэВ, которые соответствуют сверхмалым расстояниям порядка 10 -35 м.

Элементарных частиц в настоящее время насчитывается очень много (более 350). Поэтому встает вопрос: есть ли что-то общее в структуре этих частиц? Можно ли их считать элементарными?

В 1963 г. М. Гелл-Манн и Дж. Цвейг выдвинули гипотезу о существовании в природе нескольких частиц, названных кварками. Согласно этой гипотезе, все мезоны, барионы и резонансы - т.е. адроны, состоят из кварков и антикварков, комбинации которых различны.

Первоначально была введена гипотеза о существовании трех кварков (и соответственно трех антикварков). Кварки обозначаются буквами u, d, s. Они должны иметь дробные электрические заряды. Первый из них - u -кварк - имеет заряд - e, а d- и s- кварки имеют одинаковые заряды, равные где e - модуль заряда электрона. Было предсказано существование четвертого кварка, c- кварка, названного "очарованным". Затем экспериментально были обнаружены частицы, содержащие этот кварк. Масса с-кварка превышает массу s -кварка. Впоследствии были предсказаны, а затем и открыты еще более тяжелые b - и t -кварки.

Кварки наряду с лептонами считаются истинно элементарными частицами. В свободном состоянии кварки пока не найдены, и сейчас высказаны предположения о невозможности разделения частиц на кварки. В основе этих предположений лежит утверждение о том, что силы взаимодействия между кварками не убывают с расстоянием, поэтому извлечь кварки из частиц нельзя.

Вопросы на закрепление изученной темы

1 Дайте определение коэффициента размножения нейтронов.

2 При каких значениях k ядерная реакция будет управляемой? неуправляемой?

3 Что такое критическая масса? Как её можно уменьшить?

4 Как устроен ядерный реактор?

5 Что такое элементарная частица?

6 На какие группы делятся известные элементарные частицы?



Понравилась статья? Поделитесь с друзьями!